
Software Quality Assurance Plan
(SQAP)

Development of RASCAL 4.3.x
Revision 1

Issue Date: September 2016

Prepared by:
J.J. Tomon1
J.A. Kowalczik1
G.F. Athey2
1Office of Nuclear Regulatory Research &
Office of Nuclear Security and Incident Response
U.S. Nuclear Regulatory Commission
Washington, D.C. 20555-0001
2Athey Consulting
P.O. Box 178
Charles Town, WV 25414-0178

Concurrence and Approvals:

RES Technical Monitor/Contracting Officer Representative Date

NSIR Technical Monitor Date

Lead Software Developer (Contractor) Date

September 13, 2016

September 13, 2016

September 13, 2016

iii

TABLE OF CONTENTS
TABLE OF CONTENTS ... iii
LIST OF TABLES .. v
ABBREVIATIONS .. vi
1.0 PURPOSE..1

1.1 Scope ...1
2.0 REFERENCE DOCUMENTS ..2
3.0 ROLES AND RESPONSIBILITIES ...3
4.0 SOFTWARE QUALITY ASSURANCE REQUIREMENTS...4

4.1 Documentation ...4
5.0 SOFTWARE DETERMINATION, DESCRIPTION & HISTORY ...5

5.1 Software Determination ...5
5.2 Software Description ..5
5.3 Software History...5

6.0 SOFTWARE PLANNING ..8
6.1 Software Development Methodology ..8
6.2 Software Tools ...9
6.3 Software Configuration Management ..10
6.4 Software Backup Plan..11

7.0 SOFTWARE REQUIREMENTS ..12
7.1 Reviews ..12

8.0 SOFTWARE DESIGN & IMPLEMENTATION ..13
8.1 Reviews ..14

9.0 CODE DEVELOPMENT ..15
9.1 Code Standards & Naming Conventions...15
9.2 Code Testing ..15
9.3 Code Reviews ..15

10.0 SOFTWARE TESTING..16
10.1 Software Test Plans ...16

10.1.1 User’s Guide Testing ..16
10.1.2 Group Testing ...17

10.2 Test Reviews..18
11.0 ISSUE REPORTING ..19

11.1 RASCAL Support on the RAMP Website ..19
11.1.1 RASCAL Forum Boards ...19
11.1.2 RASCAL Support Request Page..19

11.2 Issue Documentation ...20
12.0 USER DOCUMENTATION ..21
13.0 SOFTWARE REVIEWS...22
14.0 SOFTWARE RELEASE PLANNING ..23

14.1 Other Deliverables ...23
15.0 MAINTENANCE AND SUPPORT ...24
16.0 RECORDS COLLECTION, MAINTENANCE, AND RETENTION25

iv

17.0 TRAINING ..26
APPENDIX A – RASCAL CHANGE LOG TEMPLATE ...27
APPENDIX B – LIST OF CHANGE LOG ITEMS FOR RASCAL 4.3.1 & 4.3.229
APPENDIX C – RES & NSIR COORDINATION PROCESS FOR RELEASING RASCAL

UPDATES ...33

v

LIST OF TABLES
Table 1 Reference Documents Utilized in the Development of this SQAP2
Table 2 RASCAL Project Roles and Responsibilities ..3
Table 3 Evolution of Recent RASCAL Changes ..7

vi

ABBREVIATIONS
AC Athey Consulting
BWR boiling-water reactor
CM Configuration Management
COR Contracting Officer’s Representative
NRC Nuclear Regulatory Commission
NSIR Office of Nuclear Security and Incident Response
PNNL Pacific Northwest National Laboratory
PWR pressurized-water reactor
RAMP Radiation Protection Computer Code Analysis and Maintenance Program
RASCAL Radiological Assessment System for Consequence Analysis
RDT RASCAL Development Team
RES Office of Nuclear Regulatory Research
SNL Sandia National Laboratory
SQA Software Quality Assurance
SQAP Software Quality Assurance Plan
TM Technical Monitor
UI user interface

Page 1 of 36

RASCAL 4.3.x (SQAP) Revision 1

1.0 PURPOSE
The purpose of this Software Quality Assurance Plan (SQAP) is to define the software quality
assurance (SQA) activities that will be followed during the course of software development and
deployment of minor, incremental releases to the Radiological Assessment System for
Consequence AnaLysis (RASCAL) 4.3.x. This plan defines the quality assurance activities and
identifies the documentation that will be created and maintained during the RASCAL 4.3.x
software development process. The goal of the plan is to provide adequate confidence that the
software development process is controlled, and that the software products will meet
established requirements.

1.1 Scope

RASCAL has been under continual development by the U.S. Nuclear Regulatory Commission
(NRC) for over 25 years, with RASCAL 4.3 being released on September 29, 2013. Legacy
versions of the RASCAL code, including RASCAL 4.3, implemented various elements and
levels of SQA, but never in a formalized SQAP.

The scope of this SQAP is to document changes being made to RASCAL 4.3 in producing
RASCAL 4.3.x. RASCAL 4.3.x is an incremental, minor update that addresses problems or
issues discovered subsequent to the release of RASCAL 4.3. RASCAL 4.3 serves as the
legacy, baseline version from which minor software updates are developed. The software
update RASCAL 4.3.1 was released in December 2014 and the software update RASCAL 4.3.2
was released in July 2016.

This SQAP captures the SQA activities on going from RASCAL 4.3 to 4.3.x; it does not
document or include a detailed review of the RASCAL 4.3 legacy code that remains within
RASCAL 4.3.x. Consequently, the various SQA activities documented in this SQAP are
discussed at a level that is commensurate to minor software updates.

Page 2 of 36

RASCAL 4.3.x (SQAP) Revision 1

2.0 REFERENCE DOCUMENTS
Table 1 provides a complete list of documents used or referenced in the development of this
SQAP. Included in this list are guidance documents that inform this plan as well as other
documents directly referenced by this plan. The documents in Table 1 are grouped by
“Document Type” to provide an indication of their relevance to this SQAP.

Table 1 Reference Documents Utilized in the Development of this SQAP

Reference Document Document Type
U.S. Nuclear Regulatory Commission. 1993. Software
Quality Assurance Program and Guidelines. NUREG/BR-
0167 (ML012750471).

General SQA

U.S. Nuclear Regulatory Commission. 2012. Software
Quality Assurance for RES-sponsored Codes, RES Office
Instruction PRM-12, March 5, 2012, (ML12132A176).

General SQA

U.S. Nuclear Regulatory Commission. 2014. “RES and NSIR
Coordination Process for Releasing RASCAL Updates.” RASCAL SQA

Athey. G.F. et al. 2015. RASCAL 4.3 User’s Guide (Draft).
Available from https://www.usnrc-ramp.com. RASCAL-Reference

McGuire, S.A. et al. 2007. RASCAL 3.0.5: Description of
Models and Methods. NUREG-1887. U.S. Nuclear
Regulatory Commission. Washington, D.C.

