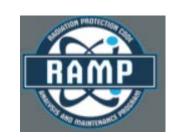
Implementation Action Plan (IAP) Strategy 2 Volume 4 - Licensing and Siting Dose Assessment Codes Presented at RAMP 2020

October 30, 2020
Stephanie Bush-Goddard, Ph.D.
Senior Health Physicist,
Office of Nuclear Regulatory Research

Agenda

- NRC's "Be Ready" Attitude
- Integrated Action Plan (IAP)
- Strategy 2
- Volume 4, RAMP Codes



NRC's "Be Ready" Attitude

Deliver cost savings

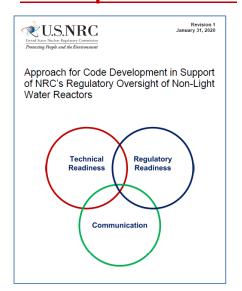
Build staff expertise

NRC's Integrated Action Plan (IAP) for Advanced Reactors

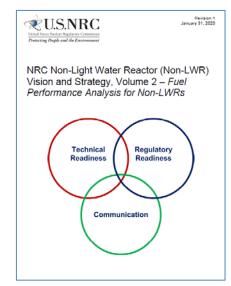
U.S.NRC
United States Nuclear Regulatory Commission
Protecting People and the Environment

NRC Non-Light Water Reactor
Near-Term Implementation Action Plans

Technical
Readiness
Regulatory
Readiness


Communication

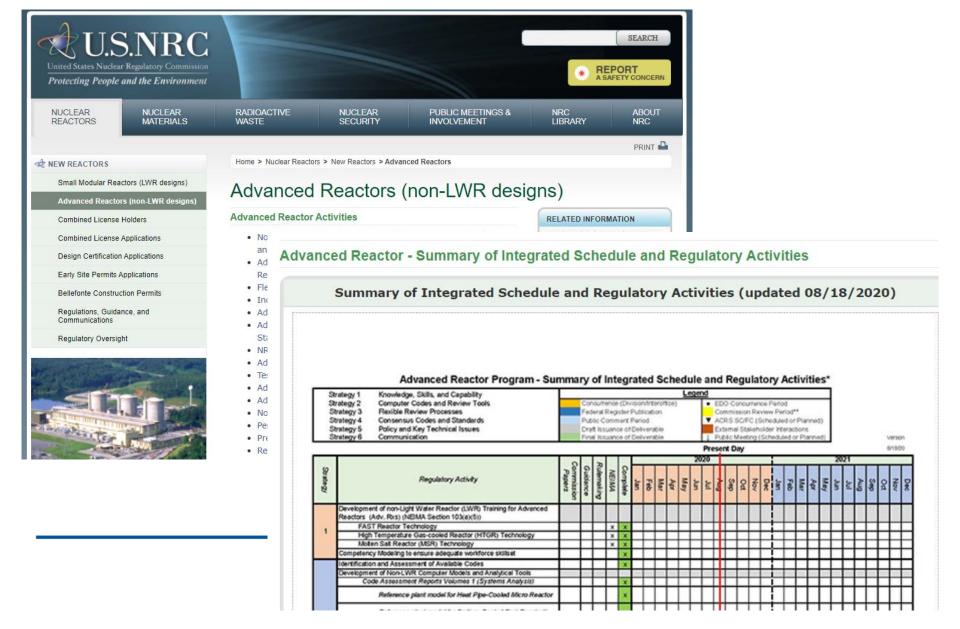
ML17165A069



Strategy 2: Computer Code Readiness Code Development Plans

These Volumes outline the <u>specific analytical tools</u> to enable independent analysis of non-LWRs, <u>"gaps"</u> in code capabilities and data, <u>V&V needs</u> and <u>code</u> development tasks.

Introduction ML20030A174

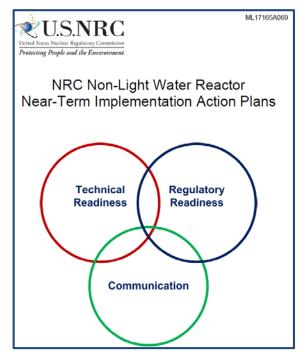

Volume 1 ML20030A176

Volume 2 ML20030A177

Volume 3 ML20030A178

NRC's Integrated Action Plan (IAP) Status

Advanced Reactor Program - Summary of Integrated Schedule and Regulatory Activities*


