NRCDose3

J. Stewart Bland, CHP

2024 RAMP Virtual Meeting April 2024

Topics

- NRCDose3 Overview
- Overview of Features
- XOQDOQ Modeling and Use/Screens
- GASPAR Modeling and Use/Screens
- LADTAP Modeling and Use/Screens
- NRCDose3 Code Discussions

NRCDose3 - Version 1.1.4

Quit About Manuals

LADTAP Liquid Pathway Dose Assessment

GASPAR Gaseous Pathway Dose Assessment

NRCDose3 OVERVIEW

XOQDOQ Annual Average Meteorological Dispersion and Deposition

This computer program was created by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor its contractors, nor any of their emplyees, makes any warranty, expressed of implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, or of any information in or generated by this program, or represents that its use by such third party would not infringe privately-owned rights. In addition you may not distribute this computer program or use this computer program without the permission of the U.S. Nuclear Regulatory Commission.

Purpose of Code

- NRC Licensing Evaluation;
- Exposure pathway dose modeling, primarily for reactors to demonstrate compliance with:
 - 10 CFR Part 20
 - Appendix I to 10 CFR Part 50
 - 40 CFR Part 190
- With expanded source term applicable to other fuel cycle facilities
- Not suitable for short term releases; accident dose assessment

NRC Guidance

- NRC guidance on reactor effluent dose calculations is contained in:
 - RG 1.109, Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I
 - RG 1.111, Methods of Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light Water Cooled Reactors
 - RG 1.113, Estimating Aquatic Dispersion of Effluents from Accidental and Routine Reactor Releases for the Purposes of Implementing Appendix I

FORTRAN Codes

LADTAP II

- Liquid effluent doses
- NUREG/CR-4013, RSICC CCC-363

GASPAR II

- Gaseous effluent doses
- NUREG/CR-4653, RSICC CCC-463

XOQDOQ

- Atmospheric transport and diffusion
- NUREG/CR-2919, RSICC CCC-316

XOQDOQ

- Evaluation of transport, diffusion, and deposition of airborne radiological effluents
 - Routine releases
 - Intermittent releases
 - Non-emergency
- Calculates atmospheric dispersion factors (χ/Q) and deposition factors (D/Q)
 - Predefined segmented distances by compass sectors out to 50 miles
 - User defined points of interest

E

XOQDOQ

- Straight-line trajectory Gaussian plume model. Considers:
 - Dry deposition
 - Radioactive decay
 - Plume recirculation (stagnation)
- Calculates effective plume height
 - Physical release height
 - aerodynamic downwash
 - plume rise
 - terrain features

GASPAR II

- Estimates airborne effluent doses
 - Routine
 - Non-emergency
 - Individuals or populations
- Requires:
 - Source term released (Ci/yr)
 - Atmospheric dispersion (XOQDOQ)
 - Demographics

GASPAR II

- Internal Exposure Pathways
 - Inhalation (of plume)
 - Ingestion of contaminated food
 - leafy vegetables
 - vegetables and grains
 - meat
 - milk

- External Exposure Pathways
 - Plume
 - Ground Plane

LADTAP II

- Estimates liquid effluent doses
 - Routine
 - Non-emergency
 - Individuals, populations or biota
- Hydrologic model represents mixing in the effluent impoundment system and surface waters

LADTAP II

- Internal Exposure Pathways:
 - Drinking water (freshwater site)
 - Fish
 - Invertebrates
 - Aquatic plants
 - Irrigated crops

- External Exposure Pathways
 - Shoreline
 - Boating
 - Swimming

GASPAR II and LADTAP II

- ICRP-2 DCFs (1950s)
- Four (4) Age Groups
 7 Organs
 - Infant
 - Child
 - Teen
 - Adult

- - Total Body
 - Bone
 - Liver
 - Thyroid
 - Kidneys
 - Lungs
 - GI-LLI

NRC and Industry End Uses

- NRC licensing reviews
 - Design Certification, Combined License, and Early Site Permit Applications
 - License Amendment Requests
- NRC health physics reactor inspections
 - Independent assessment of potential doses from effluent releases
 - Independent assessment of ODCM Dose
 Conversion Factors and effluent dose calculations

NRC and Industry End Uses (Cont.)

- Calculate doses at locations of interest
- Evaluate Land Use Census

 Public interest
- Annual dose assessments
 - Actual receiving water body flows and dilutions
 - Meteorology with effluents for evaluated year
- ODCM Dose Conversion Factors

Why Update to NRCDose3

- Updates the NRCDose 2.3.20 (CCC-684) code
- Significant increase in flexibility and functionality

Why Update to NRCDose3

- Need for a licensing tool to support reactor application submittals
- Provides an acceptable method for evaluating exposure pathway doses from reactor effluents
- Improves efficiency in reactor licensing process, and NRC safety and environmental reviews

Overview of Updates

- Improved functionality
 Undated Windows interfa
 - Updated Windows interface
- Option to select ICRP-2, ICRP-30, or ICRP-72 Dose Conversion Factors (DCFs)
 - Age range
 - Organs
- Expanded license application ready reports

Overview of Updates

- User-modifiable parameter values
 - Bioaccumulation factors
 - Consumption rates
 - Usage factors
 - Other parameters

Previous versions of NRCDose (and FORTRAN codes) did not allow for edits to parameters

Updates (Cont.) – DCFs

- Expanded ICRP-2 DCFs
- ICRP-30 DCFs
- ICRP-72 DCFs
- Ingestion DCFs: Gastrointestinal Absorption Fractions (f1)
- Inhalation DCFs: Lung Clearance Classes for Chemical Compounds
 - ICRP-30: D/W/Y
 - ICRP-72: F/M/S

DCFs obtained from Radiological Toolbox, NRC RAMP at <u>https://ramp.nrc-gateway.gov/</u>

Updates (Cont.) – Biota Dose

- Biota dose added to GASPAR and expanded in LADTAP
- Biota dose calculated at all user defined special location (GASPAR)
- Biota dose based on species mass, effective radius, primary food eaten (produce or meat) and consumption rate

Updates (Cont.) – Biota Dose

LADTAP

- Algae
- Muskrat
- Racoon
- Duck
- Heron
- User defined

GASPAR

- Same as LADTAP plus
- Cow (herbivore)
- Fox (carnivore)
- User Defined

Documentation and Release

- NRCDose3 Quick Start Guide

 How to install, run, and view output
- DRAFT NUREG on NRCDose3 Code: User Guide and Technical Manual – Technical basis
- Distribution by NRC RAMP

https://ramp.nrc-gateway.gov/

NRCDose3 - Version 1.1.4

Quit About Manuals

LADTAP Liquid Pathway Dose Assessment

GASPAR Gaseous Pathway Dose Assessment

OVERVIEW OF FEATURES AND ENHANCEMENTS

XOQDOQ Annual Average Meteorological Dispersion and Deposition

This computer program was created by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor its contractors, nor any of their emplyees, makes any warranty, expressed of implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, or of any information in or generated by this program, or represents that its use by such third party would not infringe privately-owned rights. In addition you may not distribute this computer program or use this computer program without the permission of the U.S. Nuclear Regulatory Commission.

Installation and Operation

- Double-click *NRCDose3_v113_Setup.exe*
- Follow prompts
- NRCDose3 will install in C:\directory (unless changed by the user)

File Types

.XN3

- XOQDOQ
- Case file saved by XOQDOQ

.GN3

- GASPAR
- Case file saved by GASPAR

.LN3

- LADTAP
- Case file saved by LADTAP

.DAT

- LADTAP and GASPAR
- Data file used in place of manually entered data
- Used to initially test the program (Older DAT files incompatible with NRCDose3)

File Structure

- When a code is opened, it will be loaded with the last case file from the database
 - When first opened, an example case file will be preloaded
- If a different case is desired, select *File->Open LN3 File* from the menu to load a saved case
 Or "Open GN3 File" or "Open XN3 File" as applicable
- When saving a case, it will be saved to the database as well as a case file (.xn3, .gn3, .ln3 file type, as applicable)

Hard-Coded Parameters

- Previous versions of codes had many hardcoded parameters that are now usereditable
- Editing may be appropriate for sitespecific conditions

CAUTION

Changing parameters from accepted methods (i.e., RGs) or licensing documentation may require evaluation or justification

XOQDOQ Expanded Editable Parameters

- Building wake constant
 - Though not recommended without a sound technical bases
- Essentially all other key modeling parameters (input values to the meteorological model) were already user defined or user controlled

LADTAP Expanded Editable Parameters

- Population age group fractions
- Food and water consumption rates
- Bioaccumulation and transfer factors
- Various environmental exposure times and produce production and storage times

GASPAR Editable Parameters

- Population age group fractions
- Human consumption and inhalation rates
- Bioaccumulation factors
- Various environmental exposure times and produce production and storage times
- Meat and milk animal consumption rates

Dose Conversion Factors

- Expanded ICRP-2 DCFs from:
 - RG 1.109, Revision 1, Calculation of Annual Doses to Man From Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I (October 1977)
 - NUREG-0172, Age Specific Radiation Dose Commitment Factors for One-Year Chronic Intake (November 1977)
 - NUREG-0172, *Errata* (August 1983)
 - NUREG/CR-2384, Age Specific Inhalation Radiation Dose Commitment Factors for Selected Radionuclides (August 1982)
 - EMP-155, Review and Expansion of USNRC Regulatory Guide 1.109
 Models for Computing Dose Conversion Factors (February 1983)

DCFs

- Some radionuclides in those sources were not included in LADTAP II/GASPAR II
- NRCDose3 includes ICRP-2 DCFs for ALL radionuclides contained in those sources
- NRCDose3 includes ICRP-30 and ICRP-60/72 DCFs for ALL radionuclides in those sources
- 203 radionuclides included in NRCDose3

Additional Radionuclides

S-35	Kr-88	Xe-138
CI-36	Kr-89	Ba-133
Ar-39	Sr-85	Tm-170
Ar-41	Cd-109	Yb-169
Ca-45	Sn-113	Ta-182
Ga-67	I-125	Ir-192
Se-75	Xe-131m	Au-198
Kr-83m	Xe-133m	TI-201
Kr-85m	Xe-133	TI-204
Kr-85	Xe-135m	Rn-22
Kr-87	Xe-137	Pu-236

DCFs

- NRCDose3 allows only one chemical form, inhalation class or ingestion class for each radionuclide
- Multiple ingestion DCFs based on f1 value
- Multiple inhalation DCFs based on inhalation class
 - D/W/Y for ICRP-30
 - F/M/S for ICRP-72
- Nuclear power plant effluents are assumed to be oxides; other fuel cycle facilities may have different states

Age Ranges

ICRP-30

- Adult only
 - Occupational DCFs

ICRP-72

- Adult
- 15 year old
- 10 year old
- 5 year old
- 1 year old
- Newborn
Organs

ICRP-30

• 24 organs, including remainder

ICRP-72

- 27 organs, including remainder
 - Colon, ETA, skin(ext)

XOQDOQ MODELING AND USE

NRCDose3 - Version 1.1.3 (August 2020)

Quit About Manuals

LADTAP Liquid Pathway Dose Assessment

GASPAR Gaseous Pathway Dose Assessment

XOQDOQ Annual Average Meteorological Dispersion and Deposition

This computer program was created by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor its contractors, nor any of their emplyees, makes any warranty, expressed of implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, or of any information in or generated by this program, or represents that its use by such third party would not infringe privately-owned rights. In addition you may not distribute this computer program or use this computer program without the permission of the U.S. Nuclear Regulatory Commission.

XOQDOQ – Atmospheric Transport and Dispersion

- Implements the straight-line Gaussian modeling of RG 1.111
- Calculates ground-level concentrations
- Accounts release points characteristics (height, plume rise)
- Additional plume dispersion due to building wakes
- Plume depletion via dry deposition and radioactive decay

XOQDOQ – Atmospheric Transport and Dispersion

- Annual average relative dispersion (χ/Q) and deposition (D/Q) values at user specified locations (MEI doses) and standard radial distances and segments (population doses) for routine releases
- Intermittent releases (e.g., containment purge, waste gas tank)
- Elevated, ground level, or mixed mode releases
- Meteorological modeling considerations: building wake effects, plume depletion (dry deposition), and radioactive decay

XOQDOQ – Atmospheric Transport and Dispersion

- Wind direction in 16 compass directions (22.5° sectors), 14 wind speed classes, and 7 atmospheric stability classes (A-G)
- Three different dispersion χ/Q values; one deposition D/Q value
 - Undecayed, Undepleted χ/Q
 - Decayed, Undepleted χ/Q (2.26-day half-life)
 - Decayed, Depleted χ/Q (8-day half-life)
 - Deposition D/Q (2.26-day and 8-day half-lives)
- Output used as meteorological data input to GASPAR

Dispersion – Release and Terrain Characteristics

Gaussian Model – Sector Average

- Dividing the area surrounding a point source into 16 segments gives 360°/16 = 22.5° per segment
- For averaging condition (over time), the plume is assumed to meander, spreading uniformly over the 22.5° sector

 $\frac{\chi}{Q} = \frac{2.032}{\sigma_z ux}$ where

x = the distance from the point of release u = the wind velocity $2.032 = \sqrt{2/\pi}$ divided by the width of a 22.5° segment in radians

Starting and Running XOQDOQ

 Double click "XOQDOQ" RCDose3 - Version 1.1.3 (August 2020)

Quit About Manuals

LADTAP Liquid Pathway Dose Assessment

GASPAR Gaseous Pathway Dose Assessment

XOQDOQ Annual Average Meteorological Dispersion and Deposition

This computer program was created by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor its contractors, nor any of their emplyees, makes any warranty, expressed of implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, or of any information in or generated by this program, or represents that its use by such third party would not infringe privately-owned rights. In addition you may not distribute this computer program or use this computer program without the permission of the U.S. Nuclear Regulatory Commission.

