Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Pressurized Water Reactors

PWR-GALE Code

Manuscript Completed: March 1985 Date Published: April 1985

T. Chandrasekaran, J. Y. Lee, C. A. Willis

Division of Systems Integration Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, D.C. 20555

NRC FORM 335 U.S. NUCLEAR REGULATORY COMMISSION	1. REPORT NUMBER (Assigned by TIDC, add Vol. No., if any)					
NRCM 1102, DIDLICODA DILIC DATA CHEET	NUREG-0017, Rev. 1					
BIBLIOGRAPHIC DATA SHEET	Norla-out, Rev. I					
SEE INSTRUCTIONS ON THE REVERSE.						
2. TITLE AND SUBTITLE	3. LEAVE BLANK					
Coloniation of Delegace of Dadiscoting Materials in						
Calculation of Releases of Radioactive Materials in						
Gaseous and Liquid Effluents From Pressurized Water	4. DATE REPORT COMPLETED					
Reactors (PWR-GALE Code)	MONTH YEAR					
5. AUTHOR(S)	March ' 1985					
	6. DATE REPORT ISSUED					
	MONTH YEAR					
T. Chandrasekaran, J.Y. Lee, C.A. Willis	April ' 1985					
7. PERFORMING ORGANIZATION NAME AND MAILING ADDRESS (Include Zip Code)	8. PROJECT/TASK/WORK UNIT NUMBER					
·						
Division of Systems Integration	9. FIN OR GRANT NUMBER					
Office of Nuclear Reactor Regulation						
U.S. Nuclear Regulatory Commission						
Washington, DC 20555						
10. SPONSORING ORGANIZATION NAME AND MAILING ADDRESS (Include Zip Code)	11a. TYPE OF REPORT					
Same as 7. above						
	·					
	b. PERIOD COVERED (Inclusive dates)					
12. SUPPLEMENTARY NOTES						
13. ABSTRACT (200 words or less)						
TO, ABUTTACT (SOU WATER DI 1999)						
This report revises the original issuance of NUREG-0017, "Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents From Pressurized Water Reactors (PWR-GALE Code)" (April 1976), to incorporate more recent operating data now available as well as the results of a number of in-plant measurement programs at operating pressurized water reactors. The PWR-GALE Code is a computerized mathematical model for calculating the releases of radioactive material in gaseous and liquid effluents (i.e., the gaseous and liquid source terms). The U.S. Nuclear Regulatory Commission uses the PWR-GALE Code to determine conformance with the requirements of Appendix I to 10 CFR Part 50.						
14 DOCUMENT ANALYSIS - a. KEYWORDS/DESCRIPTORS Radioactive Effluent	15. AVAILABILITY STATEMENT					
Radioactive Waste						
Radioactive Materials	Unlimited					
	16. SECURITY CLASSIFICATION					
	(This page)					
b. IDENTIFIERS/OPEN-ENDED TERMS	Unclassified (This report)					
	Unclassified					
	17. NUMBER OF PAGES					
*U.S. GOVERNMENT PRINTING OFFICE: 1985-461-721:20097	18. PRICE					

ABSTRACT

This report revises the original issuance of NUREG-0017, "Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Pressurized Water Reactors (PWR-GALE-Code)" (April 1976), to incorporate more recent operating data now available as well as the results of a number of in-plant measurement programs at operating pressurized water reactors. The PWR-GALE Code is a computerized mathematical model for calculating the releases of radioactive material in gaseous and liquid effluents (i.e., the gaseous and liquid source terms). The U.S. Nuclear Regulatory Commission uses the PWR-GALE Code to determine conformance with the requirements of Appendix I to 10 CFR Part 50.

