A study on radiological consequence analysis using agent-based protective action modeling

Gibeom Kim, Sung-yeop Kim

gbkim@kaeri.re.kr

2024 International RAMP and MACCS User Group Meeting @ NRC, Maryland, USA Oct 21-25, 2024

A nuclear research institute reshaping the future based on peoples trust

KAERI

Korea Atomic Energy Research Institute

1 Introduction

02

03

Agent-based emergency phase model

Case study

Summary and Conclusions

Introduction

Introduction

Background

- There are lots of elements involved in the radiological emergency
 - e.g., evacuees, communication system, road
- Interactions between those make it harder to estimate the consequences
- The current consequence analysis is being conducted based on a simplified model with conservative assumptions
- Agent-based modeling (ABM) can be a solution to reflect various situations that may arise during the emergency phase

In this study,

- A method for simulating emergency phase using agent-based modeling is presented
- A case study was conducted to perform consequence analysis by combining an atmospheric dispersion model and an agent-based emergency phase model

Agent-based emergency phase model

Preview

02

- Example
 - 'Netlogo' ABM tool
 - Environments
 - Road network
 - Residential & Business area
 - Plant location
 - Primary assembly area
 - Agents
 - Evacuee
 - Radioactive material

Agent-based modeling

02

Explain complex macroscopic phenomena as interactions of microscopic actors with relatively simple behavioral rules

7

$\textcircled{1} \quad \textbf{Perceive:} \quad$

Perceive and be influenced by the surrounding environment and the actions of other agents

(2) Update attributes:

Update attribute values using some models from recognized information

3 Decision make:

Determine the next action based on updated property values and behavioral rules

4 Action:

Influencing the surrounding environment and other agents by performing an action

(5) Update attributes:

Update the attribute values of the environment affected by the agents

Agent-based modeling

02

facilitates modeling various characteristics (attributes) and behavior rules of individual agents

Agent modeling

Evacuee

02

- Randomly located on residential & business area
- Evacuates to the nearest road located at a 5km boundary
 - Shortest path finding
 - A* algorithm
- \rightarrow Where to? $\rightarrow r_{i.path}^{Evacuee}$
- Traffic model

- NS-CA (Nagel-Schreckenberg cellular automata) model \rightarrow How fast? $\rightarrow r_{i,speed}^{Evacuee}$

Dose

10

Environment modeling

- Based on GIS database
 - NPP,

02

- · Residential & Business area, and
- Road network distribution was modeled
 - Number of lanes
 - Speed limit

alle theme and the second of t

Case study

Case study

03

Agent-based emergency phase simulation

- Imaginary NPP site was selected
- Area within a radius of 5 km of the NPP was modeled (PAZ)
- Assumed that 4 exit road point are located at the 5 km boundary

Case study

03

Agent-based emergency phase simulation

Simulation timeline

- The simulation start time $t_{release}$
- Each evacuee begins to move after t_{alarm} \rightarrow the time when evacuation order is issued
- Each evacuee begins sheltering after a preparation (delay) time $\rightarrow t_{sheltering \ delay}$
- Each evacuee begins evacuating after a preparation (delay) time
 - $ightarrow t_{evacuation \, delay}$

13

Agent-based emergency phase simulation

Name	Value
Number of simulations	100
Time step	10 seconds
t _{alarm}	U(30,90) [min]
t _{sheltering delay}	U(30,90) [min]
t _{evacuation delay}	U(30,90) [min]
Limit speed of road nodes	30, 50, 80 km/h
Number of lanes of road nodes	2, 4, 6, 8
Number of evacuees (<i>n_{evacuee}</i>)	1,000
-	

Summary and Conclusions

04 Summary and Conclusions

- ABM can be used for integrated modeling for a emergency phase involving many elements and attributes
- Emergency phase simulation was performed with less conservative assumptions
 - Alarm/Sheltering/Evacuation delay distribution
 - Realistic evacuation route based on GIS data
 - Evacuation speed based on traffic model (considering traffic jam)

Future works

- To consider more attributes and behavior rules
- To minimize (optimize) computational cost

A nuclear research institute reshaping the future based on peoples trust

THANK YOU

ACKNOWLEDGEMENTS

This work was supported by National Research Foundation (NRF) Grant funded by the Korea government (MSIT. Ministry of Science, ICT) (No. RS-2022-00144405).

Korea Atomic Energy Research Institute