RASCAL-Reference

Ramsdell, J.V., Jr., et al. 2012. RASCAL 4: Descriptions of
Models and Methods. NUREG-1940, U.S. Nuclear
Regulatory Commission. Washington, D.C.

RASCAL-Reference

Ramsdell, J.V., Jr., et al. 2015. RASCAL 4.3: Descriptions of
Models and Methods. NUREG-1940, Supplement 1, U.S.
Nuclear Regulatory Commission. Washington, D.C.

RASCAL-Reference

Ramsdell, J.V., Jr., et al. 1983. MESOI Version 2.0: An
Interactive Mesoscale Lagrangian Purr Dispersion Model With
Deposition and Decay. NUREG/CR-3344, U.S. Nuclear
Regulatory Commission, Washington, D.C.

Historical Technical Basis

Ramsdell. J.V. Jr., et al. 1988. The MESORAD Dose
Assessment Model. NUREG/CR-4000. Vol.2: Computer
Code. U.S. Nuclear Regulatory Commission, Washington,
D.C.

Historical Technical Basis

Scherpelz, R. I., et al. 1986. The MESORAD Dose
Assessment Model. NUREG/CR-4000. Vol.1: Technical
Basis. U.S. Nuclear Regulatory Commission, Washington,
D.C.

Historical Technical Basis

Start, G.E. and L.L. Wendell. 1974. Regional Effluent
Dispersion Calculations Considering Spatial and Temporal
Meteorological Variations. NOAA Tech. Memo. ERL ARL-44.
U.S. Department of Commerce.

Historical Technical Basis

Page 3 of 36

RASCAL 4.3.x (SQAP) Revision 1

3.0 ROLES AND RESPONSIBILITIES
This section identifies the specific organizational element that is responsible for performing each
task. The roles and responsibilities for the RASCAL project are listed in Table 2.

Table 2 RASCAL Project Roles and Responsibilities

Role Responsibility Responsible Person
Contracting Officer’s
Representative
(COR)

The COR provides final approval and
acceptance of each release after all
activities have been completed.

John Tomon, NRC (RES)

Technical Monitors
(TM)

The TM will provide guidance and
approval prior to each implementation
release (as applicable), which
consists of reviewing and ensuring
that all documentation has been
completed as required. The SQAP
will also provide a new risk
determination and new version/scope
implementations /changes, as
applicable.

John Tomon, NRC (RES)
Jeff Kowalczik, NRC (NSIR)

Lead Software
Developer

The Lead Software Developer will
perform a similar role to the Software
Developers; additionally, the Lead
Software Developer will be
responsible for software configuration
management, software backups, and
certain records collection,
maintenance, and retention.

George Athey, Athey
Consulting (AC)

Software Developers

The Software Developers design and
implement software code. They
resolve problems and verify that all
corrections are effective. This
includes software updates to the
application.

George Athey, AC
Jeremy Rishel & Fred Rutz,
Pacific Northwest National
Laboratory (PNNL)
John Fulton, Sandia
National Laboratory (SNL)

Software Testers

The Software Tester will
create/update all test procedures/test
cases and provide to reviewers (as
applicable). The software test will
execute tests and document test
results.

Jeff Kowalczik, NRC (NSIR)
John Tomon, NRC (RES)
George Athey, AC
Jeremy Rishel, PNNL
John Fulton, SNL
Select NRC Dose
Assessment Analysts within
the NRC

Page 4 of 36

RASCAL 4.3.x (SQAP) Revision 1

4.0 SOFTWARE QUALITY ASSURANCE REQUIREMENTS
RASCAL 4.3 serves as the baseline version from which minor, incremental (4.3.x) code updates
are being made. These updates are in response to issues and errors identified by the RASCAL
user community subsequent to the release of RASCAL 4.3.

Quality and integrity of the RASCAL 4.3.x software will be ensured by:

• Executing the activities and reviews and preparing the documentation contained within
this SQAP.

• Evaluating and planning for the development of software (Section 6.0).
• Identifying and implementing a software development methodology (Section 6.1).
• Identifying software tools and techniques for the project (Section 6.2).
• Establishing and implementing configuration management activities (Section 6.3).
• Implementing software requirement activities (Section 7.0).
• Implementing software design activities (Sections 8.0 and 9.0).
• Establishing and implementing an issue reporting process (Section 11.0).
• Performing software test activities (Section 10.0).
• Performing periodic assessment and reviews of the software and as required by the

project (Section 13.0).
• Planning for the software release to the customer (Section 14.0).
• Maintaining this document to incorporate software changes (Section 16.0).
• Maintaining project records related to the software (Section 16.0).

4.1 Documentation

To ensure that the implementation of the software satisfies the requirements, the documentation
described in this SQAP is required as a minimum.

It is required to maintain software documentation for project records. Documentation does not
necessarily require paper forms of the actual “documents” but rather the ability to locate the
evidence of work as needed. This type of documentation could include using electronic records
(e.g., RASCAL “Change Logs” in Word or PDF format) or other software/web-based (e.g., SNL
RASCAL Collaboration SharePoint) tools.

Page 5 of 36

RASCAL 4.3.x (SQAP) Revision 1

5.0 SOFTWARE DETERMINATION, DESCRIPTION & HISTORY
This section provides the RASCAL software determination and a description of the program,
including its developmental history.

5.1 Software Determination

RASCAL is used by the NSIR as a confirmatory tool for making independent dose and
consequence projections during radiological incidents and emergencies. Since RASCAL is
used as a confirmatory tool, it is not considered safety software; therefore, the software is
considered non-safety, with a low to medium determination. The SQA work activities included
in this SQAP are discussed at a level that is commensurate with this level of determination.

5.2 Software Description

RASCAL is a suite of assessment tools for NRC staff use in the confirmatory evaluation of
radiological events at U. S. nuclear power facilities. The tools include modules to:

• estimate the release to the atmosphere from reactors, spent fuel pools and casks, and
fuel cycle facilities,

• estimate the transport, dispersion, deposition and early phase doses to individuals from
releases to the atmosphere,

• acquire and process meteorological data for use by the transport, dispersion, and
deposition modules, and

• estimate the early and intermediate phase doses to individuals from surface
contamination.

It includes a radionuclide database that contains information for over 800 radionuclides, and a
facility database that contains information about commercial power reactors and other
commercial nuclear facilities both within the United States and at select international sites.
Additionally, it includes two tools to add flexibility to the source term calculations. Finally,
RASCAL includes a meteorological data downloader—called MetFetch—to automate the
download of observations and forecasts for use within a RASCAL simulation. All of these
modules and tools are all available from within the main RASCAL user interface.