TABLE OF CONTENTS

		Page
ABSTRACT ACKNOWLEDG EXECUTIVE		
CHAPTER 1	. PWR-GA	LE CODE
1.1	Introduc	tion
1.2	Definiti	ons
1.3	Gaseous	Source Terms
1.4	Liquid S	Source Terms
1.5		ions for Completing PWR-GALE Code Input Data
		Parameters Included in the PWR-GALE Code 1-8 Parameters Required for the PWR-GALE Code 1-13
CHAPTER 2		PAL PARAMETERS USED IN PWR SOURCE TERM HEIR BASES
2.1	Introduc	tion
2.2	Principa	1 Parameters and Their Bases 2-1
	2.2.2	Thermal Power Level
	2.2.4	Secondary Coolant
	2.2.5	Radioactive Particulates Released in Gaseous Effluents
	2.2.6	Noble Gas Releases from Building Ventilation Systems
	2.2.7 2.2.8	Steam Generator Blowdown Flash Tank Vent 2-48 Iodine Releases from Main Condenser Air Ejector Exhaust
		Containment Purge Frequency
		Radioiodine Removal Efficiencies for Charcoal Adsorbers and Particulate Removal Efficiencies for HEPA Filters 2-56
	2.2.12	Waste Gas System Input Flow to Pressurized
	2.2.14	Storage Tanks
		Chemical Wastes from Regeneration of Condensate Demineralizers 2-68

٧

Preceding page blank

																		Page
		2.2.17 2.2.18 2.2.19 2.2.20	Tritium Deconta Deconta Deconta	minat [.] minati	ion F ion F	act act	ors ors	fo fo	n De	emi vap	ner ora	ali tor	ze: `s	rs •		•	•	
		2.2.21	Filt Deconta Guideli	ers minati ne foi	ion F Cal	act	ors	for	 r Re Liqu	eve uid	rse Wa	Os ste	mo:	• sis	 S .	•	•	
		2.2.23 2.2.24 2.2.25 2.2.26	Time Adjustm Anti Atmosph Carbon- Argon-4	ent to cipate eric S 14 Re	ed Op Steam lease	uid era Du s	Rad tion mp	dwa: nal •	ste Oco	So cur	urce ren	e T ces	eri •	ms •	fo	r •		2-86 2-89 2-90
		. INPUT R-GALE CO		SAMPL	_E PR	OBL	EM,	ANI) F(ORT	RAN	LI	ST	I NO	<u>3</u>			
	3.1	Introduc	ction .	• • •		•		•		•			•	• (•	•	3-1
	3.2	Input Da	ata	• • •		•		•		•	• •	•	•	• •		٠	•	3-1
		3.2.1 E	Explanat Input Co															
	3.3	Sample F	roblem	Inp	out a	nd	Out _l	out	•	•	• •	•	•	• (•	•	3-5
	3.4	Listing	of PWR-	GALE (Code	•		•		•		•	•	• (•	•	3-5
		3.4.1 M 3.4.2 F	Nuclear ORTRAN															
CHAP FOR F	TER 4. PRESSU	. DATA F JRIZED WA	OR RADI NTER REA	OACTIV CTORS	/E S0	URC	E TI	ERM	CAL	_CU	LAT	ION	S					
	4.1	General				•		•		•		•	•	• •		•	•	4-1
	4.2	Primary	System			•		•		•		•	•	• •		•	•	4-1
	4.3	Secondar	ry Syste	m		•		•		•		•	•	•		•	•	4-1
	4.4	Liquid W	laste Pr	ocessi	ing S	yst	ems	•		•		•	•	• •	•	•	•	4-2
	4.5	Gaseous	Waste P	rocess	sing	Sys	tem	•		•		•	•		•	•	•	4-3
	4.6	Ventilat	ion and	Exhau	ıst S	yst	ems	•		•		•	•		•	•	•	4-3
APPE	NDIX A	Ī																
	Waste	id Source	eminera	lizers							ate	•						٨٦
טרבבי	Demir PENCES	neralizer	5	• • •	• •	•	• •	•	•	•	• •	•	• •	•	•	•	•	A-1 R-1
K F F F	c P IVI F 🛰																	K - I