XOQDOQ Main Screen

- XOQDOQ Module Main Screen opens with case data that is saved in the database
- Contains three main/ functional areas:
 - toolbar and initial setup area,
 - data input tabs
 - code execution and reports

XOQ	DOQ							
File	Quit Abou	t						
Main	Tit NRC NUR	EG-CR-2919 Test Ca	ase 1					
On	tions/Barameters	Mot Data						
00								
	OPTIONS			PARA	METERS			
	Compute S	Sector Spread to Con Calcs	npare to Centerline Va	alues Numbe	r of distances with t	errain data for each sector:	3 H	leights.
	Plot short	erm X/Q values		Increme	ent for which plotted	l results are printed out:	5 %	
	Use Cubic	Spline in Lieu of Lea	ast Squares Function	Numbe for	r of titles of receptor	rtypes:	3	Define
	Intermitter	nt Release Distributio	'n	Numbe	r of release exit poir	nts:	2	Details
	Correct X/	Q D/Q values for op	oen terrain recirculatio	n Numbe factors	r of distances of site	e specific correction	0 C	orrections
	Use site s	pecific terrain recircul	lation data	lactors				
	Use deser	t sigma curves						
				Building	wake constant:	0.5		
	Save	Create Innut	View Input	Bun XOQDOO	View Output	Create Alternate X/Q an	d D/Q Input	View Alternate Input
		create input	view input	Hun Kogbog	Wew Output	create r ternate xr e an	a or a input	view viewate input

XOQDOQ – File Management

- New New XOQDOQ case. Clears the databases.
- Open XN3 File open an existing "*.XN3" file previously created with NRCDose3
- Open Legacy Input File Opens Windows Explorer; navigate to "*.dat" file
 - Uses a file created with the original XOQDOQ
 - "Create input" not needed; select run XOQDOQ.
 Input screens and options cannot be used

XOQDOQ – File Management

- Save to Database Choose this option to save current case to the database. When XOQDOQ is opened with "Current Project" selected, the information in the database, as last saved before exiting, initially populates all XOQDOQ screens and windows.
- Save to XN3 File Choose this option to save the completed case to a "*.XN3" file
- Delete Choose this option to open an explorer window that will allow the user to delete any previously saved "*.XN3" files

XOQDOQ Main Screen – Options

- Various options
 - Purge calc (short term releases) printout compares sector spread to centerline values
 - Printout plot of short-term X/Q values (not very useful)
 - Open terrain recirculation: correction is applied uniformly to all directional sectors out to 10 km (NUREG/CR-2919, Figure 3.2)
 - Use site-specific terrain recirc values (user input under Parameters)
 - Desert sigma curves (specialized dispersion values developed for desert environment)

<u>OPTIONS</u>
Compute Sector Spread to Compare to Centerline Values in Purge Calcs
Plot short-term X/Q values
Use Cubic Spline in Lieu of Least Squares Function for Intermittent Release Distribution
Correct X/Q D/Q values for open terrain recirculation
Use site specific terrain recirculation data
Use desert sigma curves

XOQDOQ Options/Parameters

PARAMETERS	Terrain Height Values		
Number of distances with terrain data for each sector: 3 Heights. Increment for which plotted results are printed out: 5 %	 DISTANCE: Ra Ra Ra	inge 1 inge 2 inge 3	
Number of titles of receptor types: 3 Define	Distance: meters Height: meters		
Number of release exit points: 2 Details	Distance Height S: 100 0	Dis N:	tance Height
Number of distances of site specific correction 0 Corrections	SSW: 100 0 SW: 100 0	NNE:	100 0 100 0
	WSW: 100 0 W: 100 0		100 0
Building wake constant: 0.5	NW: 100 0 NW: 100 0 NNW: 100 0	SE:	100 0 100 0
	Save		Exit

XOQDOQ Main Screen – Parameters

		Recept	or Types		Receptor Locations
PARAMETERS Number of distances with terrain data for each sector:	3 Heights.	<u>Type</u> 1. 2. 3.	Title Site Boundary Cows Residences	Jocations 3 Define 3 Define 2 Define	LOCATION Location 1 Location 2 Location 3
Increment for which plotted results are printed out:	5 %				
Number of titles of receptor types:	3 Define				
Number of release exit points:	2 Details				Direction:
Number of distances of site specific correction factors for recirculation:	0 Corrections	Sa	ve	Exit	Save Exit
Building wake constant: 0.5					

T.

XOQDOQ Main Screen – Parameters

PARAMETERS			Location Selection		in Release Point Data
Number of distances with terrain data for each sector: Increment for which plotted results are printed out: Number of titles of receptor types: Number of release exit points: Number of distances of site specific correction factors for recirculation:	3 Heights. 5 % 3 Define 2 Details 0 Corrections	-	RELEASE POINTS	Edit Delete Save Exit	Release Point Title: Mixed-mode Release - with Purge No Vert/Stack Average Velocity: 10 m/sec Vert/Stack Inside Diameter: 2 meters Purges: Decay 1 ~ Number of intermittent releases: 25 Number of intermittent releases: 25 Minimal cross-sectional area for Vert's/Stack's Bidg: 2000 m sq Average number of hours per intermittent release: 4 Wind Height used for the vent/stack elevated release: 45 meters Vert/Stack heat emission rate: 0 cal/sec
Building wake constant: 0.5					Save Exit

Met Data Input

- Calms
- Met data: hours or % frequency
- Height of
 measurement
- Plant grade
- Half-lives (do not change)
- Inputting joint frequency distribution (JFDs)
 - Line-by-line
 entering for each
 Stability Class

File	e Quit	Abou	Jt																	
Mai	n Title: NRC	C NUF	REG-C	R-291) Test C	ase 1														
				-																
O	otions/Param	eters	Met	Data																
	🗹 Distr	ibute	calms	as first	wind-sp	eed cla	ss 🗌	Input joir	nt freque	ency distri	bution da	ata as pe	rcent fre	quency						
	Number	of vel	ocity (categor	ies:	5	Max Win	d Speeds	s N	umber of	stability o	ategorie	s: 7	N	/ind spee	ed class u	inits: 🗌] mph 🗠	m/sec	•
	Number of hours, or percent, of calm for each stability category: Height (above ground level) of the measured wind																			
	(Class	A .	0	hr [). 4	hr	G. 4	hr		P	resented	in the jo	int frequ	ency dat	a: 10.	00 m			
			B.	0	hr E	. 4	hr				Plant	grade el	evation	(above s	ea levelj	: 0.0)0 m			
			C .	4	hr i	. 4	hr				Hat	f-lives us	ed in X/	Q calcul	ations (d	ays)				
											1.	101.00	2.	2.26	38.0	0				
			Impo	ort JFD	Data (I	IETQA)		Import JF	D Data	(EXCEL)			(Ho	urs)				Т	otal:	16
	STABILITY		Win	d	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	wsw	w	WNW	NW	NNW
	Class A Class B		Class	2	1	0	0	0	0	0	0	2	0	0	0	0	0	0	0	1
	Class C Class D		Class	3	1	0	0	0	0	0	0	2	0	0	0	0	0	0	0	1
	Class E Class F		Class	4	1	0	0	0	0	0	0	2	0	0	0	0	0	0	0	1
	Class G		Class	5	1	0	0	0	0	0	0	2	0	0	0	0	0	0	0	1
	Clear																			
	Save		C	Create	nput	Vie	w Input		Run XO	QDOQ	View	Output	Cre	ate Alter	nate X/0	and D/	Q Input	View	Alternat	e Input

Windspeed Input

 Enter the "Number of velocity categories" (maximum 13), and then select "Max Wind Speeds..." to enter the maximum wind speed of each category

I	Number of velocity c	ategories:	5	Max Wind Sp	eeds
	Maximum Wind	Speeds			category
	Wind Sp <u>Wind Speed</u>	beed Units	: m/sec		4 1
	Class 1.	1.00			JFD Dat
3	2.	2.00			E E
8	3. 4	4.00			
8	5.	16.00			
8	6.				
s	7.				
	Save		E	Exit	

Import Met Data

- Met data (JFD) can be imported using 2 standard file formats
 - MetQA: file format generated by an internal (NRC) application MetQA (Version 2.0), which represents the NRC staff's implementation of NUREG-0917
 - EXCEL: specific data array by wind direction, wind speed range, and atmospheric stability classes ranging, in sequence, from extremely unstable (Class A) thru extremely stable (Class G)

Import JFD Data (METQA)	ort JFD Data (EXCEL)
Met Data Import	
Input file: (double-click to select file) JFD data starting line number: 5	I
Import	Close

NOTE: Input file examples included in install

Import Met Data – Example File Format

lome	Insert Dra ♣ × ✓	w Page	Layout	Formu													
25 A	‡ × ~	<i>C</i>		i onnu	las Da	ata R	eview	View									
A		fx															
	В	С	D	E	F	G	н	1	J	К	L	М	N	0	Р	Q	R
JFD Dat	ta Import																
	This sample f	ile (for use as a	template) is (configured f	or 7 Stability	Classes an	d 5 velocity	(speed) cate	gories. Edit a	as appropria	te for your c	ase.					
Stabil	ity Wind Spee	d	NNE	NE	ENE		ECE	CE.	CCE		ccuv	CW	14/614/		MANNA/	A.1.4/	NININA
Class 1	Speed 1	0		NE 0	0	E 0	E3E 0	3E 0	33E 1	3	3388	3w 1	0	••• 0	0	0	0
0.000 1	Speed 2	0	0	0	0	0	0	0	0	3	3	0	0	1	0	0	0
	Speed 3	0	1	0	0	0	1	3	5	12	8	5	4	1	5	1	0
	Speed 4	1	0	0	1	1	2	7	17	73	39	20	22	16	11	2	0
	Speed 5	0	0	2	0	0	0	13	41	55	43	31	33	35	35	1	1
Class 2	Speed 1	0	0	0	0	0	0	0	1	3	0	1	0	0	0	0	0
_	Speed 2	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0
-	Speed 3	0	0	0	0	0	0	0	0	2	1	0	0	1	1	1	1
	Speed 4	1	0	1	1	0	1	2	10	10	/	5	6	8	1	1	0
Clare 2	Speed 5	0	1	1	0	0	1	2	12	11	0	/	0	0		1	0
Cidss 5	Speed 2	0	0	0	0	0	0	0	0	2	0	0	0	1	0	0	0
-	Speed 3	1	0	1	0	0	1	2	3	2	10	4	3	5	0	0	0
	Speed 4	0	4	0	0	0	0	2	10	21	15	6	12	17	4	3	1
	Speed 5	0	1	0	1	0	2	5	23	10	16	9	7	14	11	2	0
Class 4	Speed 1	6	5	3	2	5	4	9	11	10	6	2	3	2	6	6	4
	Speed 2	3	4	4	4	7	7	15	12	18	20	5	13	5	4	3	1
_	Speed 3	19	25	20	15	29	38	55	74	92	44	45	31	34	33	24	9
	Speed 4	81	63	58	52	59	82	132	160	171	110	83	75	110	120	100	65
_	Speed 5	104	97	95	56	38	92	174	203	87	44	55	53	104	201	172	145
Class 5	Speed 1	3	5	8	4	10	11	12	2	3	4	4	0	1	0	2	1
	Speed 2	4	5	14	16	18	23	23	18	17	9	9	8	3	8	4	7
	Speed 3	26	28	35	39	78	96	95	55	43	23	26	28	22	24	21	16
	Speed 4	46	122	83	92	133	181	191	122	26	38	35	34	40	07	105	52
Class 6	Speed 5	96	132	32	70	3/	139	220	125	30	2/	24	21	20	35	135	84
1835 0	Speed 2	1	1	1	1	3	8	2	8	2	3	3	1	4	2	1	2
	Speed 3	4	6	9	9	21	33	36	33	16	21	12	13	11	10	12	3
	Speed 4	17	12	22	18	27	63	101	47	20	15	13	6	17	43	48	23
	Speed 5	14	9	14	7	15	44	86	29	13	5	5	9	10	40	69	23
Class 7	Speed 1	0	0	0	0	1	0	3	2	1	0	1	1	0	2	0	0
	Speed 2	1	2	1	1	4	3	3	5	2	2	1	3	6	1	2	4
	Speed 3	5	4	4	4	6	17	25	22	25	13	10	7	15	13	12	4
_	Speed 4	2	3	9	6	9	29	52	39	16	10	9	11	15	31	45	16
	Speed 5	2	3	9	1	6	24	65	25	9	8	6	1	9	26	70	13

XOQDOQ – Save, Create Input and Run

Num	ber of hours, or pa Class A. 0 B. 0 C. 4	ories: ercent, of hr E hr E hr í	5 N f calm for D. 4 E. 4 F. 4	lax Wini each st hr hr hr	d Speeds ability ca G. 4	s Nu tegory:	mber of s	stability o Heigh Plant Hah 1.	categorie nt (above resented grade el f-lives us 101.00	s: 7 e ground in the jo evation ed in X/0 2.	W level) of int freque (above s Q calcula 2.26	ind spee the mea ency dat ea level) ations (da 3	ed class u sured wir a: 10. : 0.0 ays) 0	units: nd 00 m 00 m) mph 🗹] m/sec	6
	Import JFE	D Data (N	METQA)		mport JF	D Data (EXCEL)			(Ho	urs)				To	otal:	16
Jass A	Speed	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
ass B ass C	Class 2	1	0	0	0	0	0	0	2	0	0	0	0	0	0	0	1
lass D Jass E	Class 3	1	0	0	0	0	0	0	2	0	0	0	0	0	0	0	1
ass F ass G	Class 4	1	0	0	0	0	0	0	2	0	0	0	0	0	0	0	1
	Class 5	1	0	0	0	0	0	0	2	0	0	0	0	0	0	0	1
Save	Create	Input	Vie	w Input		Run XOO		View	Output	Cre	ate Alten	nate X/G	and D/(Q Input	View	Alternat	te Input

After inputting JDFs,

- Save
 - This will save to the dataset as well as to any file name as being used.
- Create Input
 - This creates the dataset in the format required by the FORTRAN code
- View Input
 - Allows user to view he created input file
- Run XOQDOQ

	Save]	Create Input		View Input		Run XOQDOQ	View Output		Create Alternate X/Q and D/Q Input	View Alternate Input
--	------	---	--------------	--	------------	--	------------	-------------	--	------------------------------------	----------------------

XOQDOQ – Save, Create, Input and Run

- **Save** to save the dataset to any file name as being used.
- **Create Input** to create the dataset in the format required by the FORTRAN code

Create Input

Viev

- View Input to view created input file
- Run XOQDOQ

Save

	XOQDOQ	
	File Quit About	
	Main Title: NRC NUREG-CR-2919 Test Case 1	
	Options/Parameters Met Data	
`		
5	OPTIONS	PARAMETERS
	 Compute Sector Spread to Compare to Centerline Values in Purge Calcs 	Number of distances with terrain data for each sector: 3 Heights.
	☐ Plot short-term X/Q values	Increment for which plotted results are printed out: 5 %
	Use Cubic Soline in Lieu of Least Squares Function for	Number of titles of receptor types: 3 Define
	Intermittent Release Distribution	Number of release exit points: 2 Details
	 Correct X/Q D/Q values for open terrain recirculation Use site specific terrain recirculation data 	Number of distances of site specific correction 0 Corrections
	Use desert sigma curves	
		Building wake constant: 0.5
	Save Create Input View Input Run XO	QDOQ View Output Create Alternate X/Q and D/Q Input View Alternate Input
v Input	Run XOQDOQ View Output Create	Alternate X/Q and D/Q Input View Alternate Input

View Input

- Shows the input deck as used by the FORTRAN code
- Follows the card format as described in NUREG/CR-2919