5.3 Software History

The initial version of RASCAL (RASCAL v1.3) was published in 1989 and was based on earlier
NRC codes that existed at that time (e.g., MESORAD [1986], MESOI [1983]), and ultimately had
its roots in earlier DOE codes (e.g., MESODIF, Start and Wendell 1974). More recent versions
of RASCAL include RASCAL v3.05 (NUREG-1887, 2007), RASCAL 4.2 (NUREG-1940 2012),
and RASCAL 4.3 (NUREG-1940, Supplement 1, 2015). These versions of RASCAL, which
were developed by NSIR, all retain a significant amount code from earlier RASCAL versions.
Some of the code can be traced back to MESOI. Portions of the computational codes have
been written in Microsoft Fortran, Digital Fortran, Compaq Fortran, and Intel Visual Fortran

Page 6 of 36

RASCAL 4.3.x (SQAP) Revision 1

under standards FORTRAN-77 and Fortran-90. The current version of RASCAL has been
compiled using the Intel Visual Fortran compiler. The RASCAL user interface is primarily coded
in Visual Basic 6.0, although, Microsoft VB.NET has been used more recently in developing
some of the RASCAL tools. Radionuclide and nuclear facility data used by RASCAL are stored
in Microsoft Access databases.

In NSIR, code development priorities were established by the NRC Program Manager (PM) with
input from RASCAL users in the NRC Operations Center, NRC Regional Offices, Agreement
States, industry, and the RASCAL developers. Table 3 shows the major changes in recent
versions of RASCAL. Code documentation has generally consisted of a technical basis
document that describes the methods RASCAL uses for calculations and a User’s Guide book
that provides a worked set of problem to train NRC staff on the use of RASCAL tools. The
technical basis document, while neither a requirements document nor a design document,
provides many of the details that would be found in these documents. It also contains
comparisons of computational results between the old and new versions of the codes and
describes verification and validation efforts at a high level. The problems in the User’s Guide
also contribute to code verification. All of the User’s Guide problems have been reworked for
each new version of RASCAL. Changes in answers to the problems are noted. Changes that
are not expected based on code changes are explored until they are explained or a coding
problem is identified.

The current development of the RASCAL tools is managed by RES The purpose of this
document is to establish RES’s SQA guidelines for the minor updates leading to the release of
RASCAL 4.3.x. The applicability of this document is limited to the changes made to RASCAL
4.3 in producing RASCAL 4.3.x. It does not include a review of the RASCAL 4.3 legacy code
that remains in RASCAL 4.3.x.

Page 7 of 36

RASCAL 4.3.x (SQAP) Revision 1

Table 3 Evolution of Recent RASCAL Changes

Page 8 of 36

RASCAL 4.3.x (SQAP) Revision 1

6.0 SOFTWARE PLANNING
RES is responsible for development and maintenance of the RASCAL code. RASCAL 4.3
serves as the baseline version from which minor, incremental (4.3.x) code updates are being
made. These updates are in response to issues and errors identified by the RASCAL user
community subsequent to the release of RASCAL 4.3. The RASCAL software planning is
focused on fixing issues and errors identified in the baseline (RASCAL 4.3) software; no new
scope or software features are being added in these minor, incremental updates, except where
it is practical and useful.

6.1 Software Development Methodology

The development methodology being used for the minor, incremental updates to RASCAL
(4.3.x) can be considered incremental, and serve only to update or fix those sections of the
code that are identified as being in error. The Software Developers are responsible for making
the code updates and, depending on the severity of an issue or error, a new minor version of
RASCAL may need to be released.

The following steps will be used when updating the RASCAL software:

1. Identify the need for the software change. The basis for the determination will come
from the SNL RASCAL Collaboration (RASCAL_Help@nrc.gov) SharePoint site,
either as an error report or request for change (Section 11).

For an error report, the following steps should be completed:

a. The Software Developer should use the submitted documentation as a basis for
determining if an error exists within the software. As needed, the COR may need to
communicate with the user to gather any additional information needed by the
Software Developer. Based upon the submitted documentation, the Software
Developer should be able to fully describe the condition(s) that lead to the error.

b. The Software Developer should identify the relevant code that is in error and identify
candidate changes to fix the problem.

c. The Software Developer should confer with the TM to:

i. Discuss options available for fixing the error; consider the effort versus
benefit and verify that the details and extent of the changes are well
understood.

ii. Discuss any relevant technical issues; solicit outside expertise, as needed, to
define the error fix.

iii. Get approval to make the fix.

For software changes that are not errors (bugs), but are intended to make the software
easier to use or debug, the following steps should be completed:

Page 9 of 36

RASCAL 4.3.x (SQAP) Revision 1

a. The Software Developer should use the submitted documentation as a basis for
determining if a software change is warranted. As needed, the COR may need to
communicate with the user to gather any additional information needed by the
Software Developer.

b. The Software Developer should consider the software changes needed to implement
the update, including possible approaches and conflicts with other parts of the
software.

c. The Software Developer should confer with the TM to get approval to make the
change.

2. If the TM approves a software change, the Software Developer should:

a. Create a RASCAL “Change Log ID” and “Change Log” (Appendix A) to document the
relevant software changes and develop the necessary tests for validating the
software change.

b. Make the necessary changes to the software code.

c. Perform defined tests and document the outcome within the “Change Log”.

d. Communicate the results of the “Change Log” back to the TM for tracking within the
SNL RASCAL Collaboration (RASCAL_Help@nrc.gov) SharePoint site.

3. The COR will communicate all findings and issue resolutions to the end user.

6.2 Software Tools

Software tools being used by the Software Developers in the development of RASCAL 4.3.x
include:

• Microsoft Visual Basic 6 – used to maintain the older user interface programs that have
not been transitioned to newer development tools.

• Microsoft Visual Studio – used to develop new Visual Basic and FORTRAN components;
includes built in Git for version control.

• Intel Visual Fortran Studio XE for Windows – used with Visual Studio for the calculation
programs.

• InstallAware – used to build the RASCAL installation program.

• Git for Windows (http://www.git-scm.com/download/win) – used for building and
maintaining repositories for the programs and files not developed under Visual Studio
(e.g. VB6 and data files).

Page 10 of 36

RASCAL 4.3.x (SQAP) Revision 1

• Macrium Reflect (from Paramount Software) – for performing software backups.

• MadCap Flare – help authoring tool used to create the online help files (chm format).

• Microsoft Access – used to build the radionuclide and facility databases.

• Text editor (e.g., UltraEdit or Notepad++) – used to build and edit the text data files.

6.3 Software Configuration Management

Configuration management is the responsibility of the Lead Software Developer. The primary
purpose for configuration management is to ensure:

• RASCAL versions can be uniquely identified.

• Specific RASCAL versions of deliverables can be reproduced (software, data, and
information product deliverables).

• Unintended and/or conflicting changes are prevented.

• Unintended use is prevented.

The following steps will be used by the Lead Software Developer to ensure configuration
management of the RASCAL software:

1. A root “\Projects” folder will be created on the Lead Software Developer’s computer to
store all the RASCAL code; this computer will follow the backup plan defined in Section
6.4.

2. At the start of a minor version update, a subfolder will be created named “RASCAL 4.3.x
Dev”, where the “x” refers to the minor version number of the software update; this folder
will contain the entire project and all the files related to the development of RASCAL
4.3.x.

3. Within this folder, separate folders will be created for each component of the RASCAL
program (EXE or DLL). Folders will also be created for the supporting data files and
databases used by the RASCAL software.