LIST OF TABLES

Table		Page
1-1	Radioiodine Releases from Building Ventilation Systems Prior to Treatment	. 1-9
1-2	Radioactive Particulate Releases from Building Ventilation Systems Prior to Treatment	. 1-10
1-3	PWR Liquid Wastes	. 1-18
1-4	Decontamination Factors for PWR Liquid Waste Treatment Systems	. 1-21
1-5	Assigned Removal Efficiencies for Charcoal Adsorbers for Radioiodine Removal	. 1-29
2-1	Plant Capacity Factors at Operating PWR's	. 2-3
2-2	Numerical Values - Concentrations in Principal Fluid Streams of the Reference PWR with U-Tube Steam Generators	. 2-4
2-3	Numerical Values - Concentrations in Principal Fluid Streams of the Reference PWR with Once-Through Steam Generators	. 2-6
2-4	Parameters Used to Describe the Reference Pressurized Water Reactor with U-Tube Steam Generators	. 2-8
2-5	Parameters Used to Describe the Reference Pressurized Water Reactor with Once-Through Steam Generators	. 2-9
2-6	Values Used in Determining Adjustment Factors for Pressurized Water Reactors	. 2-10
2-7	Adjustment Factors for PWR's with U-Tube Steam Generators	. 2-12
2-8	Adjustment Factors for PWR's with Once-Through Steam Generators	. 2-13
2-9	Summary of Iodine-131 and Iodine-133 Primary Coolant Concentrations in PWR's	. 2-21
2-10	Summary of Radionuclide Primary Coolant Concentrations in PWR's	. 2-22
2-11	Monthly Average Primary/Secondary Leakage	2-26
2-12	Moisture Carryover in Recirculating U-Tube Steam Generators	. 2-32

Table		Page
2-13	Annual Iodine Normalized Releases from Containment Ventilation Systems	. 2-34
2-14	Annual Iodine Normalized Releases from Auxiliary Bldg. Ventilation Systems	2-35
2-15	Annual Iodine Normalized Releases from Refueling Area Ventilation Systems	. 2-36
2-16	Annual Iodine Normalized Releases from Turbine Building Ventilation Systems	. 2-37
2-17	Particulate Release Rate for Gaseous Effluents	2-42
2-18	Measured Release Upstream of HEPA Filters - Containment	. 2-43
2-19	Measured Releases Upstream of HEPA Filters - Auxiliary Building	. 2-44
2-20	Measured Releases Upstream of HEPA Filters - Fuel Pool Area	. 2-45
2-21	Measured Releases Upstream Filters - Waste Gas System	2-46
2-22	Annual Iodine Normalized Releases from Main Condenser Air Ejector Exhaust	2-49
2-23	PWR Containment Purging and Venting Experience	2-52
2-24	Waste Gas System Input Flow to Pressurized Storage Tanks and PWR's Without Recombiners	. 2-58
2-25	Waste Gas System Input Flow to Pressurized Storage Tanks for PWR's with Recombiners	2-59
2-26	PWR Liquid Wastes	2-65
2-27	Calculated Annual Release of Radioactive Material in Untreated Detergent Waste	2-67
2-28	Radionuclide Distribution of Detergent Waste	2-69
2-29	Tritium Release Data from Operating PWR's with Zircaloy-Clad Fuels	2-71
2-30	Tritium Release Rate from Operating PWR's as a Function of Number of Years of Operation	2-75

<u>Table</u>		Page
2-31	Tritium Release Rate from Operating PWR's - Percent of Total Tritium Released in Liquid Effluents	2-76
2-32	Distribution of Tritium Release in Gaseous Effluents	2-78
2-33	Reverse Osmosis Decontamination Factors, Ginna Station	2-82
2-34	Reverse Osmosis Decontamination Factors, Point Beach	2-83
2-35	Reverse Osmosis Decontamination Factors, H. B. Robinson No. 2 Station	2-84
2-36	Expected Reverse Osmosis Decontamination Factors for Specific Nuclides	2-85
2-37	Frequency and Extent of Unplanned Liquid Radwaste Releases from Operating Plants	2-88
2-38	Carbon-14 Release Data from Operating PWR's	2-91
2-39	Distribution of Carbon-14 Released in Gaseous Effluents	2-92
2-40	Summary of Argon-41 Releases for Operating PWR's	2_94

LIST OF FIGURES

Figure		Page
2-1	Removal Paths for Pressurized Water Reactor with U-Tube Steam Generators	2-14
2-2	Removal Paths for Pressurized Water Reactor with Once-Through Steam Generators	2-15
2-3	Krypton and Xenon K Values as a Function of Reciprocal Temperature	2-62
2-4	Effect of Moisture Content on the Dynamic Adsorption Coefficient	2-63
2-5	Charcoal Moisture as a Function of Relative Humidity	2-64
3-1	Input Coding Sheets for Sample Problem	3-6
3-2	Printout of Input and Output for the Sample Problem	3-8
3-3	Program Listing for Gaseous Determination	3-16
3-4	Program Listing for Liquid Determination	3-26

