

CAUG 4: MCMP Geometry Fundamentals

Charlotte Rose MS (RHP)



## Welcome to Session 4!

- Questions from Session 3
- RSICC Application Status
- Simple geometry Recap
  - Cylinder surfaces
  - Truncated cone Surfaces
  - Introduction to nested surfaces
- Advance volume construction
  - Nested Surfaces
  - Integrated Surfaces
    - Just focusing on sphere for now





| Input Parameter                   | Description                                |
|-----------------------------------|--------------------------------------------|
| X <sub>min</sub> X <sub>max</sub> | Termini of box sides normal to the x-axis. |
| Ymin Ymax                         | Termini of box sides normal to the y-axis. |
| Z <sub>min</sub> Z <sub>max</sub> | Termini of box sides normal to the z-axis. |

### Table 3-8. Macrobody Rectangular Parallelepiped (RPP)

### Table 3-4. MCNP6 Surface Cards

| Mnemonic | Туре   | Description        | Equation                                                                 | Card Entries |
|----------|--------|--------------------|--------------------------------------------------------------------------|--------------|
| Р        |        | General            | Ax + By + Cz - D = 0                                                     | ABCD         |
| PX       | Plana  | Normal to x-axis   | x - D = 0                                                                | D            |
| PY       | Fianc  | Normal to y-axis   | y - D = 0                                                                | D            |
| PZ       |        | Normal to z-axis   | z - D = 0                                                                | D            |
| SO       |        | Centered at Origin | $x^2 + y^2 + z^2 - R^2 = 0$                                              | R            |
| s        | Sphere | General            | $(x-\overline{x})^2 + (y-\overline{y})^2 + (z-\overline{z})^2 - R^2 = 0$ | x y z R      |
| SX       |        | Centered on x-axis | $(x - \overline{x})^2 + y^2 + z^2 - R^2 = 0$                             | x R          |
| SY       |        | Centered on y-axis | $x^{2} + (y - \overline{y})^{2} + z^{2} - R^{2} = 0$                     | y R          |
| SZ       |        | Centered on z-axis | $x^{2} + y^{2} + (z - \overline{z})^{2} - R^{2} = 0$                     | Z R          |





| C/X | Cylinder | Parallel to x-axis | $(y - \overline{y})^{2} + (z - \overline{z})^{2} - R^{2} = 0$ | ÿ z R |
|-----|----------|--------------------|---------------------------------------------------------------|-------|
| C/Y |          | Parallel to y-axis | $(x - \overline{x})^{2} + (z - \overline{z})^{2} - R^{2} = 0$ | x z R |
| C/Z |          | Parallel to z-axis | $(x - \overline{x})^{2} + (y - \overline{y})^{2} - R^{2} = 0$ | x y R |
| CX  |          | On x-axis          | $y^{2} + z^{2} - R^{2} = 0$                                   | R     |
| CY  |          | On y-axis          | $x^{2} + z^{2} - R^{2} = 0$                                   | R     |
| CZ  |          | On y-axis          | $x^{2} + y^{2} - R^{2} = 0$                                   | R     |

#### 3.2.2.4.4 RCC-RIGHT CIRCULAR CYLINDER

Form: RCC  $v_x v_y v_z h_x h_y h_z r$ 

#### Table 3-10. Macrobody Right Circular Cylinder (RCC)

| Input Parameter                              | Description                                                                                              |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------|
| $v_x v_y v_z$                                | The x,y,z coordinates at the center of the base for the right circular cylinder.                         |
| h <sub>x</sub> h <sub>y</sub> h <sub>z</sub> | Right circular cylinder axis vector, which provides both the orientation and the height of the cylinder. |
| r                                            | Radius of right circular cylinder.                                                                       |

#### Example:

RCC 0-50 0100 4

This input specification represents a 10-cm-high can about the y-axis with its base plane at y=-5 and having a radius of 4 cm.

#### 3.2.2.4.7 TRC—TRUNCATED RIGHT-ANGLE CONE

Form: TRC  $v_x v_y v_z h_x h_y h_z r_1 r_2$ 

### Table 3-13. Macrobody Truncated Right-Angle Cone (TRC)

| Input Parameter | Description                                    |  |
|-----------------|------------------------------------------------|--|
| Vx Vy Vz        | The x,y,z coordinates of the cone bottom.      |  |
| $h_x h_y h_z$   | Cone axis height vector.                       |  |
| n               | Radius of lower cone base.                     |  |
| r <sub>2</sub>  | Radius of upper cone base, where $r_1 > r_2$ . |  |

### Example:

TRC -5 0 0 10 0 0 4 2









## **Nested Volumes**

- Change outside world!
- Nested sphere
- Nested rectangular
  - Nested rectangular using macrobody







| Nes | stee | d Sp | pher | res                |      |         |     |        |        |    |
|-----|------|------|------|--------------------|------|---------|-----|--------|--------|----|
| C   | Cell | ls   |      |                    |      |         |     |        |        |    |
| 99  | 0    | 1    |      | imp:p=1            | \$ c | outside | WOI | rld    |        |    |
| 10  | 0    | -1   | 2    | imp:p=1            | \$   | sphere  | at  | origin | radius | 10 |
| 20  | 0    | -2   |      | <pre>imp:p=1</pre> | \$   | sphere  | at  | origin | radius | 5  |