4. For each component folder, a Git repository will be created. For programs created within
Visual Studio, the built-in Git tools should be used. For programs developed with VB6
and other files, such as databases and data file, the stand-alone version of Git should be
used.

5. At the start of development, each element to be tracked in version control will be
committed to the appropriate depository folder and clearly labeled as the initial starting
point. Changes to the code will be formally tracked using the “RASCAL Change Log”
(Appendix A) which documents the basis for the code change. When code changes are
committed to the code repository, the change log number should be included as part of
the commit message.

Page 11 of 36

RASCAL 4.3.x (SQAP) Revision 1

The Lead Software Developer is the responsible custodian who will ensure software
configuration management. Other Software Developers who are performing code changes
must receive the code from the Lead Software Developer before performing code updates.
During development it is acceptable for Other Software Developers to maintain the interim
version control for their portions of the code. Upon completion, all updates will be supplied to
the Lead Software Developer for final configuration management. The changes must include a
completed “Change Log” (Appendix A), which provides the basis for the code change.

6.4 Software Backup Plan

A software backup plan has been created by the Lead Software Developer to assure minimal
progress would be lost in the event of a hardware failure. Backup software (i.e., Macrium
Reflect—from Paramount Software) is installed on both the primary and secondary development
computers. A dedicated backup hard drive is also installed on both primary and secondary
development computers to provide a separate, physical device for backup storage. Each
computer also contains an optical drive capable of creating CD, DVD, and Blu-Ray disks.
Finally, there are external hard drives with USB and/or eSATA interfaces to which backups can
be made for offsite storage.

The following steps outline a general software backup plan that will be followed by the Lead
Software Developer:

1. At the beginning of every month, a full backup will be created using the Macrium Reflect
software. The backup will consist of the main “\Projects” folder on the primary
development computer; it will be made to a separate hard drive in the same computer.

2. At a weekly interval, incremental backups of the main “\Projects” folder will be made.

3. At the end of a month, a copy of the full and incremental backups will be made to an
external hard drive and stored in folder labeled for that month. One-year of projects will
be available on the hard drive.

4. Every 4-6 months, a clone of all hard drives will be made and stored off site.

The following steps outline a project-related backup plan that will be followed by the Lead
Software Developer:

1. On the primary development computer, setup a scheduled, daily backup of the RASCAL
4.3.x development folders.

2. When actively making coding changes to RASCAL 4.3.x, burn these files to DVD and
mail a copy of the DVD to the TM or the COR at a monthly frequency. If no active code
changes or development is being made to RASCAL 4.3.x then the frequency may be set
to some interval agreed upon between the COR and the Lead Software Developer.

3. On any secondary development computer, manually create backups whenever changes
have been made.

Page 12 of 36

RASCAL 4.3.x (SQAP) Revision 1

7.0 SOFTWARE REQUIREMENTS
RASCAL 4.3 serves as the baseline version from which minor, incremental (4.3.x) code updates
are being made. These updates are in response to issues and errors identified by the RASCAL
user community subsequent to the release of RASCAL 4.3. No new scope, software features,
or software functionality is being added to RASCAL in these minor, incremental updates, except
where it is practical and useful for software debugging. Thus, the RASCAL 4.3.x software
requirements are being defined as a result of reported issues with the legacy software.

Section 11.0 of this SQAP discusses how RASCAL software issues are reported to RES; these
issues are tracked within the SNL RASCAL Collaboration (RASCAL_Help@nrc.gov) SharePoint
site. Issues that require a change to the code (Section 6.1) are assigned a formal “Change Log
ID” and “Change Log,” which are used to track issue resolutions requiring software changes.
The RASCAL “Change Log” is used to define and document software requirements, including
the reason for the code change, the location within the software where the code change was
made, and all test cases used for the verification and validation of the code change.

Appendix B is an example exhibit that summarizes “Change Log Items” for RASCAL 4.3.1 and
4.3.2. Each item that lists a “Change Log ID” has an associated “Change Log,” which defines
the requirements associated with a specific software change. The Lead Software Developer,
with the help of the Software Developers, is responsible for maintaining a “Change Log” for
each issue requiring a software change. The Lead Software Developer will maintain a summary
list of all “Change Log” items (similar to Appendix B) for all minor, incremental (4.3.x) software
updates to RASCAL.

7.1 Reviews

As discussed in Section 6.1, the TM, in consultation with the Software Developers, must
approve all software changes. Understanding and defining the software requirements
associated with the code change is part of this approval process. The “Change Log” will
document the basis for the code change and any associated requirements. A completed
“Change Log” is required when the code is submitted to the Lead Software Developer for
configuration management; the Lead Software Developer will review the “Change Log” to
ensure that all sections have been completed.

Page 13 of 36

RASCAL 4.3.x (SQAP) Revision 1

8.0 SOFTWARE DESIGN & IMPLEMENTATION
RASCAL 4.3 serves as the baseline version from which minor, incremental (4.3.x) code updates
are being made. These updates are in response to issues and errors identified by the RASCAL
user community subsequent to the release of RASCAL 4.3. The RASCAL software design and
implementation builds upon existing legacy code within RASCAL 4.3. For consistency, the
same software design structure (i.e., executables, DLLs, databases, and data files) and
programing languages used to develop RASCAL 4.3 will be used to develop minor, incremental
RASCAL software updates. The software is intended for use on Windows operating systems,
including XP, Windows 7, and Windows 8.

The basic software design of RASCAL is a set of user interface (UI) tools that gather information
from the user, call DLL files to perform certain calculations, and then display the results. In
some cases, the software utilizes existing data (text or database files) to populate the UI or in a
specific calculation.

The RASCAL executable (i.e., RASCAL43x.exe) is the main executable UI for accessing both
“Primary” and “Additional” tools within the RASCAL software; all the tools are accessible from
within the main RASCAL UI.

“Primary” tools accessible from within the RASCAL UI include:

• STDose UI – the main program for the Source Term to Dose model.

o STDose can be used to start the following standalone programs:
 Radionuclide Data Viewer
 MetProc UI
 MetView

o STDose calls the following calculation modules, as needed:
 STCalc
 SFPCalc
 UF6Calc
 TADPlume
 TADPuff
 UF6Plume
 Importance
 Rx_Inventory_S

o STDose calls the following DLLs, as needed:
 ImportSourceTerm
 DisplayReactorActivityBalance
 DisplayImportance
 CreateSTDoseCaseName

• FMDose UI – the main program for the Field Measurement to Dose model.

o FMDose can be used to start following standalone programs:

Page 14 of 36

RASCAL 4.3.x (SQAP) Revision 1

 Radionuclide Data Viewer

o FMDose calls the following calculation module, as needed:
 FMDCalc

• Radionuclide Data Viewer – standalone interface allowing the viewer to see contents of
the nuclide database used within RASCAL.

• DecayCalc UI – the main program for the Decay Calculator tool.

“Additional” tools accessible from within the RASCAL UI include:

 CreateReactorInventory – used to create a custom base inventory file.