10100:	11100 IPEG_C	P_20	10 To	+ Ca	- 1										
5	7	3	19 10:	3	2	0									
10	101	2.26	-8	ø	-										
0	0	4	4	4	4	4									
0	0	0	0	Ø	0	0	Ø	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	Ø	0	0	Ø	0	0	0	0	0	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ő	õ	õ	õ	ő	õ	õ	õ	ő	õ	õ	õ	õ	õ	õ	ő
ĩ	õ	õ	õ	õ	õ	õ	2	ŏ	ŏ	õ	õ	õ	õ	õ	ĩ
1	0	0	0	0	0	0	2	0	0	0	0	0	0	0	1
1	0	0	0	0	0	0	2	0	0	0	0	0	0	0	1
1	0	0	Ø	Ø	0	0	2	0	0	0	0	0	0	0	1
1	0	0	Ø	Ø	0	0	2	0	0	0	0	0	0	0	1
1	0	0	0	0	0	0	2	0	0	0	0	0	0	0	1
1	0	0	0	0	0	0	2	0	0	0	0	0	0	0	1
1	0	0	0	0	0	0	2	0	0	0	0	0	0	0	1
1	ő	0	0	ő	0	0	2	ő	ő	ő	ő	0	0	ő	1
1	õ	õ	õ	ő	õ	õ	2	ő	õ	õ	õ	õ	õ	õ	1
1	õ	ø	õ	ø	õ	õ	2	õ	õ	õ	õ	õ	õ	õ	1
1	0	0	0	Ø	0	0	2	0	0	0	0	0	0	0	1
1	0	0	0	0	0	0	2	0	0	0	0	0	0	0	1
1	0	0	0	0	0	0	2	0	0	0	0	0	0	0	1
1	0	0	Ø	Ø	0	0	2	0	0	0	0	0	0	0	1
1	0	0	0	Ø	0	0	2	0	Ø	0	0	0	0	0	1
1	0	0	0	0	0	0	2	0	0	0	0	0	0	0	1
1	0	0	0	0	0	0	2	0	0	0	0	0	0	0	1
0.5	-100	1	2	4	8	16	2		•						-
100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800
16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
10000:	100001	0000	10000:	10000:	100001	100001	10000	10000:	10000:	10000:	100001	100001	100001	10000:	10000
200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200
Sito 1	3 Pounda	Z													
1	805 805	'y 1	966	1	1127										
Cows	005	-	300	1	1127										
1	1931	8	4989	16	4345										
Reside	ences														
1	1931	8	6437												
Mixed	d-mode	Rel	ease -	- wit	h Purg	je									
10	2	45	40	2000	45	0									
A 1	25	, 4													
Ground	Leve	20	25	000	10	۵									
BA	0	50	25	900	10	0									
ĩ	5	0													
·															

Create Alt. Input – For GASPAR

- A meteorological dataset suitable for import by GASPAR can be created
 - Select Create Alternate X/Q and D/Q Input
- Pop-up screen to select up to 5 locations
- An input file will be created internal which may be referenced during the GASPAR run
- Only applicable to XOQDOQ for single release point runs

NRCDose3 - Version 1.1.4

Quit About Manuals

LADTAP Liquid Pathway Dose Assessment

GASPAR Gaseous Pathway Dose Assessment

GASPAR MODELING AND USE

XOQDOQ Annual Average Meteorological Dispersion and Deposition

This computer program was created by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor its contractors, nor any of their emplyees, makes any warranty, expressed of implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, or of any information in or generated by this program, or represents that its use by such third party would not infringe privately-owned rights. In addition you may not distribute this computer program or use this computer program without the permission of the U.S. Nuclear Regulatory Commission.

GASPAR

- Performs dose assessments for gaseous radioactive effluents released into the atmosphere
- Implements dose assessment methods described in RG 1.109
- Calculates the radiation dose to individuals, population groups, and biota from:
 - inhalation of contaminated air,
 - direct exposure from contaminated ground and
 - consumption of contaminated foods
- Basic calculation methods are described in NUREG/CR-4653

GASPAR

- Calculated doses support
 - NEPA evaluations
 - Compliance with the NRC public dose limits in 10 CFR Part 20
 - EPA public dose limits in 40 CFR Part 190
 - NRC ALARA design objectives and numerical guides in 10 CFR Part 50, Appendix I

Starting and Running GASPAR

• Double click "GASPAR" NRCDose3 - Version 1.1.4

Quit About Manuals

LADTAP Liquid Pathway Dose Assessment

GASPAR Gaseous Pathway Dose Assessment

XOQDOQ Annual Average Meteorological Dispersion and Deposition

This computer program was created by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor its contractors, nor any of their emplyees, makes any warranty, expressed of implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, or of any information in or generated by this program, or represents that its use by such third party would not infringe privately-owned rights. In addition you may not distribute this computer program or use this computer program without the permission of the U.S. Nuclear Regulatory Commission.

GASPAR Main Screen

GASPAR

	File Quit Ab	out						
	Case Title: GASP	AR Test Case 1 - ICRP-2	2		D	ose Factors: ICRP-2	2 (Default)	~
Contains three main	Options Source	Ferm Special Location	Data Dose Factors	Pathway Factors Co	nsumption Values			ר
functional areas: - the toolbar and initial setup area, - data input tabs area and - code execution and reports area	 Calculate individual doses only Print dose factor library data Perform PARTS calculation Info Read X/Q and D/Q data from XOQDOQ-generated file 			Fraction of the year that leafy vegetables are grown: Fraction of the year that milk cows are on pasture: Fraction of max individual's vegetable intake from own garde Fraction of milk-cow feed intake from pasture while on pastu Humidity: Info Average temperature over growing season (F): Fraction of the year that goats are on pasture: Fraction of goat feed intake from pasture while on pasture:			0.75 0.80 1 garden: 0.50 1 pasture: 1.00 70.00 1.00 ture: 1.00 0.80	
		Add Biota		Fraction of b	eef-cattle feed intak	ke from pasture while o	on pasture: 1.00	
NOTE:								
GASPAR opens								
with the last	X							
saved database								
	Save	Create Input	View Input	Run GASPAR	View Output	FSAR Report	Supplemental Re	eport

GASPAR Start-up

- New Select this option to begin a new GASPAR case. This will clear the database from any previously input information.
- Open GN3 File Select this option to access and open a "*.GN3" file that was previously created with NRCDose3.
- Save to Database Choose this option to save the current case to the database. When GASPAR starts, it loads the data that was last saved (typically from the last, previous run), populating all GASPAR screens and windows.
- Save to GN3 File Choose this option to save the completed case to a "*.GN3" file. This allows the file to be saved for later use, or for sharing with others.
- Delete Choose this option to open an explorer window that will allow the user to delete any previously saved "*.GN3" files.

GASPAR – Options

- Enter a Case Title
- Select dose factors:
 - ICRP-2 (Default)
 - ICRP-30
 - ICRP-72
- Option for individual doses only
- Printing cumulative or detailed reports
- Printing dose factor library
- PARTS calculations (dose conversion factors for site-specific modeling; used in ODCM)

Ouit About File GASPAR Test Case 1 - ICRP-2 Case Title: ICRP-2 (Default) Dose Fact Options Source Term Special Location Data Dose Factors Pathway Factors Consumption Values 🔽 Calculate individual doses only Fraction of the year that leafy vegetables are grown: 0.75 Fraction of the year that milk cows are on pasture: 0.80 Fraction of max individual's vegetable intake from own garden: 0.50 Print dose-factor library data Fraction of milk-cow feed intake from pasture while on pasture: 1.00 Info... Perform PARTS calculation 8.00 Humidity: Info... Read X/Q and D/Q data from XOQDOQ-generated file Average temperature over growing season (F): 70.00 Fraction of the year that goats are on pasture: 1.00 Fraction of goat feed intake from pasture while on pasture: 1.00 0.80 Fraction of the year that beef cattle are on pasture: Fraction of beef-cattle feed intake from pasture while on pasture: 1.00 Add Biota Save Create Input View Input Run GASPAR View Output FSAR Report Supplemental Report

NOTE: Changing DCFs will re-initialize the source term

GASPAR GASPAR

- Seven data input tabs:
 - Options
 - Source Term
 - Pop/Prod Data
 - Special
 Locations
 - Dose Factors
 - Pathway
 Factors
 - Consumption
 Values

GASPAR							
File Quit Abo	ut						
Case Title: GASPA	R Test Case 1 - ICF	IP-2		Di	ose Factors: ICRP-2	2 (Default)	\sim
Options Source Te	rm Special Locat	ion Data Dose Factors	Pathway Factors Co	nsumption Values]		
🗹 Calculate indi	vidual doses only		Fraction of th	e year that leafy ve	getables are grown:	0.	75
			Fraction of th	e year that milk cow	vs are on pasture:	0.	80
			Fraction of m	ax individual's vegeʻ	table intake from own	n garden: 0.	50
Print dose-fac	tor library data		Fraction of m	ilk-cow feed intake f	from pasture while on	pasture: 1.	00
Perform PAR	TS calculation	Info	Humidity:	Info		8	00
Read X/Q an	d D/Q data from X(OQDOQ-generated file	Average tem	perature over growir	ng season (F):	70	.00
			Fraction of th	e year that goats ar	e on pasture:	1.	00
			Fraction of go	oat feed intake from	pasture while on pas	ture: 1.	00
			Fraction of th	e year that beef cat	tle are on pasture:	0.	80
	Add Biota		Fraction of be	ef-cattle feed intak	e from pasture while o	on pasture: 1.	00
Save	Create Input	View Input	Run GASPAR	View Output	FSAR Report	Supplemental	Report

GASPAR – Options

• Input site-specific for pathway modeling assumptions

		Dose Factors:	ICRP-2 (Default)	~					
ay Factors	Consumption Val	ues							
Fraction	of the year that lea	afy vegetables are g	prown:	0.75					
Fraction of the year that milk cows are on pasture:									
Fraction	0.50								
Fraction	1.00								
Humidity:	Humidity: Info								
Average	70.00								
Fraction of the year that goats are on pasture: 1.00									
Fraction of goat feed intake from pasture while on pasture: 1.00									
Fraction of the year that beef cattle are on pasture: 0.80									
Fraction	of beef-cattle feed	intake from pasture	e while on pasture:	1.00					

GASPAR – Biota

- Modeling based on BNWL-1754 (same as LADTAP)
- Six (6) biota types automatically included
 - muskrat, racoon, duck, heron, cow, and fox
- Option for User defined biota
 - Food type (limited to either herbivore or carnivore)

	Name	Food Type	Mass (g)	Effective Radius (cm)	Consumption Rate (g/day)		
Add Biota Type	Bear	Herbivore	200000	30.0	10000		
Delete Biota Type							
Clear	<				>		
	Name: Primary Food Mass: Effective Radiu	Bear Herbi 2000 Is: 30.0	vore v 00 g v cm	Cons	umption Rate:	10000] g/da
	S	ave			Close		

Additional Biota Types

GASPAR – Source Term

- Title
- Source term multiplication
- Add, delete or clear options

Options S	Source Term	Pop/Prod Data	Special Location Data	Dose Factors	Path	way Factors	Consumption	/alues	
							Sour	ce Term:	
						Nuclide	Quantity (Ci)		
-						CS-137	1.00E+00		
litle:	S	ource Term 1				H-3	1.00E+02		
Source	Multiplication	Factor: 1.0	0			I-131	1.00E-01		
						KR-85	3.00E+02		
						XE-135	2.00E+02		
Release	e time for purg	jes: 0.0	0 hr						
				Add Nuclide					
				71007100100					
				Delete Nuclide					
				Class					
				Clear					
						Total Q	uantity: 6.0	110E+02	Curies

NOTE: Only a single source term may be used for each case

GASPAR – Source Term

- Select: Add Nuclide
 - Pop-up menus with nuclide list
 - Highlight desired nuclide; use "control" key to select multiple nuclides
- Selecting "Add" will add them to list
- "Delete Nuclide" will delete selected nuclide
- "Clear" will clear all nuclides in the source term

GASPAR – Source Term – ICRP-30 and ICRP-72 DCFs

 ICRP-30 and ICRP-72 DCFs, select the applicable solubility (f1) or lung clearance type (F, M, S) for each radionuclide

		S	Source Ten	n:									
	Nuclide	Default	Class	f1	Quantity (Ci)			Select Nu	clide	_		>	<
	CS-137	Yes	F		1.00E+00								
	H-3	Yes	V		1.00E+02			Nuclide	Default	Class	f1	^	
	I-131	Yes	F		1.00E-01			AC-225		F	0.0005		
	KR-85	Yes			3.00E+02			AC-225		М	0.0005		
	XE-135	Yes			2.00E+02			AC-225	Yes	S	0.0005		
								AC-227		м	0.0005		
								AC-227	Yes	S	0.0005		
								AG-110M		F	0.05		
								AG-110M		М	0.05		
								AG-110M	Yes	S	0.01		
								AG-111		F	0.05		
								AG-111		М	0.05		
								AG-111	Yes	S	0.01		
Add Nuclide								AM-241 AM-241	Yes	м	0.0005		
								AM-241	103	S	0.0005		
Delete Nuclide								AM-242M					
													1
Clear								۸dd			Evit		
Clear								Maa			Exit		
	Total Qu	uantity:	6.0110E+	02 Cur	ies	l	_					_	

NOTE: Only one solubility or inhalation class allowed per radionuclide

GASPAR – Population/Production Data

- Used for population dose calculations only
- Dropdown menu for data type
 - Population
 - Milk
 - Meat
 - Vegetable
 - Meteorology
- Except for meteorology, 50 mile data may be entered rather than sector segmented data

	GA	SPAR																			
	F	ile C	uit	About																	
t	3	Case Tit	e: G/	ASPAR T	est Ca	se 1 - ICR	RP-2]					Do	ose Fac	tors: IC	RP-2 (Default)		~	
		Options	Sour	ce Term	Pop/	Prod Dat	a Spe	cial Locat	ion Data	Dose F	actors	Pathwa	y Factors	Cons	umption	n Values					
		Data	Туре:								_	Total	50 Mile Po	pulatio	m:		[1000	000]	
		Popu Milk	lation Product	tion								🗌 In	put by dist	ance a	and dire	ction					
		Meat Vege Mete	Productable P orologi	ction Production cal	n											Cle	ar		Upd	ate	
	/																				
·																					
/																					
		Si	ive		Create	Input		View Inpu	.t	Run G	ASPAR		View Outp	ut	FSA	R Report	:	Suppler	nental f	Report	

GASPAR – Input Population/Production Data

- Applies for population, milk, meat, and vegetable production
- Input population or production data by meteorological sector and distance (data typically found in applicant's SAR or Environmental Report)

GASPAR											
File Quit About											
Case Title: GASPAR Test Ca	ase 1 - ICRP	-2					Dose Fa	ctors: ICRF	2 (Default)) ~	
Options Source Term Pop	/Prod Data	Special L	ocation Data	Dose Fac	tors Pathv	vay Factors	Consumptio	n Values			
Data Type: Population Milk Production Meat Production Vegetable Production Meteomological	Title:					Input by dista	ance and dir	ection Clear] [Update	
		1 mi	2 mi	3 mi	4 mi	5 mi	10 mi	20 mi	30 mi	40 mi	^
	N	0	0	0	0	0	0	0	0	0	
	NNE	0	0	0	0	0	0	0	0	0	
	NE	0	0	0	0	0	0	0	0	0	
	ENE	0	0	0	0	0	0	0	0	0	
	E	0	0	0	0	0	0	0	0	0	
	ESE	0	0	0	0	0	0	0	0	0	
	SE	0	0	0	0	0	0	0	0	0	
	SSE	0	0	0	0	0	0	0	0	0	
	S	0	0	0	0	0	0	0	0	0	
	SSW	0	0	0	0	0	0	0	0	0	
	SW	0	0	0	0	0	0	0	0	0	
	WSW	0	0	0	0	0	0	0	0	0	
	W	0	0	0	0	0	0	0	0	0	
	WNW	0	0	0	0	0	0	0	0	0	
	NW	0	0	0	0	0	0	0	0	0	
	<	0	0	0	0	0	0	0	î	î>	Ť
Save	e Input	View	Input	Run GAS	PAR	View Outpu	.t FS	AR Report	Supple	mental Rep	ort