- 1 SO 10
- 2 SO 5







| Nes | stea | d Sphere | es                 |                       |                             | CONTINUE OF                                                                                                     |
|-----|------|----------|--------------------|-----------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------|
| C   | Cell | ls       |                    |                       |                             | CONTRACT/NONTRACT/NONTRACT/NONTRACT/NONTRACT/NONTRACT/NONTRACT/NONTRACT/NONTRACT/NONTRACT/NONTRACT/NONTRACT/NON |
| 99  | 0    | 1        | <pre>imp:p=1</pre> | <pre>\$ outside</pre> | world                       |                                                                                                                 |
| 10  | 0    | -1 2     | <pre>imp:p=1</pre> | <pre>\$ sphere</pre>  | at origin radius 10         |                                                                                                                 |
| 20  | 0    | -2       | <pre>imp:p=1</pre> | <pre>\$ sphere</pre>  | offset inside with radius 5 |                                                                                                                 |

- 1 SO 10
- 2 S 1 2 3 5





9



### 

| 1 | RPP | -55 | -55 | -5 | 5 |
|---|-----|-----|-----|----|---|
| 2 | RPP | -22 | -22 | -2 | 2 |



### Offset Nested Cubes

## C Cells

| 99 0 | 1    | <pre>imp:p=1 \$ outside world</pre> |
|------|------|-------------------------------------|
| 10 0 | -1 2 | imp:p=1                             |
| 20 0 | -2   | <pre>imp:p=1 \$ 4x4x4 cube</pre>    |

| 1 | RPP | -55 | -55 | - 5 | 5 |
|---|-----|-----|-----|-----|---|
| 2 | RPP | -31 | -31 | - 3 | 1 |





# **Overlapping Volumes - sphere**

- Add surfaces
- Change outside world!

















### Spheres and the union

### C Cells

- imp:p=1 \$ outside world 99 0 1 2
- 10 0 -1:-2

imp:p=1 \$

- 1 S 0 0 -5
- 2500 5









• This geometry has the error of defining the central union twice; both inside surface 1, and inside surface 2. There is a need to differentiate that space.





 This geometry still has the error of defining the central union; but now, it has not been defined at all.

| Spheres  | and | the union          |                             |
|----------|-----|--------------------|-----------------------------|
| C Cells  |     |                    |                             |
| 99 0 1   | 2   | imp:p=1            | <pre>\$ outside world</pre> |
| 10 0 -1  | 2   | <pre>imp:p=1</pre> | \$                          |
| 20 0 -2  | 1   | <pre>imp:p=1</pre> | \$                          |
|          |     |                    |                             |
| C Surfac | es  |                    |                             |
| 1 S 0 0  | -5  | 10                 |                             |
| 2500     | 5   | 10                 |                             |





## Spheres and the union

### C Cells

| 99 | 0 | 1 | 2 | <pre>imp:p=1</pre> | \$ | outside | world |
|----|---|---|---|--------------------|----|---------|-------|
|----|---|---|---|--------------------|----|---------|-------|

- 10 0 -1 imp:p=1 \$
- 20 0 -2 1 imp:p=1 \$

## C Surfaces

1 S 0 0 -5 10 2 S 0 0 5 10







18

### Spheres and the union

## C Cells

| 99 | 0 | 1  | 2 | imp:p=1            | \$<br>outside | world |
|----|---|----|---|--------------------|---------------|-------|
| 10 | 0 | -1 | 2 | imp:p=1            | \$            |       |
| 20 | 0 | -2 |   | <pre>imp:p=1</pre> | \$            |       |

### C Surfaces

1 S 0 0 -5 10 2 S 0 0 5 10





19

### Spheres and the union

### C Cells

- 99 0 1 2 imp:p=1 \$ outside world
- 10 0 -1 2 imp:p=1
- 20 0 -2 1 imp:p=1
- 30 0 -2 -1 imp:p=1

C Surfaces 1 S 0 0 -5 10 2 S 0 0 5 10





\$ outside world

# **Integrated Cubes**

• All the cell relationships are the same as for spheres, but the surface definitions will be different.



## Cubes and the union

| C Cells |   |    |    |                    |  |  |  |  |
|---------|---|----|----|--------------------|--|--|--|--|
| 99      | 0 | 1  | 2  | imp:p=1            |  |  |  |  |
| 10      | 0 | -1 | 2  | imp:p=1            |  |  |  |  |
| 20      | 0 | -2 | 1  | imp:p=1            |  |  |  |  |
| 30      | 0 | -2 | -1 | <pre>imp:p=1</pre> |  |  |  |  |

### C Surfaces

| 1 | RPP | - 5 | 5  | -5 | 5  | - 5 | 5  |
|---|-----|-----|----|----|----|-----|----|
| 2 | RPP | 0   | 10 | 0  | 10 | 0   | 10 |



20