 RASCAL_ST_Merge_Export_Tool – used to combine and export source terms.

 MetFetch – used to download meteorological observations and forecast data from the
internet.

8.1 Reviews

As discussed in Section 6.1, the TM, in consultation with the Software Developers, must
approve all software changes. Understanding and defining the software design and
implementation associated with the change is part of this approval process. The “Change Log”
will document the software design change and its implementation within RASCAL. A completed
“Change Log” is required when the code is submitted to the Lead Software Developer for
configuration management; the Lead Software Developer will review the “Change Log” to
ensure that all sections have been completed.

Page 15 of 36

RASCAL 4.3.x (SQAP) Revision 1

9.0 CODE DEVELOPMENT
RASCAL 4.3 serves as the baseline version from which minor, incremental (4.3.x) code updates
are being made. These updates are in response to issues and errors identified by the RASCAL
user community subsequent to the release of RASCAL 4.3. The RASCAL code development
utilizes and builds upon existing legacy code within RASCAL 4.3. For consistency, similar
coding standards and naming conventions will be used to develop the minor, incremental (4.3.x)
RASCAL software updates.

9.1 Code Standards & Naming Conventions

As discussed in Section 5.3, RASCAL has a long history of development. RASCAL 4.3 retains
a significant amount of code from these earlier RASCAL versions. These versions did not
adhere to a specific code standard or naming convention; consequently, there are different
standards and conventions used throughout. For consistency and traceability, minor,
incremental (4.3.x) code updates should reasonably attempt to follow the coding standards and
naming conventions used in the legacy code sections/routines being updated. This will help to
ensure readability of the code and aid in future debugging efforts.

9.2 Code Testing

Section 6.1 describes the software development methodology for the minor, incremental (4.3.x)
code updates being made to RASCAL. For issues requiring a “Change Log,” code testing will
be performed by the Software Developer to confirm the code changes are functioning as
designed and implemented. With regards to code testing, the “Change Log” includes relevant
sections for documenting:

• Code tests – describe the tests developed and executed to verify that the code change
works as designed.

• Test Results – write up the test results, including tables, screenshots, and other
documentation to support, clarify, and interpret the test results.

The code tests, along with a completed “Change Log,” will be submitted to the Lead Software
Developer for configuration management; the Lead Software Developer will review the “Change
Log” to ensure that all sections are complete.

9.3 Code Reviews

This SQAP describes software quality assurance involving minor code changes (RASCAL 4.3.x)
to legacy (RASCAL 4.3) software. Because the changes are minor, formal code reviews are not
required. However, a Software Developer may informally request a peer review to help locate
an error or to verify a code change has been correctly implemented.

Page 16 of 36

RASCAL 4.3.x (SQAP) Revision 1

10.0 SOFTWARE TESTING
RASCAL 4.3 serves as the baseline version from which minor, incremental (4.3.x) code updates
are being made. These updates are in response to issues and errors identified by the RASCAL
user community subsequent to the release of RASCAL 4.3. Section 9.2 discusses tests that are
performed on code updates that are made as a result of software errors found by the RASCAL
user community; these tests accompany a “Change Log” that describe and validate the code
change is functioning as intended. The following section describes two additional test plans—
“User’s Guide Testing” and “Group Testing”—that will be used to verify the overall RASCAL
software is operating as intended.

10.1 Software Test Plans

The following sections outline two test plans that will be implemented to verify that the minor,
incremental (4.3.x) RASCAL software updates are operating as intended. The first test involves
“User’s Guide Testing”; the RASCAL User’s Guide problems will be reworked in RASCAL 4.3.x
and the results will be compared and any differences will be explained. The User’s Guide
problems provide a good basis for testing, since they have been developed over a period of
many years and their solutions are well documented. The second test utilizes “Group Testing,”
whereby a small group of experienced RASCAL users will define problems based upon their
operational experience to exercise the RASCAL 4.3.x software.

10.1.1 User’s Guide Testing

User’s Guide Testing will be performed by the COR, in consultation with the Software
Developers, to verify consistency of the RASCAL 4.3.x output with sample problems contained
in the RASCAL User’s Guide. The User’s Guide problems provide a good basis for software
testing, since they have a long history of development and their solutions are well documented.
Each User’s Guide problem will be reworked and compared to the previous solution. Changes
in answers to the problems will be noted. Changes that are not expected based on the minor,
incremental code changes will be examined until they can be explained or a coding problem has
been identified.

User’s Guide Testing has the following requirements:

• For each problem in the User’s Guide, obtain the RASCAL 4.3 results, including the
problem’s case summary, source-term summary, max value table, and screenshots of
plume and puff model footprints (if applicable).

• Installed version of RASCAL 4.3, with the saved cases used in creating the User’s Guide
problems.

• Installed version of RASCAL 4.3.x, on an independent (i.e., non-development) computer
using the candidate release installer.

User’s Guide Testing involves the following steps:

Page 17 of 36

RASCAL 4.3.x (SQAP) Revision 1

1. Based on the User’s Guide problem to be run, are any differences anticipated?

a. In the user interface.

b. In the source term calculation.

c. In the generated wind fields.

d. In the transport, diffusion, dose calculation.

2. Setup and run the User’s Guide problem with RASCAL 4.3.x; save the following:

a. PDF versions of the source term summary and max value table.

b. Screenshots or PDF copies of plume and puff footprints.

c. The new case file.

3. Compare the following:

a. Source term total release.

b. Source term by radionuclide; look at a range of half-lives and radionuclide groups.

c. Plume dose values.

d. Puff dose values.

4. Document the following:

a. Pass – no differences.

b. Pass – differences, but expected and explained.

c. Fail – differences, cannot explain at this time.

d. Fail – differences, resolution known.

5. If a problem comparison results in a “Fail”, the issue will need to be submitted to
RASCAL_Help@nrc.gov for formal tracking and resolution (Section 11.0).

10.1.2 Group Testing

Group Testing will be performed by select Software Testers who are experienced RASCAL
users; Software Testers will be selected by the TM and the COR. The Software Testers will
define select tests based upon their operational experience to exercise the RASCAL 4.3.x
software.

Group Testing has the following requirements:

mailto:RASCAL_Help@nrc.gov

Page 18 of 36

RASCAL 4.3.x (SQAP) Revision 1

• Installed version of RASCAL 4.3.x, on an independent (i.e., non-development) computer
using the candidate release installer.

• A document recording each test conducted.

Group Testing involves the following steps:

1. Define and document a scenario to be examined. This may include details on a specific
type of plant or specific set of conditions to be examined; it should include a description
of expected results.

2. Setup and run the case.

3. Examine the results and document whether expectations were met.

a. Do the code results make sense? Can they be explained?

4. Document the following

a. Pass

b. Fail

i. No obvious issue (e.g., crash), but solution appears to be in error.

ii. Crashed or generated an error.

5. If the defined test results in a “Fail”, the issue will need to be submitted to
RASCAL_Help@nrc.gov for formal tracking and resolution (Section 11.0).