NOTE: Select "UPDATE" before exiting input

GASPAR – Special Location Data

- Select Add to add new location (will clear fields)
 - Identified the location where individual doses will be calculated
- Location data
 - Name
 - Distance/Direction (information use only)
- Atmospheric dispersion factors
- Detailed Reports
- Save

GASPAR – Dose Factors

- Dropdown menu for displaying dose factors
 - Inhalation
 - Ingestion
 - By age group
- Values for the Dose Factors being used (mrem per pCi, inhaled or ingested)
 - ICRP-2
 - ICRP-30
 - ICRP-72

GASPAR									
File Quit About									
Case Title: GASPAR Te	st Case 1 - ICRP	-2				Dose Fa	ctors: ICRP-2	? (Default)	~
Options Source Term	Pop/Prod Data	Special Loca	ation Data [Dose Factors	Pathway Factors	Consumptio	on Values		
Factors:	Nuclide	Bone	Liver	Total Body	Thyroid	Kidney	Lung	GI-LLI	^
/ ddic initial dion	AC-225	4.23E-04	5.82E-04	2.84E-05	0.00E+00	6.63E-05	2.21E-02	2.52E-04	
	AC-227	2.30E+00	3.05E-01	1.36E-01	0.00E+00	9.82E-02	2.41E-01	5.08E-05	
Nuclide Data	AG-110M	1.35E-06	1.25E-06	7.43E-07	0.00E+00	2.46E-06	5.79E-04	3.78E-05	
	AG-111	4.25E-08	1.78E-08	8.87E-09	0.00E+00	5.74E-08	2.33E-05	2.79E-05	
	AM-241	1.68E+00	1.13E+00	6.71E-02	0.00E+00	5.04E-01	6.06E-02	4.60E-05	
	AM-242M	1.70E+00	1.06E+00	6.73E-02	0.00E+00	5.01E-01	2.44E-02	5.79E-05	
	AM-243	1.68E+00	1.10E+00	6.57E-02	0.00E+00	4.95E-01	5.75E-02	5.40E-05	
	AR-39	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
	AR-41	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
	AU-198	0.00E+00	5.70E-09	4.50E-08	0.00E+00	2.30E-08	1.00E-05	2.70E-05	
Submersion	BA-133	9.50E-06	4.20E-07	2.50E-06	0.00E+00	2.10E-09	1.90E-04	1.00E-05	
	BA-139	1.17E-10	8.32E-14	3.42E-12	0.00E+00	7.78E-14	4.70E-07	1.12E-07	
	BA-140	4.88E-06	6.13E-09	3.21E-07	0.00E+00	2.09E-09	1.59E-04	2.73E-05	
	BA-141	1.25E-11	9.41E-15	4.20E-13	0.00E+00	8.75E-15	2.42E-07	1.45E-17	
	BA-142	3.29E-12	3.38E-15	2.07E-13	0.00E+00	2.86E-15	1.49E-07	1.96E-26	
	BE-10	1.98E-04	3.06E-05	4.96E-06	0.00E+00	0.00E+00	2.22E-04	1.67E-05	
	BI-210	2.31E-07	1.59E-06	1.32E-07	0.00E+00	1.92E-05	1.11E-03	2.95E-05	
	BR-82	0.00E+00	0.00E+00	1.69E-06	0.00E+00	0.00E+00	0.00E+00	1.30E-06	
	BR-83	0.00E+00	0.00E+00	3.01E-08	0.00E+00	0.00E+00	0.00E+00	2.90E-08	~
Save	create Input	View Inj	put	Run GASPAR	View Out	put FS	AR Report	Supplementa	l Report

NOTE: Dose factor data is not editable

GASPAR – Dose Factors – Nuclide

Data

- Nuclide decay data
- External dose factors
- Absorbed Energies
 - For biota calculations
 - Effective radii
 - Units (MeV/Bq s)

Nuclide	Atomic Number	Atomic Weight	Isomeric State	Decay Constant	EXG TB Factor (mrem/hr per pCi/m2)	-
H-3	1	3		1.78E-09	0.00E+00	-
BE-10	4	10		1.37E-14	0.00E+00	
C-14	6	14		3.84E-12	0.00E+00	-
N-13	7	13		1.16E-03	7.60E-09	
F-18	9	18		1.05E-04	6.80E-09	-
NA-22	11	22		8.44E-09	1.60E-08	۰,
	1				>	1

Nuclide	1 cm	1.5 cm	2.5 cm	3.5 cm	5 cm	~
Ac-225	5.92E+00	5.92E+00	5.92E+00	5.92E+00	5.92E+00	-
Ac-227	8.50E-02	8.50E-02	8.51E-02	8.52E-02	8.52E-02	-
Ag-110	1.18E+00	1.18E+00	1.18E+00	1.18E+00	1.18E+00	-
Ag-110m	1.49E-01	1.82E-01	2.42E-01	3.03E-01	3.96E-01	-
Ag-111	3.55E-01	3.55E-01	3.55E-01	3.56E-01	3.57E-01	-
Am-241	5.61E+00	5.61E+00	5.62E+00	5.62E+00	5.62E+00	-
Am-242m	7.03E-02	7.08E-02	7.14E-02	7.18E-02	7.22E-02	-
					i	- *

Exit

NOTE: Dose factor data is not editable

GASPAR – Dose Factors Submersion

 Submersion (semi-infinite plume) dose factors for noble gases
 (mrad or mrem per year per pCi/m³) Noble Gas Submersion DFs - Default

			1			1			_
Туре	AR-41	KR-83M	KR-85M	KR-85	KR-87	KR-88	KR-89	XE-131M	XE-1331
Gamma Air	9.30E-03	1.93E-05	1.23E-03	1.72E-05	6.17E-03	1.52E-02	1.73E-02	1.56E-04	3.27E-04
Beta Air	3.28E-03	2.88E-04	1.97E-03	1.95E-03	1.03E-02	2.93E-03	1.06E-02	1.11E-03	1.48E-03
Gamma T-Body	8.84E-03	7.56E-08	1.17E-03	1.61E-05	5.92E-03	1.47E-02	1.66E-02	9.15E-05	2.51E-04
Beta Skin	2.69E-03	0.00E+00	1.46E-03	1.34E-03	9.73E-03	2.37E-03	1.01E-02	4.76E-04	9.94E-04
Beta Lung	0.00E+00	2.91E-06	1.95E-05	1.87E-05	1.02E-04	3.38E-05	1.09E-04	1.10E-05	1.46E-05
Tau	1.05E-04	1.04E-04	4.38E-05	2.05E-09	1.51E-04	6.78E-05	3.61E-03	6.80E-07	3.55E-06
<									>
			1	~					
				Close					

NOTE: GASPAR calculates airborne submersion dose only from noble gas

GASPAR – Pathway Factors

- Default values included for various environmental pathway modeling parameters
- Goat milk transfer factors
- Hold-up and Transport Times
- Physical parameters
- Option to reset to default values

SASPAR										
File Quit About										
Case Title: GASPAR Test Case 1 - ICRP-2 Dose Factors: ICRP-2 (Default) Options Source Term Pop/Prod Data Special Location Data Dose Factors Pathway Factors Consumption Values										
Growing period for vegetables consumed by human:	60.0 days Goat Feed to Milk Transfer Factors (D/L)									
Cow feed ingestion rate: Goat feed ingestion rate: Vegetables retention for particulates other than iodine: Weather removal constant: Soil surface density: Iodine retention: Pasture grass yield: Feed crop yield:	50.0 kg/day Hydrogen: 0.17 Calcium: 0.47 6.0 kg/day Boron: 0.012 Iron: 0.0013 0.2 Carbon: 0.10 Copper: 0.013 5.73E-7 1/sec Magnesium: 0.042 Strontium: 0.014 2400 kg/m² Phosphorus: 0.25 Iodine: 0.06 1.0 Chlorine: 0.50 Cesium: 0.30 0.7 kg/m² Potassium: 0.057 Polonium: 0.0018									
Garden vegetable crop vield: Holdup and Transport Times (sec) Meat to consumption: 1.73E6 Milk to population: 3.46E5 Vegetables to population: 1.21E6 Vegetables to individual: 5.19E6 Milk to individual: 1.73E5 Leafy vegetables to individual: 8.64E4 Pasture grazing period: 2.59E6 Feed storage time: 7.78E6	2.0 ka/m² Physical Parameters Midpoint of plant life: 6.31E8 sec Shielding factor for individuals: 0.7 Shielding factor for populations: 0.5 Transfer Factors Hydrosphere water volume: 2.7E19 L Volume of the atmosphere: 3.8E18 m³ Iodine deposit fraction: 0.5									
Save Create Input View Input Run GASPAR View Output FSAR Report Supplemental Report										

GASPAR – Transfer Factors

- By element
 - Feed-to-meat (cow, day/kg)
 - Soil-to-vegetation
 - Grass-to-milk (cow, day/liter)
- Can be edited to address site-characteristic data
- Tab to reset to Default values
- Save any changed

Element	Item	Value		^
Н	Meat	1.2E-02		
н	Soil	4.8E+00		
Н	Milk	1.0E-02		
HE	Meat	2.0E-02		
HE	Soil	5.0E-02		
HE	Milk	2.0E-02		
LI	Meat	1.0E-02		
LI	Soil	8.3E-04		
LI	Milk	5.0E-02		
BE	Meat	1.0E-03		
BE	Soil	4.2E-04		
BE	Milk	1.0E-04		
В	Meat	8.0E-04		
В	Soil	1.2E-01		
В	Milk	2.7E-03		
С	Meat	3.1E-02		
С	Soil	5.5E+00		
С	Milk	1.2E-02		¥
Get Defa	aults		Save	
		Close		

Transfer Factors

GASPAR – Consumption Values

- U.S. (country) population
 - Artifact of FORTRAN code; required input but not used
- Population fractions
- Maximum and average individual consumption values; by age group
- Get Defaults to reset
- Save changes

GASPAR							
File Quit	About						
Case Title: [GASPAR Test Case 1 - ICRP-2				Dose Fac	tors: ICRP-2 (D	Default) 🗸 🗸
Options So	ource Term Pop/Prod Data Spe	cial Location Data	Dose Factors	Pathway Fact	ors Consumptio	n Values	
			<u>Usage Paran</u>	neters	Adults	<u>Teenagers</u>	Children
200	U US population: 2.80E+08		Fraction o	f population:	0.71	0.11	0.18
			Usage Defau	lts			
Inte	ake Consumption Data						
In	ntake Type>	Inhalation (m3/yr)	Vegetables (kg/yr)	Leafy Vegetables (kg/yr)	Milk (kg/yr)	Meat (kg/yr)	Get Defaults
Ma	ax Adult Consumption	8000.00	520.00	64.00	310.00	110.00	
Ma	ax Teen Consumption	8000.00	630.00	42.00	400.00	65.00	
Ma	ax Child Consumption	3700.00	520.00	26.00	330.00	41.00	
Ma	ax Infant Consumption	1400.00	0.00	0.00	330.00	0.00	
Av	g Adult Consumption	8000.00	190.00	30.00	110.00	95.00	
Av	g Teen Consumption	8000.00	240.00	20.00	200.00	59.00	
Av	g Child Consumption	3700.00	200.00	10.00	170.00	37.00	
							Save
Save	Create Input	View Input	Run GASPA	R View C	Output FS/	AR Report	Supplemental Report

Running GASPAR – Outputs/Reports

- Can be Saved and Run from any screen
 - Save
 - Create Input
 - View Input
 - Run GASPAR
 - View Output
 - FSAR Report
 - Supplemental Report

		<u>Usage Para</u>	<u>neters</u>	Adults	Teenagers	Children
2000 US population: 2.80E+08	J	Fraction of	of population:	0.71	0.11	0.18
		Usage Defau	ılts			
Intake Consumption Data						
Intake Type>	Inhalation (m3/yr)	Vegetables (kg/yr)	Leafy Vegetables (kg/yr)	Milk (kg/yr)	Meat (kg/yr)	Get Defaults
Max Adult Consumption	8000.00	520.00	64.00	310.00	110.00	
Max Teen Consumption	8000.00	630.00	42.00	400.00	65.00	
Max Child Consumption	3700.00	520.00	26.00	330.00	41.00	
Max Infant Consumption	1400.00	0.00	0.00	330.00	0.00	
Avg Adult Consumption	8000.00	190.00	30.00	110.00	95.00	
Avg Teen Consumption	8000.00	240.00	20.00	200.00	59.00	
Avg Child Consumption	3700.00	200.00	10.00	170.00	37.00	
						Save

 Save
 Create Input
 View Input
 Run GASPAR
 View Output
 FSAR Report
 Supplemental Report

View Input

- Input follows the format of the "card deck" as described in NUREG/CR-4653
- The datasets reflect modeling under the "Pathway factors" tab, such as transfer factors, exposure and transfer assumptions.
- The bottom section is the standard format for GASPAR input (individual doses only), containing the Selections inputs, source term, Special Location assumptions
- If population doses performed, would also include the population, production and meteorological data