ACKNOWLEDGMENTS

Many individuals contributed to the preparation of Revision 1 of this document. In particular, R. L. Bangart and F. P. Cardile of the Nuclear Regulatory Commission, and A. E. Refre of the Philippine Atomic Energy Commission were the principal contributors. J. W. Mandler and F. Y. Tsang of EG&G Idaho edited this revision and have incorporated the results of a number of in-plant measurement programs at operating pressurized water reactors under an INEL Technical Assistance contract to the Division of Systems Integration, U. S. Nuclear Regulatory Commission (FIN A-6460). The Revision O of this document was prepared by L. G. Bell, M. J. Bell, R. R. Bellamy, J. S. Boegli, W. C. Burke, F. P. Cardile, J. T. Collins, J. Y. Lee, P. G. Stoddart, W. D. Travers, and R. A. Weller of the Nuclear Regulatory Commission.

EXECUTIVE SUMMARY

The average quantity of radioactive material released to the environment from a nuclear power reactor during normal operation including anticipated operational occurrences is called the "source term,"* since it is the source or initial number used in calculating the environmental impact of radioactive releases. The PWR-GALE (Pressurized Water Reactor - Gaseous and Liquid Effluents) Code is a computerized mathematical model for calculating the releases of radioactive material in gaseous and liquid effluents (i.e., the gaseous and liquid source terms) from pressurized water reactors. The calculations are based on data generated from operating reactors, field and laboratory tests, and plant-specific design considerations incorporated to reduce the quantity of radioactive materials that may be released to the environment during normal operation, including anticipated operational occurrences.

The U.S. Nuclear Regulatory Commission uses the PWR-GALE Code to determine conformance with the requirements of Appendix I to 10 CFR Part 50. The first issue of this NUREG report was published in April 1976. In order to use the best available data for improving the calculational models used by the Commission staff to determine conformance with Appendix I to 10 CFR Part 50, Revision I is being issued to update NUREG-0017. This revision incorporates more recent operation data now available and also incorporates the results of a number of in-plant measurement programs at operating pressurized water reactors.

Chapter 1 of this report gives a step-by-step procedure for using the PWR-GALE Code along with a description of the parameters which have been built into the Code for use with all PWR source term calculations. These parameters, which apply generically to all PWR's, have been incorporated into the Code to eliminate the need for their entry on input data cards. Other parameters are required to be entered on input cards used by the Code. Explanations of the data require, along with acceptable means for calculating such data, are given for each input data card.

Descriptions of the principal parameters used in source term calculations and explanations of the bases for each parameter are given in Chapter 2. The parameters have been derived from reactor operating experience where data were available. Where operating data were inconclusive or not available, information was drawn from laboratory and field tests and from engineering judgment. The bases for the source term parameters explain the reasons for choosing the numerical values listed. A list of references used in developing the parameters is also included. The source term parameters used are believed to provide a realistic assessment of reactor and radwaste system operation.

^{* &}quot;Source term" as discussed in this report differs from "accident source term," which deals with potential releases resulting from nuclear reactor accidents.

Chapter 3 contains sample input data together with an explanation of the input to orient the user in making the required entries. Also included is a listing of the input data for a sample problem, a discussion of the nuclear data library used, and a FORTRAN listing of the PWR-GALE Code.

Chapter 4 lists the information needed to generate source terms for PWR's. The information is proved by the applicant and is consistent with the contents of the Safety Analysis Report (ER) of the proposed PWR. This information constitutes the basic data required in calculating the releases of radioactive material in liquid and gaseous effluents.

CHAPTER 1. PWR-GALE CODE

1.1 INTRODUCTION

In promulgating Appendix I to 10 CFR Part 50, the U. S. Nuclear Regulatory Commission indicated its desire to use the best available data for improving the calculational models used by the Commission Staff to determine conformance with the requirements of the regulation. The first issue of this NUREG Report was published in April 1976. Revision 1 is being issued to update NUREG-0017 by incorporating more recent operating data now available and also by incorporating the results of a number of in-plant measurement programs at operating pressurized water reactors (PWR's).

The PWR-GALE (Pressurized Water Reactor - Gaseous and Liquid Effluents) Code is a computerized mathematical model for calculating the releases of radioactive material in gaseous and liquid effluents from pressurized water reactors. The calculations are based on data generated from operating reactors, field and laboratory tests, and plant-specific design considerations incorporated to reduce the quantity of radioactive materials that may be released to the environment during normal operation, including anticipated operational occurrences.