10.2 Test Reviews

Before software release, the TM and the COR must review and accept “User’s Guide” and
“Group” test results for overall acceptance of RASCAL 4.3.x.

mailto:RASCAL_Help@nrc.gov

Page 19 of 36

RASCAL 4.3.x (SQAP) Revision 1

11.0 ISSUE REPORTING
Issue reporting, including RASCAL-related questions, comments, or programming errors are
submitted by RASCAL users via the “RASCAL Support” (https://www.usnrc-
ramp.com/content/rascal-support) link on the U.S. NRC Radiation Protection Computer Code
Analysis and Maintenance Program (RAMP) website (https://www.usnrc-ramp.com/). The
“RASCAL Support” link on the RAMP website provides RASCAL users with options of either
submitting a request to the RASCAL_Help@nrc.gov email account via the “RASCAL Support
Request” page or to reach out to the RASCAL user community via the RASCAL Forum boards.
Also, RASCAL users can use the “RASCAL Support” link to access the RASCAL Frequently
Asked Questions (FAQ) to find answers to issue related to RASCAL 4.3.x.

11.1 RASCAL Support on the RAMP Website

The “RASCAL Support” link allows RASCAL users to reach out to the RASCAL user community
via the RASCAL Forum boards or to directly submit an email request to the RASCAL
Development Team (RDT) via the “RASCAL Support Request” page.

11.1.1 RASCAL Forum Boards

The RASCAL Forum boards are monitored by the Lead Software Developer and COR to ensure
that RASCAL user’s question and requests are satisfactorily answered in a timely manner. The
subject areas of the RASCAL Forum boards cover the following topics:

• Error Reports

• Model Questions

• General Emergency Preparedness Questions

• General RASCAL Usage Questions

11.1.2 RASCAL Support Request Page

The “RASCAL Support Request” page opens a form by which RASCAL users can submit
request to the RASCAL_Help@nrc.gov email account which is managed by the COR. Issues
are normally reported by the RASCAL user community, but they may also be reported by the
RDT (i.e., COR, TM, Lead Software Developer or Software Developers) to formally document
and track issues found during software development, planned updates to the software, or to add
a new software feature.

Both the RASCAL Forum boards and the “RASCAL Support Request” page allow the RASCAL
user to attach files that will assist the RDT in documenting and troubleshooting the reported
error. Standard RASCAL case files (“.std” and “.fmd”) as well as various other types of files
(“.txt,” “.xml,” “.csv,” “.xlsx,” “.exe,” “gz,” “.tz,” “.pdf,” “.doc,” “.docx,” “.ppt,” “.pptx,” “.jpg,” “.png”
“.jpeg,” “.gif,” and “.msg”) can be attached to both the forum and support request email.

https://www.usnrc-ramp.com/content/rascal-support
https://www.usnrc-ramp.com/content/rascal-support
https://www.usnrc-ramp.com/

Page 20 of 36

RASCAL 4.3.x (SQAP) Revision 1

11.2 Issue Documentation

Once the COR has received the necessary issue documentation, the issue is entered into the
SNL RASCAL Collaboration (RASCAL_Help@nrc.gov) SharePoint site for formal tracking and
resolution. Relevant fields used for issue tracking and resolution include:

• Unique issue ID

• Date issue received

• RDT staff contact managing the issue resolution

• Requestor name and contact information

• Request type (code errors; model questions; documentation issues; distribution
questions)

• Request scope details and description

• Error code generated by the RASCAL software, if applicable

• Resolution status (in progress, completed, future code version)

• Resolution priority (low, medium, high)

• Resolution deliverable

After the issue is entered into the SNL RASCAL Collaboration (RASCAL_Help@nrc.gov)
SharePoint site, it is routed by the COR to the responsible RDT member for resolution; the
responsible team member may include the TM and/or a Software Developer.

Responses to issues that can be resolved without a code change (e.g., a model, distribution or
documentation question) will be communicated to the COR, who will enter the resolution into the
SNL RASCAL Collaboration (RASCAL_Help@nrc.gov) SharePoint site and communicate a
response to the requestor by email. If the issue requires a code change, a “Change Log” will
also be generated by the Software Developer to formally track and document the code
modification (Section 6.1). Depending on the severity of an issue, a new version of RASCAL
may need to be released (Section 14.0).

Page 21 of 36

RASCAL 4.3.x (SQAP) Revision 1

12.0 USER DOCUMENTATION
Earlier versions of RASCAL included various NUREGs that described the operation and bases
of the code; Section 2.0, lists many of these documents. RASCAL 4.3.x documentation
includes:

• RASCAL 4.3: Descriptions of Models and Methods. NUREG-1940, Supplement 1
(Ramsdell et al. 2015) – describes the technical bases for changes made in models and
methods in going from RASCAL 4.2 to RASCAL 4.3 and 4.3.1. NUREG-1940 provides
the technical bases for the RASCAL computation codes describe in RASCAL 4.2.

• RASCAL 4.3 User’s Guide (Draft) (Athey et al. 2015) – provides problems designed to
familiarize the user with the RASCAL software through hands-on problem solving.

These documents will be revised, as appropriate, to reflect any changes made to the software
as a result of the minor code updates in RASCAL 4.3.x. Additionally, these documents will be
made available to all RASCAL users on the “RASCAL Technical Documents Download Page”
on the RAMP website (https://www.usnrc-ramp.com/).

http://pbadupws.nrc.gov/docs/ML1328/ML13281A475.pdf
https://www.usnrc-ramp.com/

Page 22 of 36

RASCAL 4.3.x (SQAP) Revision 1

13.0 SOFTWARE REVIEWS
RASCAL 4.3 serves as the baseline version from which minor, incremental (4.3.x) code updates
are being made. These updates are in response to issues and errors identified by the RASCAL
user community subsequent to the release of RASCAL 4.3. Reviews of RASCAL 4.3.x software
requirements (Section 7.1), design and implementation (Section 8.1) and testing (Section 9.3)
are discussed in this SQAP at a level that is commensurate to the minor software updates being
performed. These reviews are internal; no independent reviews are being performed.

This SQAP will be reviewed by the COR and TM annually to ensure applicability or when
changes to the RASCAL software project warrant a new review.

Page 23 of 36

RASCAL 4.3.x (SQAP) Revision 1

14.0 SOFTWARE RELEASE PLANNING
Appendix C, “RES and NSIR Coordination Process for Releasing RASCAL Updates” has been
developed by the NRC and it describes coordination activities between the RES and NSIR for
releasing RASCAL updates. The purpose of Appendix C is to identify and describe the criteria,
and associated organizational responsibilities, for releasing RASCAL updates to either limited
groups of users, as a limited distribution release, or to all users, as a general distribution
release. Appendix C will be used by the COR for RASCAL software release planning.