Strategy 1	Knowledge, Skills, and Capability	<u>Legend</u>					
Strategy 2	Computer Codes and Review Tools		Concurrence (Division/Interoffice)	•	EDO Concurrence Period		
Strategy 3	Flexible Review Processes		Federal Register Publication		Commission Review Period**		
Strategy 4	Consensus Codes and Standards		Public Comment Period	▼	ACRS SC/FC (Scheduled or Planned)		
Strategy 5	Policy and Key Technical Issues		Draft Issuance of Deliverable		External Stakeholder Interactions		
Strategy 6	Communication		Final Issuance of Deliverable	1	Public Meeting (Scheduled or Planned)		

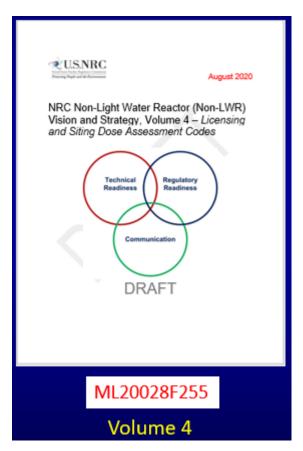
eduled of Flatified)

												F	res	ent [ay											9/	30/20	1
		0		71				2020 2021														021						
Strategy	Regulatory Activity	Commission Papers	Guidance	Rulemaking	NEIMA	Complete	Jan	Feb	Mar	Apr	May	Jun	Jul.	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	Identification and Assessment of Available Codes	\vdash			Н	х	Н		Н		\dashv	\dashv	\top	\top	+	+	Н	\vdash	Н	\dashv	\top	+	+	+	\vdash	\vdash	\neg	\neg
	Development of Non-LWR Computer Models and Analytical Tools														1										\blacksquare	\Box		
	Code Assessment Reports Volumes 1 (Systems Analysis)				П	х			П	\Box	\neg	\neg	\neg	\top	т	-		г	П	\neg	\top	\top	\top	\top	П	\Box	\neg	\neg
	Reference plant model for Heat Pipe-Cooled Micro Reactor				П	x							T	T	Γ	Γ		i	П			Τ	Т	Т	П	П	\top	\neg
	Reference plant model for Sodium-Cooled Fast Reactor				П	x									Т			<u> </u>				T	Т			П	\Box	
	Reference plant model for Fluoride-Salt-Cooled High- Temperature Reactor														Г							T	Т			П	\Box	
	Reference plant model for Gas-Cooled Pebble Bed Reactor				П				П			T	\top	T	T	T			П	\neg	T	T	T	Т		П	\top	
	Reference plant model for Molten Salt Fueled Reactor				Ш				Ш		\neg	\neg	\top	\top	T	\top		┞	П	╅	\top	\top	\top	\top	П	\Box		
	Code Assessment Reports Volumes 2 (Fuel Perf. Anaylsis)					х			П			\neg		\top	T				П		工	\top	\top		\Box	\Box	\Box	
	FAST code assessment for metallic fuel																				\perp	\perp						
	FAST code assessment for TRISO fuel													\perp							\perp			\perp	\square	\Box	\Box	
	Code Assessment Reports Volumes 3 (Source Term Analysis)				Ш	х			Ш			\perp	\perp	\perp	┸	\perp		ᆫ	Ш	\perp	\perp	\perp	\perp	\perp	Ш	Ш	\Box	
2	Non-LWR MELCOR (Source Term) Demonstration Project																											
	Reference SCALE/MELCOR plant model for Heat				П							Т	П	\top	Т			ī	П	П	\top	Т	Т	Т	П	П	П	
	Pipe-Cooled Micro Reactor		lacksquare		Ш		Щ		Ш	\Box	\perp	_	_	\bot	_			<u> </u>	Ш	_	\dashv	_	\bot	╀	$\perp \!\!\! \perp$	\sqcup	_	
	Reference SCALE/MELCOR plant model for High-	l			ΙI				ΙI						1		l !	!	ΙI							ıl		
	Temperature Gas-Cooled Reactor	<u> </u>	\vdash	<u> </u>	Ш		Ш		Ш	\Box	\rightarrow	\rightarrow	+	+	╇		-	▙	Ш	_	+	+	₩	₩	\vdash	\mapsto	\rightarrow	_
	Reference SCALE/MELCOR plant model for Molten Salt Cooled Pebble Bed Reactor	l			ΙI				ΙI						1		Ιi	i	ш							ıl		
	Reference SCALE/MELCOR plant model for Molten	├	\vdash	\vdash	\vdash	_	\vdash	\vdash	Н	-	\rightarrow	\rightarrow	+	+	╫	+	H	<u> </u>	Н		+	+	+	+	+	\vdash	\rightarrow	_
	Salt Fueled Reactor (schedule TBD)	l			ΙI				ΙI						1		!	!	ΙI									
	MACCS radionuclide screening analysis	\vdash	\vdash	\vdash	\vdash	_	Н		Н	\vdash	\dashv	\dashv	+	+	+	+		┢	\vdash	\dashv	+	+	+	+	+	\vdash	\dashv	_
	MACCS near-field atmospheric transport and dispersion	 		\vdash	\Box				Н	\vdash	\dashv	\dashv	+	+	+	+			Н	\dashv	+	+	+	+	+	\vdash	\dashv	_
	model assessment	l			ΙI	х			ΙI						1		i	İ	ΙI							ıl		
	MACCS near-field atmospheric transport and dispersion				П				П		\neg	\neg	\neg	\top	1	\top		!	П		十	\top	\top	\top	\vdash	\Box	\neg	_
	model improvement																	!				丄		\perp		Ш		
	Code Assessment Reports Volumes 4 (Dose Analysis)				Ш							\perp		•	_			<u> </u>	▼			\perp	\perp	\perp	Ш	\Box		
	Code Assessment Reports Volumes 5 (Fuel Cycle Analysis)				Ш				Ш			\perp	\perp	\perp	┸		▼	<u> </u>	▼	Ц		\bot	\perp	\perp		\sqcup	\Box	
	Non-LWR MELCOR (Source Term) Demonstration Project	Ь—	\sqcup		Ш		$ldsymbol{ldsymbol{\sqcup}}$	\vdash	Ш		\sqcup	4	\perp	\bot	┸	_	Ш	<u> </u>	Ш		\bot	—	—			Ш		_
	Research on Innovative Methods to Enhance Seismic Safety for Design and Construction of Adv. Rxs													1														
	Develop Regulatory Roadmap for Adv. Rxs (NEIMA Section 103(a)(1))				x	x							T	T		Г				\neg	Т	T	Τ		П	П	\neg	
	Develop prototype guidance for Adv. Rxs		П		П	х			М	\Box		\top	\top	\top	T	\top	П	iΤ	\Box	\dashv	\top	\top	+	+	\sqcap	\sqcap	\neg	_
	Develop non-LWR Design Crtieria for Adv. Rxs		\Box		\Box	х			М	\Box	\dashv	\top	\top	\top	T	1		_	\Box	\dashv	\top	\top	+	+	\vdash	\Box	\dashv	\dashv
	EPRI Topical Report on Tri-structural Isotropic (TRISO) Fuel		v		П						•	_	_	\top				!	Н	\neg	\top	\top	\top	\top	\Box	\sqcap	\neg	\neg