The average quantity of radioactive material released to the environment from a nuclear power reactor during normal operation is called the "source term" since it is the source or initial number used in calculating the environmental impact of radioactive releases. The calculations performed by the PWR-GALE Code are based on (1) American Nuclear Society (ANS) 18.1 Working Group recommendations (Ref. 1) for adjustment factors, (2) the release and transport mechanisms that result in the appearance of radioactive material in liquid and gaseous waste streams, (3) plant-specific design features used to reduce the quantities of radioactive materials ultimately released to the environment, and (4) information received on the operation of nuclear power plants.

In a PWR, primary coolant water circulates through the reactor core where it removes the heat from the fuel elements. In the steam generators, heat from the pressurized primary coolant water is transferred to the secondary coolant water to form steam. The steam expands through the turbine and is then condensed and returned to the steam generators. The primary coolant water flows back to the reactor core. The principal mechanisms that affect the concentrations of radioactive materials in the primary coolant are: (1) fission product leakage to the coolant from defects in the fuel cladding and fission product generation in tramp uranium, (2) corrosion products activated in the core, (3) radioactivity removed in the reactor coolant treatment systems, and (4) activity removed because of primary coolant leakage. These mechanisms are described briefly in the following paragraphs.

The primary coolant is continuously purified by passing a side stream through filters and demineralizers in the reactor coolant treatment systems (RCTS). It is necessary to maintain the purity of the primary coolant to prevent fouling of heat transfer surfaces and to keep releases to the environment as low as is reasonably achievable. Chemicals are added to the primary coolant to inhibit corrosion and/or improve fuel economy. Lithium hydroxide is added for pH control to reduce corrosion.

Water decomposes into oxygen and hydrogen as a result of radiolysis. The control of oxygen concentration in the primary coolant is important for corrosion control. Hydrogen, added to the primary coolant as dissolved free hydrogen, tends to force the net reaction toward the recombination of hydrogen and oxygen to water at an overall rate sufficient to maintain low primary coolant oxygen concentrations.

Boron is added to the primary coolant as a neutron absorber (shim control). As the fuel cycle progresses, boron is removed from the primary coolant through the RCTS loop (shim bleed). The shim bleed is processed through an evaporator, and the boron in the evaporator bottoms is either reused or packaged as solid waste. The evaporator distillate may be recycled to the reactor coolant system as makeup water or discharged to the environment.

Radioactive gases stripped from the primary coolant by degassification are normally collected in pressurized storage tanks and held for radioactive decay prior to recycle or release to the environment. Alternative treatment methods include charcoal delay systems and cryogenic distillation.

Because of leakage through valve stems and pump shaft seals, some coolant escapes into the containment and the auxiliary buildings. A portion of the leakage evaporates, thus contributing to the gaseous source term, and a fraction remains as liquid, becoming part of the liquid source term. The relative amount of leakage entering the gaseous and liquid phases is dependent upon the temperature and pressure at the point where the leakage occurs. Most of the noble gases enter the gas phase, whereas iodine partitions into both phases.

Leakage of primary coolant into the secondary coolant in the steam generator is the only source of radioactivity in the secondary coolant system. Water or steam leakage from the secondary system provides significant inputs to the liquid and gaseous radwaste treatment systems. Steam leakage may be significant to the gaseous source term since the radioactivity released remains in the gas phase.

In a recirculating U-tube steam generator, the nonvolatile radionuclides leaking from the primary coolant concentrate in the liquid phase in the steam generator. The degree of concentration is controlled by the steam generator blowdown rate and condensate demineralizer flow rate.

Since there is no liquid reservoir in a once-through steam generator, the primary coolant leakage boils to steam when it enters the secondary

side of the steam generator. Secondary coolant purity is maintained by a condensate demineralizer system and there is no steam generator blowdown. The concentration of radioactivity in the secondary coolant is controlled by the condensate demineralizer flow rate.

Sources of radioactive wastes from the secondary system are the offgases from the turbine condenser, vent gases from the turbine gland seal, liquid and vent gases from the steam generator blowdown, and liquid and gaseous leaks into the turbine building. Liquid wastes also originate from the chemical regeneration of condensate demineralizers in feedwater/condensate systems.