Presently, the RASCAL 4.3.x software is distributed to all RAMP members via the RAMP
website (https://www.usnrc-ramp.com/). RASCAL users interested in obtaining a copy of the
RASCAL 4.3.x software must meet the registration requirements for obtaining the RASCAL
Code from the RAMP website. The RAMP website provides a single point-of-access for
distributing the RASCAL software and maintaining a master list of RASCAL users. At the time
of issuing a new RASCAL update (4.3.x), the COR will provide RAMP website administrator with
a new RASCAL 4.3.x installation program and an install procedure; source files are not included
in a release. The RAMP Team will then email the master list of RASCAL users and indicate
how to obtain/download the RASCAL 4.3.x update from RAMP.

14.1 Other Deliverables

In addition to software releasing planning, the Lead Software Developer will provide the
following deliverables to NRC RES prior to software release:

• source code,

• software executable(s) and install,

• databases,

• software “Change Logs” and associated test cases and

• Updates to NUREGs (Section 12.0).

These deliverables will be provided to the TM and the COR by the Lead Software Developers
on DVD in support of software release management.

https://www.usnrc-ramp.com/

Page 24 of 36

RASCAL 4.3.x (SQAP) Revision 1

15.0 MAINTENANCE AND SUPPORT
Maintenance and support on the RASCAL software is provided by RES on an ongoing basis.
The primary means of communication for RASCAL maintenance and support is through the
“RASCAL Support” link on the RAMP website and the options of either contacting the
RASCAL_Help@nrc.gov email account via the “RASCAL Support Request” page or to reach out
to the RASCAL user community via the RASCAL Forum boards. The RASCAL user
community’s questions and requests are collected, tracked, prioritized, and dispositioned by the
COR in a similar manner to RASCAL issue reporting (Section 11.0).

Page 25 of 36

RASCAL 4.3.x (SQAP) Revision 1

16.0 RECORDS COLLECTION, MAINTENANCE, AND RETENTION
Documentation in support of meeting the objectives of this SQAP will be maintained by the Lead
Software Developer, including:

• code,

• installs,

• documentation (NUREGs and Help Files),

• change logs and supporting test cases and

• User’s Guide and Group Testing Documentation.

All digital records (e.g., Word documents, Excel spreadsheets) will be archived by the backup
process discussed in Section 6.4. These records will be retained for a period of one year as
part of the rotating backups to hard drives and for at least five years as part of the backup DVD
creation. The records will be stored in Lead Software Developer’s office and in the RASCAL
Project Files maintained by the COR. As discussed in Section 14.1, the Lead Software
Developer will provide RES with electronic copies of certain records to meet software release
planning SQA requirements.

Paper records (e.g., hand written notes, code markups, and annotated screenshots from
testing) will be retained for a period of at least five years. Only those documents that are
deemed to have relevance to an SQA activity will be retained. These documents will be stored
in the Lead Software Developer’s office.

Page 26 of 36

RASCAL 4.3.x (SQAP) Revision 1

17.0 TRAINING
This SQAP is the primary document for defining the SQA activities to be completed for the
release of RASCAL 4.3.x. The RDT should be familiar with the SQA activities discussed in this
SQAP; no other internal training activities necessary to meet the objectives of this SQAP.

Page 27 of 36

RASCAL 4.3.x (SQAP) Revision 1

APPENDIX A – RASCAL CHANGE LOG TEMPLATE

RASCAL Change Log Change ID:
 Base version:

Reason for
change:

☐ bug / fault
☐ update
☐ new feature

Location of change RASCAL area:
 Runtime file:
 Code files:
References NRC Issue ID:
 Other:

Timeline of events in the change
process

Person Date

Issue identified
Code change development
complete

Testing complete
Changes reviewed and approved
Code committed to version
control

Released with RASCAL version
x.x.x

Background

Describe why the change is needed. If an error/fault, describe how it was discovered and
the steps to see the problem. Include enough detail so it will be clear how to tell when the
problem is fixed. If an update or new feature, describe the need.

Discussion

If an error/fault, describe the results of the evaluation of the code. Be specific as to what in
the code is causing the problem. If new or update, provide some details about the design of
the changes.

Code changes

Describe the changes made. Be specific as to files and subroutines or functions. As
practical, include line numbers or code snippets.

Code tests

Page 28 of 36

RASCAL 4.3.x (SQAP) Revision 1

Describe the tests developed and run to verify that the change works as designed.

Test Results

Write up the test results. Tables, screenshots, etc. inserted to support and clarify.

Other reference material or information

Put here anything else relevant that helps understand the changes.

Supporting files

List the names and as needed the location of any files that provide supporting information.
This may include RASCAL saved cases, screenshots, spreadsheets, and documents.

Additional notes

Put anything here to help understand the change.

Page 29 of 36

RASCAL 4.3.x (SQAP) Revision 1

APPENDIX B – LIST OF CHANGE LOG ITEMS FOR RASCAL 4.3.1 &
4.3.2

Page 30 of 36

RASCAL 4.3.x (SQAP) Revision 1

Page 31 of 36

RASCAL 4.3.x (SQAP) Revision 1

Page 33 of 36

RASCAL 4.3.x (SQAP) Revision 1

APPENDIX C – RES & NSIR COORDINATION PROCESS FOR
RELEASING RASCAL UPDATES

1.0 INTRODUCTION
This is a draft version of a procedure that describes coordination activities between the Office of
Nuclear Regulatory Research (RES) and the Office of Nuclear Security and Incident Response
(NSIR) for releasing updates to the Radiological Assessment System for Consequence Analysis
(RASCAL) computer code. Comments and feedback on this document will be incorporated into
a final version, and become part of a Configuration Management Plan for the RASCAL
computer code.

The final version of this document is intended to be a living document and changed periodically
to incorporate lessons learned during implementation. It should be placed under configuration
management and the respective changes managed accordingly.

1.1 Purpose

The purpose of this document is to identify and describe the criteria, and associated
organizational responsibilities, for releasing updates to RASCAL to either limited groups of
users, as a limited distribution release, or to all users, as a general distribution release. This
document is a component of an overall configuration management plan that describes the
processes for ensuring that routine and non-routine software changes occur within an
identifiable and controlled environment.

1.2 Background

In September 2013, NSIR transferred RASCAL to RES for code development and maintenance.
RASCAL version 4.3 was developed by NSIR and issued by RES on September 29, 2013, and
serves as the baseline version of this software for further development, along with its associated
level of software quality assurance. Further changes to RASCAL are made through formal
change control procedures, which include approval or rejection of proposed changes and
issuance of the code to users. This document addresses these considerations by establishing a
consistent, cross-organizational process for releasing future updates to RASCAL.

Historically, planned updates of RASCAL have been made approximately every 18 months to
incorporate new features and feedback from users. However, some RASCAL updates were
made in less time to address software faults. Both limited and general distribution releases
were made available to all users, based on the software distribution practice in effect at the
time.

1.3 Scope

The scope of this document is the identification of an agreed-upon process for releasing
updates to RASCAL. A well-defined software release process is integral to the configuration
management system for RASCAL.

Page 34 of 36

RASCAL 4.3.x (SQAP) Revision 1

1.4 References

The following references were used in preparation of this document:

• Software Quality Assurance for RES-sponsored Codes, RES Office Instruction PRM-
12, March 5, 2012, (ML12132A176).