Strategy 2 – Volumes 4 & 5

Volume 4 — Licensing and Siting Dose
 Assessment Codes
 (ML20028F255)

Volume 5 — Computer Code Development Plans for Criticality,
 Shielding, and Accident Analysis in the Nuclear Fuel
 Cycle (in development)


Volume 4: Licensing and Siting Dose Assessment Codes

Landscape

- Potential for a spectrum of Non-LWR and fuel designs
- Over 10 licensing and siting dose assessment codes
- Inconsistent code development practices, by various contractors, over decades
- Overlap in code capabilities and need to use resources pragmatically

Approach (Tasks)


- 1. Consolidate/Modernize Dose Assessment Codes
- 2. Improve characterization of Source Terms
- 3. Improve Atmospheric Transport & Dispersion Models
- 4. Update Dose Coefficient values
- 5. Develop Environmental Pathway Models

Volume 4: Licensing and Siting Dose Assessment Codes

- This report describes the licensing and siting dose assessment computer codes and how they would be applied and consolidated for the non-LWR design types.
 - Section 1 Introduces the regulatory requirements.
 - Section 2 Describes each code and uses.
 - Section 3 Tasks related to non-LWR designs including code consolidation.
 - Section 4 Discusses code readiness.
 - Section 5 Conclusions.

Up Next:....

9:30 – 9:35 AM	Welcome & Logistics	Bruce McDowell
9:35 – 9:50 AM	Code Consolidation and Non-LWR Overview	Dr. Stephanie Bush-Goddard
9:50 – 10:30 AM	Background a. RAMP Codes Overview b. Advanced Reactor Challenges and Legacy Issues and Inefficiencies	Dr. Caitlin Condon Bruce McDowell
10:30 – 10:40 AM	Break	All
10:40 – 11:35 AM	Code Consolidation and Modernization a. Consolidation and Modernization Approach b. Source Term c. Atmospheric Engine Prototype	Bruce McDowell, Dr. Caitlin Condon Dr. Nicole LaHaye, Pavlo Ivanusa Jeremy Rishel, Dr. Saikat Ghosh
11:35 – 11:45 AM	Summary and Path Forward	Dr. Stephanie Bush-Goddard
11:45 – 12:00 PM	Questions and Discussion	All