GENII Version 2
General Purpose Environmental Radiation Software

Jeremy Rishel, PNNL
Bruce Napier, PNNL
GENII Overview

A set of computer programs for estimation of radionuclide concentrations in the environment and dose/risk to humans from:

- Acute or chronic exposures from
- Radiological releases to the atmosphere, surface water, or
- Initial contamination conditions

One of a set of quality-assured and configuration-controlled safety analysis codes managed and maintained for DOE’s Safety Software Central Registry
GENII Development History

- 1988 - Version 1. Released
 - ICRP-26/30/48 dosimetry
- 1990 - Version 1.485 stabilized
- 1992 - GENII-S stochastic version
- 2004 - GENII Version 2
 - ICRP-72 age-dependent dosimetry
 - EPA HEAST slope factors
 - Federal Guidance Report 13 risk factors
- 2006/7 – V&V
- 2008 – New features, DOE toolbox status
Available Models in GENII

- Atmospheric transport
- Surface water transport
- Waste/soil redistribution
- Terrestrial uptake
- Human Exposure
- Dose/Risk
- Uncertainty/Sensitivity
Types of Scenarios

► Far-Field scenarios
 ■ Atmospheric transport (acute or chronic)
 ■ Surface water transport (acute or chronic)

► Near-Field scenarios
 ■ Spills
 ■ Buried waste
 ■ Groundwater use - groundwater transport modeling is NOT an explicit part of GENII
GENII V.2 Time Line

- **Dose Period**
 - Release Period
 - Optional inventory
 - decay/biotic transport period
 - Residual Period
 - Intake/exposure begins
 - Release stops
 - Intake/exposure ends

- Release or disposal
 - Release begins
 - Intake/exposure begins
Radionuclides of Interest

- All those with half-lives greater than 10 minutes, except radon progeny
- And all decay progeny
 - Some are included “implicitly” with the parent radionuclide
GENII V.2 Atmospheric Transport Options

- Chronic
 - Gaussian Plume
 - Lagrangian Puff
- Acute
 - Gaussian Plume
 - Lagrangian Puff
- Estimation of 95^{th} percentile dispersion conditions
- Input of pre-calculated dispersion parameters
GENII V.2 Chronic Plume Model

- Straight-line, sector-averaged Gaussian plume model
 - Uses hourly observations or joint-frequency data
 - Multiple, independent sources
 - Ground level or elevated releases
 - Point or area sources
 - Finite flow correction
 - Sectors by 16 compass points or 10 degrees
 - Radial output grid
GENII V.2 Chronic Puff Model

- Lagrangian puff releases based on a single meteorological station
 - Hourly time step (variable number of puffs/hour) using hourly observations or quasi-hourly built from joint-frequency data
 - Cartesian (rectangular) grid
 - Multiple sources
 - Point or area sources
 - Ground level or elevated releases
GENII V.2 Acute Plume Model

- Straight-line centerline Gaussian for individuals
 - For short (~2 hour releases)
 - Single source
 - Ground-level or elevated releases

- Radial grid
 - Radial sectors by 16 compass points or 10 degrees

- A specialized module for 95th percentile conditions is now available (currently NOT the NRC RG 1.145 approach for sector and site, but could be revised)
GENII V.2 Acute Puff Model

- Lagrangian puff based on a single meteorological station
 - Hourly time step using hourly observations or quasi-hourly inputs derived from joint-frequency data
 - Single source
 - Cartesian (rectangular) grid
 - Ground-level or elevated releases
Parameterizations for Diffusion Coefficients

- Briggs open country
- Briggs urban conditions
- Pasquill-Gifford (ISC-3)
- Pasquill-Gifford (NRC: PAVAN, MESORAD, XOQDOQ)
- Turbulence Statistics (NRC: RASCAL)
Parameterizations Available in All Dispersion Models

- Building wake/low-speed meander correction to diffusion
- Buoyancy-induced diffusion
- Plume rise/downwash corrections
 - Momentum
 - Buoyancy
- Diabatic wind profile
GENII V.2 Atmospheric Deposition

- All models have plume depletion/mass balance
- Dry deposition
 - “Resistance model”
 - Includes gravitational settling of larger particles
- Wet deposition
 - Washout dependent on precipitation rate
 - Rain and snow considered
Sources of Meteorological Data for Atmospheric Models

► Hourly data
 ■ CD-144 format (National Climatic Data Center - NCDC)
 ■ SAMSON format (NCDC)
 ■ Precipitation in TD-3240 format (NCDC)

► Joint frequency data
 ■ STAR (ISC-3) [provided for many US sites]
 ■ GENIIT V.1.485
GENII V.2 Air Submersion Dose Rates

- **Infinite plume**
 - Based on Federal Guidance Report FGR-13 models

- **Finite plume**
 - Close to release - array of line sources
 - Intermediate distances - stacked series of infinite planes
 - Long distances - defaults to infinite plume
GENII V.2 Surface Water Transport Models