• Software Quality Assurance Program and Guidelines, NUREG/BR-1067, February
1993. ML, (ML012750471).

2.0 OVERVIEW OF THE CONFIGURATION MANAGEMENT PLAN
FOR RASCAL

Configuration management is the responsibility of the Lead Software Developer and it is
discussed in more detail in section 6.3 of the RASCAL 4.3.x SQAP.

3.0 CRITERIA FOR RELEASING UPDATES TO RASCAL
Software maintenance includes modification of a software product after its release to correct
faults, to improve performance, or other attributes. The urgency of releasing a new version of
the software is commensurate with the ability of the software to perform its intended function.

Some faults (i.e. software bugs or errors) may require speedy resolution if they cause a code
crash during an essential function. In such situations, an urgent update (aka “hotfix” or “quick fix
engineering update”) of RASCAL may be appropriate in order to correct a single significant
problem in the software, and may not be released to all users. Alternatively, an urgent update
could be issued to all users (aka “patch”) to the software to fix the known software fault.

In contrast to urgent software updates, relatively minor faults in the software may be scheduled
for correction during a planned update several months after a major revision of the software is
released or later, as part of the next major scheduled software update.

3.1 Urgent Updates to RASCAL

3.1.1 Criteria for Urgent Updates

The following criteria are applied for making an urgent update to RASCAL:

A. The code crashes when the user is performing an essential function.

Examples include the inability to complete a calculation within the model domain
(e.g., 96 hours and 100 miles) for any BWR or PWR accident scenario, including
spent fuel pools.

B. The code calculates a result that would significantly impact decision-making for
recommending protective actions.

Page 35 of 36

RASCAL 4.3.x (SQAP) Revision 1

Examples include underestimation or overestimation of dose by a factor of 10 for
any BWR or PWR accident scenario, including spent fuel pools.

C. The code provides outputs that are inconsistent for the same input parameters.

Examples include erroneous outputs (dose tables, dose maps, air or ground
concentrations) that are inconsistent and would likely cause confusion to the
Dose Assessment Analyst during a drill or actual emergency.

3.1.2 Timeliness of Urgent Updates

RES and NSIR staffs should communicate regularly on the nature and extent of software faults
that are identified by internal (NRC) and external users. RES staff is notified of software faults
and implementation issues from users through email notification via RASCAL_Help@nrc.gov. If
NSIR staff becomes aware through their use of the software or their contacts in the emergency
preparedness and response community of a software fault that would require an urgent update
to RASCAL, they should notify the RES Contracting Officer’s Representative (COR) and
Technical Monitor immediately.

An urgent release to correct a significant software fault should be accomplished within one
month of its discovery, depending on the complexity of the fault. The resolution of the fault
should include troubleshooting, code and user interface corrections, and verification by the
contractor prior to its release.

3.1.3 Scope of Release for Urgent Updates

When an urgent update to RASCAL is necessary, RES will coordinate with NSIR to recommend
whether the distribution of the urgent update should be a limited distribution release, such as for
the NRC Operations Centers only, or a general distribution release for all RASCAL users. RES
will implement the distribution approach agreed upon by this process. Additionally, at the time
of the urgent update, if it is decided that the release will be a limited distribution release then
changes made to the software should be incorporated into the next scheduled update that is
released to all RASCAL users. This process should be used for each urgent update of
RASCAL.

3.2 Scheduled Updates to RASCAL

3.2.1 Criteria for Scheduled Updates

The following criteria are applied for making a scheduled update to RASCAL:

A. The code crashes when the user is performing a non-essential function.

Examples include a software crash when using a feature in RASCAL that is not
related to an essential dose calculation.

mailto:RASCAL_Help@nrc.gov

Page 36 of 36

RASCAL 4.3.x (SQAP) Revision 1

B. The code calculates a result that would not significantly impact decision-making
for recommending protective actions.

Examples include underestimation or overestimation of dose by a factor of less
than 10 for any boiling-water reactor (BWR) or pressurized-water reactor (PWR)
accident scenario.

3.2.2 Timeliness of Scheduled Updates

Similar to Section 3.1.2 above, RES and NSIR staffs should communicate regularly on the
nature and extent of software faults that are identified by internal (NRC) and external users. If
there is a software fault that should be included in the next scheduled update to RASCAL, NSIR
should inform the RES COR and Technical Monitor within one week.

A scheduled update to correct a software fault should be accomplished within six months of its
discovery, depending on the complexity of the fault. The resolution of the fault should include
troubleshooting, code and user interface corrections, and verification by the contractor prior to
its release. Additionally, scheduled updates will include all software coding changes made for
any urgent updates completed since the last scheduled update.

3.2.3 Scope of Scheduled Updates

Similar to the process outlined in Section 3.1.3 above, RES will confer with NSIR on distribution
of scheduled software updates. RES will implement the distribution approach agreed upon by
this process.

	1.0 PURPOSE
	1.1 Scope

	2.0 REFERENCE DOCUMENTS
	3.0 ROLES AND RESPONSIBILITIES
	4.0 SOFTWARE QUALITY ASSURANCE REQUIREMENTS
	4.1 Documentation

	5.0 SOFTWARE DETERMINATION, DESCRIPTION & HISTORY
	5.1 Software Determination
	5.2 Software Description
	5.3 Software History

	6.0 SOFTWARE PLANNING
	6.1 Software Development Methodology
	6.2 Software Tools
	6.3 Software Configuration Management
	6.4 Software Backup Plan

	7.0 SOFTWARE REQUIREMENTS
	7.1 Reviews

	8.0 SOFTWARE DESIGN & IMPLEMENTATION
	8.1 Reviews

	9.0 CODE DEVELOPMENT
	9.1 Code Standards & Naming Conventions
	9.2 Code Testing
	9.3 Code Reviews

	10.0 SOFTWARE TESTING
	10.1 Software Test Plans
	10.1.1 User’s Guide Testing
	10.1.2 Group Testing

	10.2 Test Reviews

	11.0 ISSUE REPORTING
	11.1 RASCAL Support on the RAMP Website
	11.1.1 RASCAL Forum Boards
	11.1.2 RASCAL Support Request Page

	11.2 Issue Documentation

	12.0 USER DOCUMENTATION
	13.0 SOFTWARE REVIEWS
	14.0 SOFTWARE RELEASE PLANNING
	14.1 Other Deliverables

	15.0 MAINTENANCE AND SUPPORT
	16.0 RECORDS COLLECTION, MAINTENANCE, AND RETENTION
	17.0 TRAINING
	APPENDIX A – RASCAL CHANGE LOG TEMPLATE
	APPENDIX B – LIST OF CHANGE LOG ITEMS FOR RASCAL 4.3.1 & 4.3.2
	APPENDIX C – RES & NSIR COORDINATION PROCESS FOR RELEASING RASCAL UPDATES

		2016-09-13T10:41:17-0400
	John J. Tomon

		2016-09-14T07:40:00-0400
	Jeffrey Kowalczik

		2016-09-14T09:35:48-0400
	George F. Athey