1.20E-2 2.00E-2 1.00E-2 1.00E-3 0.00E-4 3.10E-2 7.70E-2 1.60E-2 1.50E-1 2.00E-2 3.00E-2 5.00E-3 1.50E-3 4.00E-5 4.60E-2 1.00E-1 8.00E-2 2.00E-2 1.20E-2 4.00E-3 1.60E-2 2.10E-3 2.00E-2 2.00E-3 2.00E-2 2.00E-3 1.50E-3 1.50E-3 1.50E-2 2.00E-2 2.00E-3 1.50E-2 2.00E-3 1.50E-3 1.50E-3 1.50E-2 2.00E-2 2.00E-3 1.50E-3 1.50E-3 1.50E-3 1.50E-2 2.00E-2 2.00E-2 2.00E-3 1.50E-3 1.50E-3 1.50E-3 1.50E-2 2.00E-2 2.00E-3 1.50E-3 1.50E-3 1.50E-2 2.00E-2 2.00E-3 1.50E-3 1.50	
4.80E+0 5.00E-2 8.30E-4 4.20E-4 1.20E-1 5.50E+0 7.50E+0 1.60E+0 6.50E-4 1.40E-1 5.20E-2 1.30E-1	
1.80E-4 1.50E-4 1.10E+0 5.90E-1 5.00E+0 6.00E-1 3.70E-1 3.60E-2 1.10E-3 5.40E-5 1.30E-3 2.50E-4 2.00E-2 5.60E-4 2.40E-5 1.90E-3 1.90E-1 3.00E-1 2.50E-4 1.00E-1 3.00E+0 7.60E-1 3.00E+0	
1.30E 1 1.70E 2 2.60E 3 1.70E 4 9.40E 3 1.20E 1 2.50E 1 5.00E 1 1.30E H 1.50E H 1.50E 1 3.00E 1 3.00E - 1	
2.50E-1 2.50E-3 1.10E-2 1.30E+0 2.00E-2 1.00E+1 1.00E-2 5.00E-3 2.50E-3 2.50E-3 2.50E-3 2.50E-3 2.40E-3	
2.50E-3 2.50E-1 5.50E-1 5.50E-	
2.50E-1 3.50E+0 1.00E-2 3.10E-4 2.50E-3 4.20E-3 2.50E-3 2.50E-3 2.50E-3 2.50E-4 2.50E-4 2.50E-4	
2.50E-3 2.50E-3 2.50E-3 2.50E-3	
1.00E-2 2.00E-2 5.00E-2 1.00E-4 2.70E-3 1.20E-2 2.20E-2 2.00E-2 1.40E-2 2.00E-2 4.00E-2 1.00E-2 5.00E-2 1.00E-2 5.00E-2 1.00E-2 5.00E-2 5.00E-	
2.50E-4 1.20E-3 1.00E-3 6.70E-3 1.40E-2 3.90E-2 5.00E-5 5.00E-4 6.00E-3 4.50E-2 5.00E-2 2.00E-2	
3.00E-2 8.00E-4 1.00E-5 5.00E-6 2.50E-3 7.50E-3 2.50E-2 1.00E-6 1.00E-2 1.00E-2 5.00E-2 1.20E-4	
1.00E-4 2.50E-3 1.50E-3 1.00E-3 6.00E-3 2.00E-2 1.20E-2 4.00E-4 5.00E-6 1.00E-4 5.00E-6 5.00E-	
2.50E-2 5.00E-4 2.50E-2 5.00E-3 5.00E-3 5.00E-3 5.00E-3 3.80E-2 2.20E-2 6.20E-4 5.00E-4 3.00E-4	
5.00E-2 2.00E-2 5.00E-2 8.00E-3 5.00E-6 5.00E-6 5.00E-6 5.00E-4 5.00E-6 2.00E-6 5.00E-6 5.00E-6	
5.00E-5 5.00E-5 5.00E-5 2.80F+08 3	
9.30E-03 1.93E-05 1.23E-03 1.72E-05 6.17E-03 1.52E-02 1.73E-02 1.56E-04 3.27E-04 3.53E-04 3.36E	-03
1.92E-03 1.51E-03 9.21E-03	0.4
3.40E-03 1.27E-02 1.37E-03 1.35E-03 1.03E-03 1.03E-03 1.00E-02 1.11E-03 1.40E-03 1.05E-03 1.35E-03 1.35E-03 1.25E-03 1.25E-030 1.25E-030 1.25E-030 1.25E-030 1.25E-030 1.25E-03 1.25E-03 1.25E-0	-04
7.18E-03 1.40E-07 8.03E-04 2.81E-05 4.64E-03 1.13E-02 1.12E-02 4.08E-05 1.50E-04 1.55E-04 2.22E	-03
1.29E-03 1.21E-03 6.41E-03 1 19E-02 4 16E-06 2 62E-03 1 54E-03 1 50E-03 1 59E-03 2 43E-03 5 52E-04 1 22E-03 5 91E-04 3 47E	_03
3.65E-03 1.58E-02 1.25E-02 1.54E-03 1.50E-02 1.56E-02 2.45E-02 5.55E-04 1.22E-03 5.61E-04 3.47E	-05
0.00E+00 2.91E-06 1.95E-05 1.87E-05 1.02E-04 3.38E-05 1.09E-04 1.10E-05 1.46E-05 1.05E-05 8.79E	-06
2.46E-05 1.23E-04 4.93E-05 1 05E-04 1 04E-04 4 38E-05 2 05E-09 1 51E-04 5 78E-05 3 51E-03 5 80E-07 3 55E-05 1 53E-05 7 41E	-04
2.12E-05 2.96E-03 8.15E-04	04
60.0 50.0 6.0 0.2 5.73E-7	
240.0 1.0 0.7 2.0 2.0 1.73E+06 3.46E+05 1.21E+06 5.18E+06 1.73E+06 8.64E+04 2.59E+06 7.78E+06	
1.70E-01 1.20E-02 1.00E-01 4.20E-02 2.50E-01 5.00E-01 5.70E-02 4.70E-01 1.30E-03 1.30	E-02
1.40E-02 6.00E-02 3.00E-01 1.80E-03	
3760.0 5548.0 5950.0	
111.0 120.0 175.0	
4.8 8.1 17.0 141.0 93.0 70.0	
22.0 35.0 47.0	
3360.0 5000.0 5040.0 6060.0 8000.0 8980.0	
182.0 249.0 259.0 323.0 295.0 429.0 4.8 10.1 11.5 14.6 19.9 42.2	
150.0 477.0 347.0 369.0 340.0 301.0	
27.0 51.0 58.0 74.0 97.0 120.0	
0.7 0.5 0.5 5.0 6.31F8 2.7F19 3.8F18	
0	
GASPAR Test Case 1 - ICRP-72	
Source Term 1	
1 1 0 0 CS-137 1.000F+00	
H -3 1.000E+02	
I -131 1.000E-01	
KK-85 3.000E+02 XE-135 2.000E+02	
llest Loc #1 N 1000 1.000E-06 1.000E-06 1.000E-06 1.000E-070000000 1Test Loc #2 NF 1200 2.200E-07 2.100E-07 2.000E-07 3.400E-090000000	

Run GASPAR – View Output

- Basic assumptions used for calculations
- Lists the Source Term
- Followed by Doses
 - Population (if performed)
 - Individual by Special Locations
- If selected "Print Dose Factor Library," output will include all nuclides

NRCDose3 GASPAR Test Case 1 - ICRP-2 U.S. NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555 DATE OF RUN:10-23-2019 CALCULATIONS PERFORMED USING THE ICRP-2 BASED DOSE CONVERSION FACTORS SASPAR Test Case 1 - ICRP-2 JOB CONTROL PARAMETERS JC(1) = 1 :POPULATION/INDIVIDUAL DOSE SELECTION JC(2) = 1 :NUMBER OF SOURCE RELEASE POINTS JC(3) = 1 :PRINT CONTROL FOR DOSE ACCUMULATION JC(4) = 0 :READ CONTROL FOR BLOCK DATA CHANGE RECORDS JC(5) = 0 :PRINT CONTROL FOR DOSE FACTOR TABLE JC(6) = 0 :CALCULATION CONTROL FOR UNIT DOSE FACTORS JC(7) = 0 :READ CONTROL FOR DISPERSION DATA INPUT FILE JC(8) = 0JC(9) = 0JC(10)= 0 EXPOSURE PATHWAY FRACTIONS PARAMETER DESCRIPTION(FRACTION) VALUE -----LEAFY VEGETABLE FROM GARDEN 0 75 OTHER EDIBLES FROM GARDEN 0.50 FP TIME MILK COWS ON PASTURE 0.80 FB TIME BEEF ON PASTURE 0.80 FGT TIME MILK GOATS ON PASTURE 1.00 FPF MILK COW INTAKE FROM PASTURE 1.00 FBF BEEF INTAKE FROM PASTURE 1.00 FPG MILK GOAT INTAKE FROM PASTURE 1.00 HUMIDITY(G/M**3) 1.42 SOURCE TERM RELEASE NUMBER 1 RELEASE POINT Source Term 1 UML = 1.00E+00 SOURCE TERM MULTIPLICATION FACTOR JC1 = 0NEW OR PREVIOUS MET DATA PARAMETER JC2 = 0NEW OR PREVIOUS SOURCE TERM RELEASE DATA 'PARAMETER NUCLIDE CI/YR ---------55CS137 1.00E+00 1H 3 1.00E+02 53I 131 1.00E-01 36KR 85 3.00E+02 54XE135 2.00E+02 6.011E+02 TOTAL CURIES FOR 5 RADIONUCLIDES

GASPAR FSAR Report

- Provides a summary report of assumptions and doses
- Suitable for use in creating input for safety analyses and licensing support

FSAR Input Report – GASPAR Test Case 1 – ICRP-2 – 22-Oct-2019 18:07

Input Parameters for the GASPAR Code

X/Q (scc/m3) For maximum individual dose calculation <u>Undecaved</u> , <u>Undepleted</u> : Decaved, <u>Undepleted</u> : Decayed, Depleted:	1.00E-06 1.00E-06 1.00E-06
D/Q (1/m2) For maximum individual dose calculation	1.00E-07
Distance to residence (mi) Midpoint of plant life (yr) Fraction of the year that leafy vegetables are grown: Fraction of the year that milk cows are on pasture: Fraction of milk-cow feed intake that is from pasture while on pasture: Fraction of milk-cow that milk cows are on pasture: Fraction of the year that goats are on pasture: Fraction of goat milk-cow milk of the statistic from garden: Average absolute humidity over the growingble intake that is from garden: Average absolute humidity over the growingblesson (g/m3): Fraction of the year that beef cattle cows are on pasture: Fraction of the year that beef cattle cows are on pasture: Average absolute numidity over the growingble son (g/m3): Fraction of the year that beef cattle cows are on pasture: Animal considered for milk pathway Annual milk production for all distances and directions within 50 miles (k)	0.62 20.0 0.75 0.80 1.00 1.00 1.00 0.50 1.00 0.80 1.00 Cow and Goat 1000

Gaseous Source Term for the GASPAR Code

Isotope	Release Rate (CI/yr)
CS-137	1.00E+00
H-3	1.00E+02
I-131	1.00E-01
KR-85	3.00E+02
XE-135	2.00E+02

Calculated Doses from Gaseous Effluents (Plume Exposure due to Noble Gases)

Type of Dose	Dose
Gamma dose in air (mrad/yr)	1.23E-02
Beta dose in air (mrad/yr)	3.41E-02
Dose to total body (mrem/yr)	8.14E-03
Dose to skin (mrem/vr)	3.41E-02

Note:

Calculated

1. Doses due to noble gases, including AR-41

Doses	from Gaseous Effluents (mrem/yr)

Age	Effective	GT-LLT	Bone	liver	Kidnev	Thyroid	Lung
Ground							
	4.13E+01	4.13E+01	4.13E+01	4.13E+01	4.13E+01	4.13E+01	4.13E+01
Vegetable							
Adult	1.30E+01	4.09E-01	1.45E+01	1.99E+01	6.81E+00	1.20E+01	2.25E+00
Teen	1.07E+01	4.62E-01	2.30E+01	3.06E+01	1.05E+01	1.49E+01	4.05E+00
Child	7.70E+00	3.58E-01	5.41E+01	5.18E+01	1.70E+01	2.76E+01	6.09E+00
Meat							
Adult	1.81E+00	5.71E-02	2.01E+00	2.76E+00	9.40E-01	6.30E-01	3.14E-01
Teen	7.76E-01	3.39E-02	1.67E+00	2.22E+00	7.60E-01	4.56E-01	2.96E-01
Child	4.38E-01	2.10E-02	3.08E+00	2.95E+00	9.65E-01	6.88E-01	3.47E-01
Cow Milk							
Adult	1.53E+01	4.72E-01	1.71E+01	2.33E+01	8.00E+00	1.73E+01	2.63E+00
Teen	1.44E+01	6.13E-01	3.09E+01	4.12E+01	1.41E+01	2.74E+01	5.44E+00
Child	1.06E+01	4.76E-01	7.45E+01	7.13E+01	2.35E+01	5.40E+01	8.36E+00
Tofoo+	1 000.01	A 73E A1	1 105.00	1 205-02	3 70E A1	1 315-03	1 616.01

GASPAR Supplemental Report

 Provides additional information that may not be included in the GASPAR output or the FSAR Report

pupplemental	FSAR	Input	-	GASPAR	lest	Case	1	-	ICRP-2 -	22-Oct-2019	18:10

Program Constants for GASPAR

Intake Product Parameters

Growing period for vegetables consumed by human:	60.0	days
Cow feed ingestion rate:	50.0	kg/day
Goat feed ingestion rate:	6.0	kg/day
Vegetables retention for particulates other than iodine:	0.2	
Weather removal constant:	5.73E-7	1/sec
Soil surface density:	240.0	1/sec
Iodine retention:	1.0	
Pasture grass yield:	0.7	kg/m2
Feed crop yield:	2.0	kg/m2
Garden vegetable crop yield:	2.0	kg/m2

Holdup & Transport Times (sec)

Physical Parameters

Midpoint of plant life:	6.31E8	sec
Shielding factor for individuals:	0.7	
Shielding factor for populations:	0.5	
Hydrosphere water volume:	2.7E19	m3
Volume of the atmosphere:	3.8E18	m3
Iodine deposit fraction:	0.5	
Bone correction factor:	5.0	

Goat Feed to Milk Transfer Factors (D/L)

Hydrogen:	0.17	Calcium:	0.47
Boron:	0.012	Iron:	0.0013
Carbon:	0.10	Copper:	0.013
Magnesium:	0.042	Strontium:	0.014
Phosphorus:	0.25	Iodine:	0.06
Chlorine:	0.50	Cesium:	0.30
Potassium:	0.057	Polonium:	0.0018

Usage Parameters

2000 US Population:

	Children	Teenagers	Adults
Fraction of population: Average inhalation rate: Average vegetable intake: Average leafy vegetable intake: Average milk intake:	0.18 8000.0 190.0 30.0	0.11 8000.0 240.0 20.0 200.0	0.71 3700.0 200.0 10.0
Average meat intake:	95.0	59.0	37.0

2.80F+08

Transfer Coefficients for the LADTAP and GASPAR Codes

Units: Veg (veg/soil); Milk (d/l); Meat (d/kg)

Element	Item	Value
н	Meat	1.20E-02
н	Veg/Soil	4.80E+00
н	Milk	1.00E-02
KR	Meat	2.00E-02
KR	Veg/Soil	3.00E+00
KR	Milk	2.00E-02
I	Meat	2.90E-03
I	Veg/Soil	2.00E-02
I	Milk	6.00E-03

NRCDose3 - Version 1.1.4

Quit About Manuals

LADTAP Liquid Pathway Dose Assessment

GASPAR Gaseous Pathway Dose Assessment

XOQDOQ Annual Average Meteorological Dispersion and Deposition

This computer program was created by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor its contractors, nor any of their emplyees, makes any warranty, expressed of implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, or of any information in or generated by this program, or represents that its use by such third party would not infringe privately-owned rights. In addition you may not distribute this computer program or use this computer program without the permission of the U.S. Nuclear Regulatory Commission.