In this chapter, a step-by-step procedure for using the PWR-GALE Code is given along with a description of the parameters which have been built into the Code for use with all PWR source term calculations. These parameters, which apply generically to all PWR's, have been incorporated into the Code to eliminate the need for their entry on input data cards. Other parameters are required to be entered on input data cards used by the Code. Explanations of the data required, along with acceptable means for calculating such data, are given for each input data card. Chapter 2 gives the principal source term parameters developed for use with the PWR-GALE Code and explains the bases for each parameter. Chapter 3 contains a sample data input sheet and a Fortran IV listing of the PWR-GALE Code. Chapter 4 lists the information needed to generate source terms that an applicant is required to submit with the application.

1.2 DEFINITIONS

The following definitions apply to terms used in this report:

Activation Gases: The gases (including oxygen, nitrogen, and argon) that become radioactive as a result of irradiation in the core.

Anticipated Operational Occurrences: Unplanned releases of radioactive materials from miscellaneous actions such as equipment failure, operator error, administrative error, that are not of consequence to be considered an accident.

Chemical Waste Steam: Normally liquids that contain relatively high concentrations of decontaminants, regenerants, or chemical compounds other than detergents. These liquids originate primarily from resin regenerant and laboratory wastes.

Clean Waste System: Normally tritiated, nonaerated, low-conductivity liquids consisting primarily of liquid waste collected from equipment leaks and drains and certain valve and pump seal leakoffs. These liquids originate from systems containing primary coolant and are normally reused as primary coolant makeup water.

Decontamination Factor (DF): The ratio of the initial amount of a nuclide in a stream (specified in terms of concentration or activity of radioactive materials) to the final amount of that nuclide in a stream following treatment by a given process.

Detergent Waste Stream: Liquids that contain detergent, soaps, or similar organic materials. These liquids consist principally of laundry, personnel shower, and equipment decontamination wastes that normally have a low radioactivity content.

Dirty Waste Stream (Floor Drains): Normally nontritiated, aerated, high-conductivity, non-primary-coolant quality liquids collected from building sumps and floor and sample station drains. These liquids are not readily amenable for reuse as primary coolant makeup water.

Effective Full Power Days: The number of days a plant would have to operate 100% licensed power to produce the integrated thermal power output during a calendar year, i.e.,

Effective Full Power Days =
$$\frac{\text{Integrated Thermal Power}}{\text{Licensed Power Level}} = \frac{\sum_{i=1}^{\infty} P_i T_i}{P_{total}}$$

where

P; is the ith power level, in MWt;

 $P_{\mbox{total}}$ is the licensed power level, in MWt; and

 T_i is the time of operation at power level P_i , in days.

<u>Fission Product</u>: A nuclide produced either by fission or by subsequent radioactive decay or neutron activation of the nuclides formed in the fission process.

<u>Gaseous Effluent Stream</u>: Processed gaseous wastes containing radioactive materials resulting from the operation of a nuclear power reactor.

<u>Liquid Effluent Stream</u>: Processed liquid wastes containing radioactive materials resulting from the operation of a nuclear power reactor.

<u>Partition Coefficient (PC)</u>: The ratio of the concentration of a nuclide in the gas phase to the concentration of a nuclide in the liquid phase when the liquid and gas are at equilibrium.

<u>Partition Factor (PF)</u>: The ratio of the quantity of a nuclide in the gas phase to the total quantity in both the liquid and gas phases when the liquid and gas are at equilibrium.

<u>Plant Capacity Factor</u>: The ratio of the average net power to the rated power capacity.

Primary Coolant: The fluid circulated through the reactor to remove heat. The primary coolant activity is considered to be constant over a range of power levels, coolant and cleanup flows, and coolant volumes. Radionuclide concentrations given in this NUREG are based on a recent compilation of available operating data. Therefore, the concentration values in NUREG-0017, Rev. 1 differ from the ANSI N237 values (Ref. 1). Provisions are made in the PWR-GALE Code, in accordance with the recommendations of the standard, for adjusting coolant concentrations should the plant be designed to parameters that are outside the ranges considered in the standard. The radionuclide concentrations used are considered to be representative of measured values based on the available operating data. The radionuclides are divided into the following categories:

- 1. Noble gases
- 2. Halogens (Br, I)
- 3. Cs, Rb
- 4. Water activation products
- 5. Tritium
- 6. Other nuclides (as listed in Tables 2-2 and 2-3 of Chapter 2 of this document)

Radioactive Halogens: The isotopes of fluorine, chlorine, bromine, and iodine. The radioactive isotopes of iodine are the key isotopes considered in dose calculations.