Simple models derived from NRC’s LADTAP

- Rivers: analog to atmospheric Gaussian plume
 - Constant depth, width, velocity
 - Straight channel
 - Continuous discharge
- River - dilution volume (well mixed)
- Acute river (time integral)
- Lake
 - quasi-steady state wind-driven currents
GENII V.2 Near-Field Biotic Transport

- Plant roots - root fraction applied to concentration ratio (CR)
- Burrowing animals - volume of soil moved versus depth
- Applied to arid, humid, or agricultural conditions
GENII V.2 Near-Field Human Intrusion

- Buried waste and/or deep soil may be manually redistributed at the start of exposure to the surface soil.
- Process is a step function manual redistribution factor (m^3/m^2).
GENII V.2 Exposure Pathways

External
- Transported air
- Soil
- Swimming
- Shoreline

Inhalation
- Transported air
- Resuspended soil
- Volatilized indoor air pollutants from water
GENII V.2 Exposure Pathways, Continued

Ingestion
- Leafy vegetables
- Other vegetables
- Fruit
- Grain
- Meat
- Milk
- Poultry
- Eggs
- Fish
- Crustaceans
- Molluscs
- Water plants
- Drinking water
- Shower water
- Swimming water
- Soil
GENII V.2 Crop Contamination

▶ Plant = Soil * CR + intercepted deposition

- Concentration ratios (CR) are traceable to current U.S. and international literature (PNNL-21950).
- Interception function of crop biomass
 - Wet interception
 - Dry interception
Animal Product = TF \sum (Crop \times \text{Ingestion rate})

- Transfer factors (TF) are traceable to current U.S. and international literature (PNNL-21950).
Fish = Water concentration * BF

Bioaccumulation factors (BF) are traceable to current U.S. and international literature (PNNL-21950).
GENII V.2 Tritium Specific Activity Model

- Environmental media assumed to have same specific activity (Bq/kg water) as contaminating medium (water or air)
- Fractional content of both water and non-water portions of the food product is used
- In acute cases, rapid equilibration/de-equilibration is assumed (~8 hours)
- Based on observations at Chalk River
GENII V.2 Carbon-14 Specific Activity Model

- For atmospheric sources, model is parallel to that for tritium
- For water sources, equilibration is assumed with soil carbon atom ratios
- For acute cases, uptake via photosynthesis is slow, long de-equilibration
GENII V.2 Human Exposure

- Up to 6 age groups allowed, following ICRP-56,67,69

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 months</td>
<td>0-1 year</td>
</tr>
<tr>
<td>1 year</td>
<td>1-2 year</td>
</tr>
<tr>
<td>5 year</td>
<td>2-7 year</td>
</tr>
<tr>
<td>10 year</td>
<td>8-12 year</td>
</tr>
<tr>
<td>15 year</td>
<td>13-17 year</td>
</tr>
<tr>
<td>20+ year</td>
<td>17-110 year</td>
</tr>
</tbody>
</table>
GENII V.2 presents results for 4 seasons (winter/spring/summer/autumn)

This is a surrogate for a complex set of underlying assumptions about plant growth, weathering, uptake, and time-to-harvest

Selection of season depends on meteorological input (this is related to the uncertainty capability)

Season definitions are a user input, because seasons below the equator are reversed!
External Exposure - Doses

- Dose rate conversion factors from Federal Guidance Report FGR-12, provided by Keith Eckerman, ORNL
 - Air Submersion
 - Water Immersion
 - Soil Plane
 - Soil Volume
Internal Exposure - Doses

- Effective dose equivalent: ICRP-30
 - Adult only
- Effective dose: ICRP-72
 - 6 age groups
 - 24 organs/tissues
 - Inhalation classes Fast (F), Medium (M), Slow (S)
Risk Calculations – Dose-to-Risk Conversions

- ICRP provides estimates of cancer incidence and mortality in relation to effective dose
 - ICRP-30 effective dose
 - ICRP-72 organ dose
- The BEIR VII report supports these values with minor revision
 - Risk = Dose (Sv) * Conversion (risk/Sv)
US Federal Guidance Report 13 provides coefficients for 15 cancer sites
- Inhalation (risk/Bq)
 - Inhalation classes F, M, S
- Ingestion (risk/Bq)
 - Accounts for different consumption patterns with age
 - Drinking water
 - Food crops
Parameter uncertainty and sensitivity may be addressed using the SUM3 processor in FRAMES.

All non-control parameters are allowed to be varied, using description files to define ‘available’ parameters.

Acute atmospheric releases are an important subset. For these, SUM3 is used to vary start times in the plume or puff models, allowing construction of the location or site cumulative dose/risk distribution function.
Questions?

► Bruce Napier
 ■ bruce.napier@pnnl.gov
 ■ 509-375-3896

► Jeremy Rishel
 ■ jeremy.rishel@pnnl.gov
 ■ 509-375-6974