LADTAP

LADTAP Dose Modeling

- Routine liquid effluent releases not for short-term accident
- Modeling assumes annual average conditions
 - Average dispersion in receiving water body
 - Average radioactive effluents over time
- RG 1.109, Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I, Rev. 1, October 1977

LADTAP Dose Modeling

- Exposure pathways to maximum exposed individual and to population:
 - potable water (downstream supply),
 - aquatic foods (fresh and saltwater water fish, invertebrate (crustacea and shellfish), and aquatic plants (seaweed)
 - shoreline deposits (build-up to mid-point of plant life (assumed 40-year life)
 - Swimming and boating from direct exposure,
 - irrigated foods, and
 - non-human biota (7 surrogate species)

LADTAP – Reconcentration models

- Models from RG 1.113:
 - Plug-Flow Model uniform, constant flow through pond; negligible evaporation
 - Partially Mixed Model applicable where blowdown and plant pumping significant
 - Completely Mixed Model estimates effluent concentration at midpoint of plant life
- Refer to NUREG/CR-4013, Section 3.1.1 for more detail

LADTAP – Reconcentration Models

NRCDose3 - Version 1.1.4

Quit About Manuals

LADTAP Liquid Pathway Dose Assessment

GASPAR Gaseous Pathway Dose Assessment

XOQDOQ Annual Average Meteorological Dispersion and Deposition

This computer program was created by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor its contractors, nor any of their emplyees, makes any warranty, expressed of implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, or of any information in or generated by this program, or represents that its use by such third party would not infringe privately-owned rights. In addition you may not distribute this computer program or use this computer program without the permission of the U.S. Nuclear Regulatory Commission.

Starting and Running LADTAP

Double click "LADTAP"

LADTAP Main Screen

- LADTAP opens with data saved in the database
- Contains three main functional areas:
 - the toolbar and initial setup area,
 - data input tabs area and
 - code execution and reports area

LADTAP						
File Quit About						
Scenario NUREG/CR-4013 Sample Problem 1	ource Term: Test #1		Dose Facto	ors: ICRP-2	2 (Default) V	r
Selections ALARA Locations Fish/Population/Biota Inigation Food Data Dose Factors Pathway Factors						
			Sour	ce Term:		
Disharas David Data: 2150.00 CES	Site Turce	Nuclide	Quantity (Ci)	R-Factor		
Severe Terr Multiclian	Site Type	I-133	1.20E-03			
	Fresh water	I-135	1.30E-03			
50 mi Population: 2200000	 Salt water 	CS-134	3.90E-04			
Print dose factors		CS-138	2.80E-02			
Devideting Franting	- Cashiha diasa	CS-137	5.50E-03			
Population Fractions Dos	e Contributions	H-3	1.80E+01			
		1-131	5.20E-04			
No Edit O V						
) tes					
Reconceptation and a second seco						
Model: Partially-Mixed ~						
Effluent discharge rate from	Add Nuclide					
receiving water body:						
200 CFS	Delete Nuclide					
Impoundment Total Volume						
50000 ft ³	Clear					
Total Quantity: 1.8037E+01 Curies						
Save Create input View in	Put Run LAD TAP	view Outpu	FSAR	neport	Supplemental Rep	

LADTAP Start-up

- New Select this option to begin a new LADTAP case. This will clear the database from any previously input information.
- Open LN3 File Select this option to access and open a "*.LN3" file that was previously created with NRCDose3.
- Save to Database Choose this option to save the current case to the database. When LADTAP starts, it loads the data that was last saved (typically from the last, previous run), populating all LADTAP screens and windows.
- Save to LN3 File Choose this option to save the completed case to a "*.LN3" file. This allows the file to be saved for later use, or for sharing with others.
- Delete Choose this option to open an explorer window that will allow the user to delete any previously saved "*.LN3" files.

LADTAP – Basic Information

- Scenario Name
- Source Term Identifier
- Dose Factor _____
 Library
 - ICRP-2 (Default)
 - ICRP-30
 - ICRP-72

	LADTAP							
	File Quit About							
	Scenario: NUREG/CR-4013 Sample Problem 1 Source	Term: Test #1			Dose Facto	ors: ICRP-2	2 (Default)	~
Г	Selections ALARA Locations Fish/Population/Biota Img	gation Food Data Dos	se Fac	tors Pathwa	ay Factors	_		
			Г	Nuclide	Sour	R-Factor		
	Disharge Flow Rate: 3150:00 CFS S	Site Type		I-133	1.20E-03	TH dotor		
	Source Term Multiplier: 1	Fresh water		I-135	1.30E-03			
1	50 mi Population: 2200000	 Salt water 		CS-134	3.90E-04			
	Brint doop factors			CS-138	2.80E-02			
				CS-137	5.50E-03			
	Population Fractions Dose Cont	ributions		H-3	1.80E+01			
	Modify defaults? Print by	radionuclide %		I-131	5.20E-04			
	No Yes Edit Yes	3						
	Reconcentration							
	Model: Partially-Mixed V							
	Effluent discharge rate from impoundment system to the receiving water body:	Add Nuclide						
	200 CFS	Delete Nuclide						
	Impoundment Total Volume:							
	50000 ft ³	Clear						
				Total	Quantity:	1.8037E+0	1 Curies	
	Save Create Input View Input	Run LADTAP		View Output	FSAR	Report	Supplemental F	Report

NOTE: Changing DCF Library will cause other entries to reset

LADTAP – Selections

- Release/site information
- Fresh or Saltwater
- Print Dose Factors
- Dose contribution by nuclide
- Modify Population Fractions
 - (ICRP-2/ICRP-72)
 - Adult (71%)
 - Teen (11%)
 - Child (18%)
 - ICRP-30
 - Adult (100%)

ADTAP	
File Quit About	
	Deer Frederick and a state
Scenano: NUREG/CR-4013 Sample Problem 1 Source Term: Test #1	Dose Factors: ICRP-2 (Default)
Selections ALARA Locations Fish/Population/Biota Imigation Food Data Dose Fa	actors Pathway Factors
	Source Term:
Bicharge Flow Rate: 3150.00 CFS Site Type	L133 1 20E-03
Source Term Multiplier: 1	I-135 1.30E-03
50 mi Population: 2200000 O Salt water	CS-134 3.90E-04
	CS-138 2.80E-02
Print_dose factors	CS-137 5.50E-03
Population Fractions Dose Contributions	H-3 1.80E+01
Medify defaults? Print by radionuclide %	I-131 5.20E-04
No Edit	
O Yes	
D	
Reconcentration	
Model: Partially-Mixed	
Effluent discharge rate from Add Nuclide	
receiving water body:	
200 CFS Delete Nuclide	
Impoundment Total Volume:	
50000 ft ³ Clear	
	Table Question 1 00075 01 Quest
Save Create Input View Input Run LADTAP	View Output FSAR Report Supplemental Report

LADTAP – Reconcentration

	LADTAP						
Drop down	File Quit About						
	Scenario: NUREG/CR-4013 Sample Problem 1 Sou	rce Term: Test #1	Dose Factors: ICRP-2 (Defa	sult) ~			
menus for	Selections ALARA Locations Fish/Population/Biota Imigation Food Data Dose Factors Pathway Factors						
tho throo (2)		I	Source Term:				
the three (3)	Disharge Flow Rate: 3150.00 CFS	Site Type	I-133 1.20E-03				
models	Source Term Multiplier: 1	Fresh water	I-135 1.30E-03				
models	50 mi Population: 2200000	 Salt water 	CS-134 3.90E-04				
× 1	Print dose factors	· · · · · · · · · · · · · · · · · · ·	CS-138 2.80E-02				
	Population Fractions Dose Contributions		CS-137 5.50E-03				
	Modify defaults? Pri	nt by radionuclide %	I-131 5.20E-04				
	No Edit	No					
Reconcentration	O Yes	Yes		Alternatively, user			
Model: Partially-Mixed				con put in c			
Nana	Model: Partially-Mixed			can put in a			
Ef Completely Mixed	Effluent discharge rate from	Add Nuclide		nuclide specific			
im Plug Flow	impoundment system to the	Add Hocide		reconcentration			
Partially-Mixed	200 CFS	Delete Nuclide					
	Impoundment Total Volume:			factor manually.			
	50000 ft ³	Clear					
	Total Quantity: 1.8037E+01 Curies						
	Save Create Input View Input	t Run LADTAP	View Output FSAR Report Sup	plemental Report			
L							

LADTAP – Reconcentration Models

– Plug-Flow Model

$$C_i = C_{0i} * \exp[-2.788X10^{-4} \lambda_i \frac{V_T}{Q_B}]$$

Partially Mixed
 Model

$$C_{i} = C_{0} * \frac{\kappa}{(R+1) * \exp[\frac{V_{T} * \lambda_{i}}{3600 * Q_{r}(R+1)} - 1]}$$

р

where:

 $R = \frac{\text{reactor effluent discharge rate}}{\text{pond flow-through rate}}$

Completely
 Mixed Model

$$C_{i} = C_{0} * \frac{Q_{b}}{(Q_{b} + V_{T} * \lambda_{i} / 3600) \left\{ 1 - \exp\left[-3.15X10^{7} (Q_{b} + \frac{\lambda_{i}V_{T}}{3600}) (\frac{T_{PL}}{V_{T}}) \right] \right\}}$$

LADTAP – Source Term

- Select: Add Nuclide
- Pop-up menus with nuclide list
- Highlight desired nuclide: use "control" key to select multiple nuclides
 - Select "Add" to add to list
- "Delete Nuclide" will delete selected nuclide
- "Clear" will clear all nuclides in the Source Term

LADTAP – Source Term

- ICRP-30 and ICRP-72 DCFs
 - For radionuclides
 with more than one
 solubility class,
 select the applicable
 one
 - The same nuclide with more than one solubility class is not allowed

	Source Term:						
	Nuclide	Default	ŧ	f1	Quantity (Ci)	R-Fact	or
туре	CS-134	Yes		1	3.90E-04		
) Fresh water	CS-137	Yes		1	5.50E-03		
) Salt water	CS-138	Yes	Sel	lect Nucl	ide		
	H-3	Yes	50		iuc.		
	I-131	Yes		Nuclide	Default	f1	^
utions	I-133	Yes		AC-225	Yes	0.001	
dionuclide %	I-135	Yes		AC-227	Yes	0.001	
				AG-110	M Yes	0.05	
				AG-111	Yes	0.05	
				AM-241	Yes	0.001	
				AM-242	M Yes	0.001	
				AM-243	Yes	0.001	
				AR-39	Yes		
				AR-41	Yes		
Add Nuolida				AU-198	Yes	0.1	
Add Nuclide				BA-133	Yes	0.1	
				BA-139	Yes	0.1	
Delete Nuclide				BA-140	Yes	0.1	
				BA-141	Yes	0.1	
				BA-142	Yes	0.1	
Clear				BE-10	Yes	0.005	
				BI-210	Yes	0.05	
	Total	Quantit	l	00.00	V	1	~
	View Output			Add		Exit	
Run LADTAP	View Output	•		Add		Exit	

LADTAP – ALARA Locations (Individual Doses)

- Defines the exposure assumptions for individual dose calculations
- Enter data
 - Shore width factor defines the geometry for the shoreline exposure
 - Dilution factors by pathway
 - Transit time by pathways

LADTAP Input: C:\NRCDose3\NUREG-CR-4013 Sample Problem 1 - ICRP-2.In3 File Quit About

Scenario: NUREG/CR-4013 Sample Problem 1 Source	Term: Test #1 Dose Factors: ICRP-2 (Default) V
Selections ALARA Locations Fish/Population/Biota Imp	ation Food Data Dose Factors Pathway Factors
ALARA - Max. Individual Shore-width factor: River Shoreline (0.2) Dilution Factor Aquatic food and boating: 1	Additional Usage Locations At outfall Add Downstream Add Calc Remove
Shoreline and swimming: 1 Drinking water: 4	Calc Number of Records: 2
Transit Time (hrs) Drinking water: 3 Other pathways: 0.1	ALARA - Additional Location Location: At outfall Dilution Factor All pathways: 1 Calc
Change default usage and consumption data O No O Yes	Transit Time (hrs) All pathways: 1 Shore-width factor: River Shoreline (0.2)
	And consumption data O No Edit Save
Save Create Input View Input	Run LADTAP View Output FSAR Report Supplemental Report

LADTAP – Dilution Factor Calculation

- Using the "Calc" options, a dilution factor will be calculated based on receiving water body parameters
 - Based on RG 1.113
 - For nontidal uniform flow and steady-state conditions, diffusive transport in the flow direction negligible compared with advective transport

LADTAP Dilution Calculation

- Surface Water Model Select the appropriate hydrological model by clicking on either River or Lake model option
- Surface Water Velocity surface water velocity in units of feet per second (ft/s)
- Surface Water Depth surface water depth in units of ft
- Downstream Distance downstream distance in units of ft
- Offshore Distance offshore distance in units of ft
- River Width/Lake Discharge Depth either the river width or lake discharge depth depending on the model selected in units of ft

LADTAP – Individual Age Group Exposure Assumptions

- Drop down menu to select
 age group
 - ICRP-2 DCFs: four age groups: Adult, Teen, Child, Infant
 - ICRP-30 DCFs: Adult age group only
 - ICRP-72 DCFs: Adult, 15-year, 10-year, 5-year, 1-year and newborn
- Remember to Save before Exit

Max Individual Consumption						
Age Group. > Ad	Age Group. > Adults ~					
Consumption (kg/	yr)	Save				
Fish:	21.00		-			
Fresh Water						
Invertebrate:	0.00					
Salt Water						
Invertebrate:	0.00	Defaults				
Aquatic Plant:	0.00		-			
Drinking Water:	730.00					
Usage/Exposure	Time (hr/yr)					
Shoreline:	12.00					
Swimming:	12.00					
Boating:	12.00	Exit				
			:			

LADTAP – Additional Locations (Individual Doses)

- Add/remove additional locations of interest – by name
- Define exposure assumptions
 - Dilution
 - Transit time
 - Shore width factor
- Ability to change exposure times and consumption rates

	Additional Usage Locations
	At outfall Add
_	
	Remove
	Number of Records: 2
	ALARA - Auditorial Location
	Location: At outfall
	Dilution Factor
	All pathways: 1 Calc
	Transit Time (hrs)
	All pathways: 1
	Shore-width factor: River Shoreline (0.2) ~
	Change default usage Cancel
	O No Edit ● Yes Save

LADTAP Population Doses: Fish and Shellfish

LADTAP Input: C:\NRCDose3\NUREG-CR-4013 Sample Problem 1 - ICRP-72.In3

- Select pathway from dropdown menu
- Add location
- Define harvest, dilution and trans time

File Quit About					
Scenario: NUREG/CR-4013 Sample Problem 1	Source Term: Test #1 Dose Factors: ICRP-72				
Selections ALARA Locations Fish/Population/B	Biota Inigation Food Data Dose Factors Pathway Factors				
Fish Usage: Sport Fishing Commercial Fishing Sport Invertebrate Harvest Commercial Invertebrate Harvest Sport Fishing Fish Downstream Add	Population Usage: Drinking Water Shoreline Swimming Boating Biota Locations Drinking Water Usage Biota Locations Water at 16 mi downstream Add				
Remove Number of Records: 1	Remove Remove Number of Records: 1				
Sport Fishing Location	Drinking Water Usage Location Biota Exposure				
Location: Fish Downstream	Location: Water at 16 mi downstream Location: Fish at outfall Disting feature Disting feature				
Dilution factor: 4 Calc	Dilution factor: 4 Calc Transit Time: 0.1 hrs				
Transit Time: 1 hrs	Transit Time: 1 hrs Supply rate: 0 gpd Cancel Save				
Save	Avg Ind Usage: 0 gpd Cancel Save Add Biota				
Save Create Input View Input Run LADTAP View Output FSAR Report Supplemental Report					

LADTAP Population Usages

- From drop down, • select:
 - drinking water,
 - shoreline.
 - swimming or
 - boating
- Add location ٠
- For drinking water, define the population served or the supply rate
- For others, define • person-hours annual usage
- Define dilution and transit time
- Add additional • locations as needed

LADTAP Input: C:\NRCDose3\NUREG-CR-4013 Sample Problem 1 - ICRP-72.In3

File Quit About

LADTAP – Biota Doses

LADTAP Input: C:\NRCDose3\NUREG-CR-4013 Sample Problem 1 - ICRP-72.In3

- Add locations for calculating doses to biota
- Define dilution and transit time
- Add additional locations as needed
- A "new" biota can be defined and added

File Quit About		
Scenario: NUREG/CR-4013 Sample Problem 1	Source Term: Test #1	Dose Factors: ICRP-72 V
Selections ALARA Locations Fish/Population/Bi	ota Imigation Food Data Dose Factors Pathway	Factors
Fish Usage: Sport Fishing Commercial Fishing Sport Invertebrate Harvest Commercial Invertebrate Harvest Commercial Invertebrate Harvest Sport Fishing Add Remove Remove	Population Usage: Drinking Water Shoreline Swimming Boating Drinking Water Usage Water at 16 mi downstream Add Remove	Biota Locations Fish at outfall Fish Downstream Remove
Number of Records: 1	Number of Records: 1	Number of Records: 2
Sport Fishing Location	Drinking Water Usage Location	Biota Exposure
Location: Fish Downstream	Location: Water at 16 mi downstream	Location: Fish at outfall
Annual harvest: 70000 kg/yr	Total Population: 2200000	Dilution factor: 1 Calc
Dilution factor: 4 Calc	Dilution factor: 4 Calc	Transit Time: 0.1 hrs
Transit Time: nrs Cancel Save	Transit Time: 1 nrs Supply rate: 0 gpd Avg Ind Usage: 0 gpd	Cancel Save
	Cancel	Add Biota
Save Create Input View	Input Run LADTAP View Output	FSAR Report Supplemental Report

LADTAP – Biota Doses

- Select the "Add Biota" button
- Enter the name and exposure assumptions for the new biota type.
- Select the "Save" button
- Up to five (5) new biota may be added

Additional Biota Types

LADTAP – Irrigated Foods

LADTAP Input: C:\NRCDose3\NUREG-CR-4013 Sample Problem 1 - ICRP-72.In3

File Quit About
Scenario: Dose Factors: ICRP-2 (Default)
Selections ALARA Locations Fish/Population/Biota Imigation Food Data Dose Factors Pathway Factors
Imigated Food Pathways Imigated Food Data Add Food type: Imigation rate: 0.00 L/m²/mon 0.00
Remove
Number of Records: 4 Change default usage and consumption data Cancel Save
O Yes Edit Usage Locations
Save Create Input View Input Run LADTAP View Output FSAR Report Supplemental Report

LADTAP – Irrigated Foods

- From dropdown menu select food type
- Total production within 50 miles
- Add irrigation rate
- Option to change default consumption rates
- For milk and meat, add noncontaminated water fractions
- Save: adds Food type to list.

- Irri	igate	ed Food Da	ta		То	tal production r	ate 📻		⊐ ka/vr
	Foo	d type:	Milk	~	1	within 50-mi radi	ius:	0.00	or L/yr
	lmiga	ation rate:	0.00	L/m²/mon	•				
	N	on-contamir	nated Imigation	Water:					
	F	raction of a	nimal feed proc	duction: (0.00				
	F	raction of a	nimal drinking v	water: (0.00				
		Change and cor	default usage sumption data			Cancel		Save	
		1 ()	lo Edit	1]
		()	/es	1		Usage	e Locati	ons	

Food type:

L/m²/mon

Irrigated Food Data

Vegetable

Change default usage

and consumption data

O Yes

0.00

Food type:

Inigation rate:

Imigation rate:

Vegetables

Meat

otal production rate

within 50-mi radius:

Cancel

Leafy Vegetables

kg/yr

or L/yr

0.00

Save

Usage Locations

LADTAP – Irrigated Foods

ICRP-2

rrigated Food Type Consumption Data								
Food Type>	Vegetables	Leafy Vegetables	Milk	Meat	^	Get Defaults		
Max Adult Consumption (kg/yr)	520.00	64.00	310.00	110.00				
Max Teen Consumption (kg/yr)	630.00	42.00	400.00	65.00				
Max Child Consumption (kg/yr)	520.00	26.00	330.00	41.00				
Max Infant Consumption (kg/yr)	0.00	0.00	330.00	0.00				
Avg Adult Consumption (kg/yr)	190.00	30.00	110.00	95.00				
Avg Teen Consumption (kg/yr)	240.00	20.00	200.00	59.00				
Avg Child Consumption (kg/yr)	200.00	10.00	170.00	37.00				
Max Individual Holdup Time (hr)	336.00	24.00	48.00	480.00		Caus		
Ava Individual Holdun Time (br)	1440.00	48.00	96.00	480.00	4	Save		

ICRP-72

mgated Food Type Consumption Data								
Food Type>	Vegetables	Leafy Vegetables	Milk	Meat	^	Get Defaults		
Max Adult Consumption (kg/yr)	429.00	42.20	301.00	120.00				
Max 15 Yr Old Consumption (k	296.00	19.90	340.00	97.00				
Max 10 Yr Old Consumption (k	323.00	14.60	369.00	74.00				
Max 5 Yr Old Consumption (kg	269.00	11.50	347.00	58.00				
Max 1 Yr Old Consumption (kg	249.00	10.10	477.00	51.00				
Max Newborn Consumption (k	182.00	4.80	150.00	27.00				
Avg Adult Consumption (kg/yr)	175.00	17.00	70.00	47.00				
Avg 15 Yr Old Consumption (k	120.00	8.10	83.00	35.00		Sava		
Ava 10 Yr Old Consumption &	123.00	5.60	125.00	29.00	4	Save		

LADTAP – Irrigated Foods, Farm Data

- For each farm location:
 - Dilution, Production and Transit Time

Water Usage Locations	Water Usage Data			
Food type: Vegetables	Food type: Vegetables			
Add	Location: Test Location			
	Dilution factor: 1.0 Calc			
Remove	Production rate: 1.0 kg/yr or L/yr			
	Transit Time: 1.00 hrs			
	Cancel Save			
Number of Records: 2				

- Save: adds Food type to list
- Add locations for selected farms for production
- Option to change default consumption rates

LADTAP – Dose Factors

cenario:		Sou	urce Term:			Dose Fa	actors: ICRP-	2 (Default)	~
Selections ALARA Loca	ations Fish/Po	pulation/Biota	Irrigation Foo	d Data Dose	Factors Path	nway Factors			
Factors:	Nuclide	Bone	Liver	Total Body	Thyroid	Kidney	Lung	GI-LLI	^
Adult Ingestion ~	AC-225	4.40E-06	6.06E-06	2.96E-07	0.00E+00	6.90E-07	0.00E+00	4.07E-04	
Teen Ingestion	AC-227	1.87E-03	2.48E-04	1.11E-04	0.00E+00	8.00E-05	0.00E+00	8.19E-05	
Infant Ingestion	AG-110M	1.60E-07	1.48E-07	8.79E-08	0.00E+00	2.91E-07	0.00E+00	6.04E-05	
Adult Inhalation Teen Inhalation	AG-111	5.81E-08	2.43E-08	1.21E-08	0.00E+00	7.84E-08	0.00E+00	4.46E-05	
Child Inhalation	AM-241	7.55E-04	7.05E-04	5.41E-05	0.00E+00	4.07E-04	0.00E+00	7.42E-05	
	AM-242M	7.61E-04	6.63E-04	5.43E-05	0.00E+00	4.05E-04	0.00E+00	9.34E-05	
	AM-243	7.54E-04	6.90E-04	5.30E-05	0.00E+00	3.99E-04	0.00E+00	8.70E-05	
	AR-39	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
	AR-41	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
	AU-198	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
	BA-133	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
	BA-139	9.70E-08	6.91E-11	2.84E-09	0.00E+00	6.46E-11	3.92E-11	1.72E-07	
	BA-140	2.03E-05	2.55E-08	1.33E-06	0.00E+00	8.67E-09	1.46E-08	4.18E-05	
	BA-141	4.71E-08	3.56E-11	1.59E-09	0.00E+00	3.31E-11	2.02E-11	2.22E-17	
	BA-142	2.13E-08	2.19E-11	1.34E-09	0.00E+00	1.85E-11	1.24E-11	3.00E-26	
	BE-10	3.18E-06	4.91E-07	7.94E-08	0.00E+00	3.71E-07	0.00E+00	2.68E-05	
	BI-210	4.61E-07	3.18E-06	2.64E-07	0.00E+00	3.83E-05	0.00E+00	4.75E-05	
	BR-82	0.00E+00	0.00E+00	2.26E-06	0.00E+00	0.00E+00	0.00E+00	2.59E-06	
	BR-83	0.00E+00	0.00E+00	4.02E-08	0.00E+00	0.00E+00	0.00E+00	5.79E-08	~
Save C	reate Input	View Inpu	.t Ru	in LADTAP	View Out	put FS	AR Report	Supplement	al Rep

LADTAP – Dose Factors

File Scen

Sele

- Nuclide Data
 - External TB and skin
 DFs from
 - Ground Surface
 - Water Submersion
 - Absorbed Energies
 - For biota calculations
 - Effective radii

NOTE: Nuclide Data is non-editable

LADTAP Input: C:\NRCDose3\NUREG-CR-4013 Sample Problem 1 - ICRP-72.In3

Quit About							
ario:	Nuclide Data						
tions ALARA Loc							
ctors:	Nuclide	Atomic Number	Atomic Weight	Isomeric State	Decay Constant	EXG TB Factor (mrem/hr per pCi/m2)	>
dult Ingestion $$	H-3	1	3		1.78E-09	0.00E+00	
	BE-10	4	10		1.37E-14	0.00E+00	
Nuclide Data	C-14	6	14		3.84E-12	0.00E+00	
	N-13	7	13		1.16E-03	7.60E-09	
	F-18	9	18		1.05E-04	6.80E-09	
	NA-22	11	22		8.44E-09	1.60E-08	~
	<		1		1	>	
	Effective En	nergies				-	
	Nuclide	1 cm	1.5 cm	2.5 cm	3.5 cm	5 cm	- ^
	Ac-225	5.92E+00	5.92E+00	5.92E+00	5.92E+00	5.92E+00	_
	Ac-227	8.50E-02	8.50E-02	8.51E-02	8.52E-02	8.52E-02	_
	Ag-110	1.18E+00	1.18E+00	1.18E+00	1.18E+00	1.18E+00	_
	Ag-110m	1.49E-01	1.82E-01	2.42E-01	3.03E-01	3.96E-01	
	Ag-111	3.55E-01	3.55E-01	3.55E-01	3.56E-01	3.57E-01	
	Am-241	5.61E+00	5.61E+00	5.62E+00	5.62E+00	5.62E+00	
	Am-242m	n 7.03E-02	7.08E-02	7.14E-02	7.18E-02	7.22E-02	
	<		1	1		>	
				Exit			
Course of Co	Lands land	Manu Janu A		Mour Or tout	FCAD Deset	Curreless and all D	
Save	reate input	view input Ri	UN LAD TAP	view Output	FSAR Report	Supplemental Repo	π

LADTAP Pathway Factors

LADT	AP Inp	out: C:\NRCDose3	3\NUREG-CR-4013 Sample Problem 1 - ICRP-7	2.In3			
File	Qu	it About					
Scer	nario:		Source Term:			Dose Factors: ICRP-	2 (Default) 🗸 🗸
Sele	ections	ALARA Location	Is Fish/Population/Biota Imigation Food Data	Dose Factors	Pathway Fa	actors	
			Processing time for aquatic foods:	24.0	hrs	Total US Population:	2.60E+08
	Bi	oaccumulation Factors	Processing time for water supply systems:	12.0	hrs	Midpoint of plant life:	20.0 years
			Milk animals pasture grass consumption rate:	50.00	kg/d	Plant Weathering Half-	life: 14.0 days
	Usa	ge/Consumption	Milk animals water consumption rate:	60.00	L/d	Density Thickness	
			Beef animals pasture grass consumption rate:	50.00	kg/d	of Root Zon	ie: 240.0 kg/m²
	F	Page Defaults	Beef animals water consumption rate:	50.00	L/d		
			Fraction of deposition captured by vegetation	0.20]		
		Default Age	Growing Period Crop Yield	Soc	(U. ort and Comme	S.Commercial Harvest	s) vest Parameters
	Adu		(days) (KQ/m*) Vegetables: 60 2.0	Spo	ort Harvest Pro	cessing Time:	168 hrs
	Tee	n: 0.11	Leafy Vegetables: 60 2.0	Con	nmercial Harve	est Processing Time:	240 hrs
	Child	d: 0.18	Milk: 30 0.7	Free	shwater Fish H	larvest:	4.40E+07 kg/yr
			Meat: 45 0.7	Free	shwater Invert	ebrates Harvest:	2.30E+06 kg/yr
				Salt	water Fish Ha	rvest:	6.58E+08 kg/yr
				Salt	water Inverteb	orates Harvest:	4.10E+08 kg/yr
	Save	e Create	e Input View Input Run LADTA	P Vie	ew Output	FSAR Report	Supplemental Report

LADTAP Pathway Factors – Bioaccumulation Factors

- Bioaccumulation factors (fresh and saltwater):
 - Fish
 - Invertebrate
 - Plants
- Transfer factors:
 - Soil-to-vegetables
 - Grass-to-meat
 - Grass-to-milk

NOTE: All bioaccumulation factors are editable for site-specific data

Bioaccumulation Factors & Transfer Coefficients

Element	ltem	Valu	Je		1
Н	Freshwater Plants	9.0E	-01		
Н	Freshwater Fish	9.0E-	-01		
Н	Freshwater Invertebrates	9.0E-	01		
н	Saltwater Plants	9.3E-	01		
Н	Saltwater Fish	9.0E-	01		
н	Saltwater Invertebrates	9.3E-	01		
HE	Freshwater Plants	1.0E+	+00		
HE	Freshwater Fish	1.0E+	+00		
HE	Freshwater Invertebrates	1.0E+	+00		
HE	Saltwater Plants	1.0E+	+00		
HE	Saltwater Fish	1.0E+	+00		
HE	Saltwater Invertebrates	1.0E+	+00		
LI	Freshwater Plants	3.0E+	+00		
LI	Freshwater Fish	5.0E-	-01		
LI	Freshwater Invertebrates	4.0E+	+01		
LI	Saltwater Plants	3.0E+	+00		
LI	Saltwater Fish	5.0E-	01		
LI	Saltwater Invertebrates	5.0E-	01		
Get Defa	aults			Save	

Close

Pathway Factors -Usage/Consumption

Consumption Rates

- Fish
- Invertebrate
- Plants
- Drinking water
- Shoreline
- Swimming
- Boating
- Irrigated Food Consumption:
 - Vegetables
 - Leafy vegetables
 - Milk
 - Meat
 - Transit and hold-up times

NOTE: All consumption rates are editable for site-specific data

Usage/Consumption Data

Maximum Individual Exposure Consumption Data for selected Dose Factors

Age Group	Fish (kg/yr)	Freshwater Invertebrates (kg/yr)	Aquatic Plants (kg/yr)	Drinking Water (kg/yr)	^ [Get Defaults
Adults	21.00	0.00	0.00	730.00		
Teens	16.00	0.00	0.00	510.00		
Children	6.90	0.00	0.00	510.00		
Infants	0.00	0.00	0.00	330.00		
<				>	×	Save

Irrigated Food Type Consumption Data

Food Type>	Vegetables	Leafy Vegetables	Milk	Meat	^	Get Defaults
Max Adult Consumption (kg/yr)	520.00	64.00	310.00	110.00		
Max Teen Consumption (kg/yr)	630.00	42.00	400.00	65.00		
Max Child Consumption (kg/yr)	520.00	26.00	330.00	41.00		
Max Infant Consumption (kg/yr)	0.00	0.00	330.00	0.00		
Avg Adult Consumption (kg/yr)	190.00	30.00	110.00	95.00		
Avg Teen Consumption (kg/yr)	240.00	20.00	200.00	59.00		
Avg Child Consumption (kg/yr)	200.00	10.00	170.00	37.00		
Max Individual Holdup Time (hr)	336.00	24.00	48.00	480.00		Course
Ava Individual Holdun Time (br)	1440.00	48.00	00.30	480.00	\sim	Save

Average Individual Consumption Data (kg/yr)

Age Group	Fish (kg/yr)	Invertebrates (kg/yr)	Drinking Water (kg/yr)	^	Get Defaults
Adults	6.90	1.00	370.00		
Teens	5.20	0.75	260.00		
Children	2.20	0.33	260.00		
				¥	Save

Close

Running LADTAP – Viewing Outputs/Reports

- Save
- Create Input
- View Input
- Run LADTAP
- View Output
- FSAR Report
- Supplemental Report

enario: NUREG/CR-4013 Sample	Problem 1 Sour	ce Term: Test #1			Dose Facto	ors: ICRP-2	2 (Default)
elections ALARA Locations Fish/	Population/Biota	Imigation Food Data	Dose F	actors Pathw	ay Factors		
					Sour	ce Term:	
Disbarge Flow Rate: 31	50.00 CES	Site Type		Nuclide	Quantity (Ci)	R-Factor	
Source Term Multiplier:	1	Create water		1-133	1.20E-03		
50 mi Basulatianu 20	00000	Salt water		I-135	1.30E-03		
50 mi Population: 22	00000	O Sait Water		CS-134	3.90E-04		
Print dose factors				CS-130	5.50E-02		
Population Fractions	- Dose C	ontributions		H-3	1.80E+01		
Modify defaults?	Prin	t by radionuclide %		1-131	5.20E-04		
No Edit Yes	() ()	No Yes					
Reconcentration							
Model: Partially-Mixed	~						
Effluent discharge rate fr impoundment system to	om the	Add Nuclio	le				
200 Cl	FS	Delete Nucl	ide				
Impoundment Total Volu 50000 ft ³	me:	Clear					
				Total	Quantity:	1.8037E+0	Curies
				14-10-1-1			

View Input

- Input follows the format of the "card deck" as described in NUREG/CR-4013
- The datasets at beginning reflect assumptions that could have been changed under the "Pathway factors" tab.
- The bottom section is standard LADTAP input
 - Selections inputs
 - Source Term
 - ALARA Location assumptions
 - Fish/population/biota inputs
 - irrigated foods

Run LADTAP/View Output

******	***************************************	*******
*		*
*	NRCDose3	*
*		*
*		*
*	EVALUATION OF RADIATION DOSES FROM RELEASES OF RADIOACTIVITY	*
*		*
*	IN NUCLEAR POWER PLANTS LIQUID EFFLUENTS	*
*		*
*		*
*	U. S. NUCLEAR REGULATORY COMMISSION	*
*	WASHINGTON, D. C.	*
*		*
*		*
*	NUREG/CR-4013 Sample Problem 1	*
*		*
*	DATE OF RUN: 10-22-2019	*
*		*
*	CALCULATIONS PERFORMED USING THE ICRP-2	*
*	BASED DOSE CONVERSION FACTORS	*
*		*
******	***************************************	********
NUREG/CR-4013 Sample Problem 1		
DISCHARGE = 3.15E+03 CFS	SOURCE TERM MULTIPLIER = 1.00E+00	

50-MILE POPULATION = 2.20E+06 FRACTION --- ADULT = 0.71 TEENAGER = 0.11 CHILD = 0.18

FRESHWATER SITE

Test #1

PARTIALLY MIXED MODEL-- POND BLOWDOWN (CFS) - 2.00E+02 PLANT FLOW RATE (CFS) - 3.15E+03 POND VOLUME (CF) - 5.00E+04

* * * ADULT DOSE FACTORS * * *

		-		ING	ESTION DOS	SE FACTOR	s			SHOP	RELINE	
					(MREM/PCI	INTAKE)				(MREM/HR))/(PCI/M*	*2)
NUCL:	IDE	CURIE/YEAF	R BONE	LIVER	TOT BODY	THYROID	KIDNEY	LUNG	GI-LLI	SKIN	TOT BODY	RECON
53I	133	1.20E-03	1.42E-06	2.47E-06	7.53E-07	3.63E-04	4.31E-06	0.00E+00	2.22E-06	4.50E-09	3.70E-09	1.57E+01
53I	135	1.30E-03	4.43E-07	1.16E-06	4.28E-07	7.65E-05	1.86E-06	0.00E+00	1.31E-06	1.40E-08	1.20E-08	1.56E+01
55CS	134	3.90E-04	6.22E-05	1.48E-04	1.21E-04	0.00E+00	4.79E-05	1.59E-05	2.59E-06	1.40E-08	1.20E-08	1.57E+01
55CS	138	2.80E-02	5.52E-08	1.09E-07	5.40E-08	0.00E+00	8.01E-08	7.91E-09	4.65E-13	2.40E-08	2.10E-08	1.45E+01
55CS	137	5.50E-03	7.97E-05	1.09E-04	7.14E-05	0.00E+00	3.70E-05	1.23E-05	2.11E-06	4.90E-09	4.20E-09	1.57E+01
1H	3	1.80E+01	0.00E+00	5.99E-08	5.99E-08	5.99E-08	5.99E-08	5.99E-08	5.99E-08	0.00E+00	0.00E+00	1.57E+01
53I	131	5.20E-04	4.16E-06	5.95E-06	3.41E-06	1.95E-03	1.02E-05	0.00E+00	1.57E-06	3.40E-09	2.80E-09	1.57E+01

LADTAP FSAR Report

- Provides a summary report of assumptions and doses
- Suitable for use in creating input for safety analyses and licensing support

FSAR Input Report - NUREG/CR-4013 Sample Problem 1 - 22-Oct-2019 06:48

Parameters:

Midpoint of Plant Life (yr): 20.00 Lirculating Water System discharge rate (cfs): 3150.00 Vater type selection: Freshwater Mater type selection: 9 Partially-Mixed Discharge rate to receiving water (ft3/sec): 200 Forewridth factor: 0.2 Nitution factor for aquatic foods and boating: 1.00 Dilution factor for shoreline and swimming exposure: 1.00 Dilution factor for drinking water: 4.00 Fransit time for drinking water (hr): 3.00 Source term multiplier: 1.00 Source term multiplier: 1.00 Total shoreline usage time (person-hr/yr): 320000 Total swimming usage time (person-hr/yr): 120000							
Irrigated Foods	y						
				Total Production			
Food Type	Irrigation Rate (L/m2-month)	Fraction not Animal Feed	contaminated Animal Water	within 50-miles (kg/ <u>yr,L/</u> yr)			
Vegetables Leafy Vegetables Milk Meat	5000 6000 2000 200	0.00 0.00 0.20 0.20	0.00 0.00 0.60 0.60	20000 5000 40000 300			
'opulation using water-supply system: 2200000 Annual local harvest for sports fishing (kg/yr): 70000 Annual local harvest for commercial fishing (kg/yr): 5000 Annual local harvest for sports invertebrates (kg/yr): 200 Annual local harvest for commercial invertebrates (kg/yr): 300							

Liquid Source Term for the LADTAP Code

Isotope	Release Rate (CI/yr)
CS-134	3.90E-04
CS-137	5.50E-03
CS-138	2.80E-02
H-3	1.80E+01
I-131	5.20E-04
I-133	1.20E-03
I-135	1.30E-03

Individual ALARA Doses (mrem/yr)

Age Group	Skin	Bone	Liver	TBody	Thyroid	Kidney	Lung	GI-LLI
Fish								
Adult	0.00E+00	1.09E-01	1.55E-01	1.03E-01	2.11E-03	5.23E-02	1.75E-02	3.08E-03
Teen	0.00E+00	1.16E-01	1.61E-01	5.76E-02	1.97E-03	5.44E-02	2.12E-02	2.35E-03
Child	0.00E+00	1.46E-01	1.45E-01	2.21E-02	2.09E-03	4.70E-02	1.69E-02	9.69E-04
Infant	0.00E+00	3.38E-02	4.07E-02	2.99E-03	7.27E-04	1.09E-02	4.43E-03	1.42E-04
Plant								
Teen	0.00E+00	3.63E-02	5.03E-02	1.81E-02	6.40E-03	1.71E-02	6.69E-03	8.26E-04
Drinking								
Aduĺt	0.00E+00	4.76E-04	1.78E-03	1.55E-03	2.37E-03	1.34E-03	1.18E-03	1.12E-03
Teen	0.00E+00	4.66E-04	1.42E-03	1.01E-03	1.88E-03	1.00E-03	8.59E-04	7.87E-04
Child	0.00E+00	1.36E-03	2.83E-03	1.70E-03	4.26E-03	1.94E-03	1.65E-03	1.50E-03
Infant	0.00E+00	1.41E-03	3.16E-03	1.59E-03	5.81E-03	1.93E-03	1.64E-03	1.47E-03
Shoreline								
Adult	1.52E-04	1.31E-04	1.31E-04	1.31E-04	1.31E-04	1.31E-04	1.31E-04	1.31E-04
Teen	8.50E-04	7.29E-04	7.29E-04	7.29E-04	7.29E-04	7.29E-04	7.29E-04	7.29E-04
Child	1.78E-04	1.52E-04	1.52E-04	1.52E-04	1.52E-04	1.52E-04	1.52E-04	1.52E-04
Infant	1.27E-05	1.09E-05	1.09E-05	1.09E-05	1.09E-05	1.09E-05	1.09E-05	1.09E-05
Swimming	112/2 05	1.052 05	1.052 05	11052 05	1.052 05	1.052 05	1.052 05	1.052 05
Adult	9.90E-06	6.90F-06	6.90E-06	6.90E-06	6.90E-06	6.90E-06	6.90F-06	6.90E-06
Child	1.65E-06	1.15E-06	1.15E-06	1.15E-06	1.15E-06	1.15E-06	1.15E-06	1.15E-06
Boating	2.000	2.252 00	11156 00	2.252 00	2.252 00	21252 00	1.195 00	1.100 00
Adul+	4.95E-06	3.45E-06	3.45E-06	3.45E-06	3.45E-06	3.45E-06	3.45E-06	3.45E-06
Teen	4.12E-06	2.87E-06	2.87E-06	2.87E-06	2.87E-06	2.87E-06	2.87E-06	2.87E-06
reen		2.071-00	2.071-00	2.071-00	2.071-00	· · · · · · · - • • •	//	2.077-00

LADTAP Supplemental Report

Provides additional • information on inputs and exposure assumptions that may not be included in the LADTAP output or the **FSAR**

Supplemental FSAR Input - NUREG/CR-4013 Sample Problem 1 - 22-Oct-2019 06:52

Program Constants for LADTAP

Processing time for aquatic foods (hrs): Processing time for water supply systems (hrs): Milk animals pasture grass consumption rate (kg/d): Milk animals water consumption rate (L/d): Beef animals water consumption rate (L/d): Fraction of deposition captured by vegetation:					Total US Population: Midpoint of plant Life (yrs): Plant Weathering Half-Life (yrs): <u>Rensit</u> Thickness of Root Zone (kg/m2):	2.60E 20.0 14.0 240.0
Default	Age Group	Fractions				
Adult: Teen : Child:	0.71 0.11 0.18					
(U.S. Co Sport an	mmercial H d Commerc:	Harvests) ial Aquatic Food	Harvest Paramete	rs		
Sport Ha Commerci Freshwat Freshwat Saltwate Saltwate	rvest Prod al Harvest er Fish Ha er Inverte r Fish Hau r Inverte	cessing Time (hr: t Processing Time arvest (kg/yr): ebrates Harvest vrest (kg/yr): prates Harvest (l Growing Period	s): 168 e (hrs): 240 4.40E+0 (kg/yr): 2.30E+0 6.58E+0 kg/yr): 4.10E+0 Crop Yield			
		(days)	(kg/m2)			
Vegetabl Leafy Ve Milk Meat	es getables	60 60 30 45	2.0 2.0 0.7 0.7			
		Average Indivi	dual Consumption [Data		
	Wat Consumptio	ter on (L/yr) Consur	Fish nption (kg/yr) Co	Inverted onsumption	prate n (kg/yr)	
Adult:	376)	6.9	1		
Teen :	260	2	5.2	0.75		
Riesseum	200	, store for the Li	2.2	0.5	•	
	Element	t Item		Val	ue	
	н	- Ereshwata	ar Plants	9.0		
	н	Freshwate	er Fish	9.6	0E-01	
	н	Freshwate	er Invertebrates	9.6	0E-01	
	н	Saltwate	r Plants	9.3	0E-01	
	н	Saltwate	r Fish	9.0	0E-01	
	H,	Saltwate	r invertebrates	9.3	10E-01	
	1	Freshwate	er Plants	4.0	00000	
	Ť	Freshuate	ar Invertebrates	1.1	0E+00	
	Ť	Saltwater	r Plants	1.6	0F+03	
	î	Saltwater	r Fish	1.0	0E+01	
	ī	Saltwate	r Invertebrates	5.0	0E+01	
	CS	Freshwate	er Plants	5.0	00E+02	
	CS	Freshwate	er Fish	2.6	0E+03	
	CS	Freshwate	er Invertebrates	1.0	00E+03	
	CS	Saltwate	r Plants	5.6	00E+01	
	CS	Saltwate	r Fish	4.6	0E+01	
	CS	Saltwate	r Invertebrates	2.5	0E+01	

Transfer Coefficients for the LADTAP and GASPAR Codes

Element	Item	Value
н	Meat	1.20E-02
н	Veg/Soil	4.80E+00
u	Milk	1 885 82

2.60E+0

Questions?