Radioactive Noble Gases: The radioactive isotopes of helium, neon, argon, krypton, xenon, and radon, which are characterized by their chemical inactivity. The radioactive isotopes of krypton and xenon are the key elements considered in dose calculations.

Radioactive Release Rate: The average quantity of radioactive material released to the environment from a nuclear power reactor during normal operation, including anticipated operational occurrences.

Secondary Coolant: The coolant converted to steam by the primary coolant in a heat exchanger (steam generator) to power the turbine. The radionuclide concentrations in the secondary coolant are obtained as discussed above in the definition of primary coolant.

Source Term: The calculated average quantity of radioactive material released to the environment from a nuclear power reactor during normal operation, including anticipated operational occurrences. The source term is the isotopic distribution of radioactive materials used in evaluating the impact of radioactive releases on the environment.

Steam Generator Blowdown: Liquid removed from a steam generator in order to maintain proper water chemistry.

Tramp Uranium: The uranium present on the cladding of a fuel rod.

Turbine Building Floor Drains: Liquids of high conductivity and low-level radioactivity primarily resulting from secondary system leakage, steam trap drains, sampling system drainage, and maintenance and waste drains.

1.3 GASEOUS SOURCE TERMS

The following sources are considered in calculating the releases of radioactive materials (noble gases, radioactive particulates, carbon-14, tritium, argon-41, and iodine) in gaseous effluents from normal operation, including anticipated operational occurrences:

- 1. Waste gas processing system;
- 2. Steam generator blowdown system;
- Condenser air ejector exhaust;
- 4. Containment purge exhaust;
- 5. Ventilation exhaust air from the auxiliary, and turbine buildings, and the spent fuel pool area; and
- 6. Steam leakage from the secondary system.

The releases of radioactive materials in gaseous effluents from the following sources are calculated to be less than 1 Ci/yr of noble gases and 10⁻⁴ Ci/yr of iodine-131. Therefore, the following releases are considered negligible:

- Steam releases due to steam dumps to the atmosphere and lowpower physics testing and
- 2. Ventilation air from buildings not covered in 5. above.

The calculational model considers inputs to the waste gas processing system from both continuous stripping of the primary coolant during normal operation and from degassing the primary coolant for two cold shutdowns per year. For plants equipped with steam generator blowdown systems, the model considers iodine present in gases leaving the system

vent. The PWR-GALE Code calculates the release rates of noble gases and iodine to building atmospheres based on coolant leakage rates to buildings. Radioiodine releases are related to the iodine-131 coolant concentrations for the PWR being evaluated. Particulate release rates are based on measurements at operating PWR's.

Chapter 2 provides iodine and particulate decontamination factors for removal equipment and parameters for calculating holdup times for noble gases and for calculating tritium, argon-41 and carbon-14 releases.

1.4 LIQUID SOURCE TERMS

The following sources are considered in calculating the release of radioactive materials in liquid effluents from normal operation, including anticipated operational occurrences:

- 1. Processed water generated from the boron recovery system to maintain plant water balance or for tritium control;
- Processed liquid waste discharged from the dirty waste or miscellaneous waste systems;
- 3. Processed liquid waste discharged from the steam generator blowdown treatment system;
- 4. Processed liquid waste discharged from the chemical waste and condensate demineralizer regeneration system;
- 5. Liquid waste discharged from the turbine building floor drain sumps; and
- 6. Detergent waste.

The radioactivity input to the liquid radwaste treatment system is based on the flow rates of the liquid waste streams and their radioactivity levels expressed as a fraction of the primary coolant activity (PCA). The PCA is based on the recommendations of the American National Standard (ANSI N237) Source Term Specification (Ref. 1), with the changes as noted in Section 1.2 under the Primary Coolant definition.

Radionuclide removal by the liquid radwaste treatment system is based on the following parameters:

- 1. Decay during collection and processing and
- 2. Removal by the proposed treatment systems, e.g., filtration, ion exchange, evaporation, reverse osmosis, and plateout.

For PWR's using a deep-bed condensate demineralizer, the inventory of radionuclides collected on the demineralizer resins is calculated by considering the flow rate of condensate at main steam activity that

is processed through the demineralizers and radionuclide removal using the decontamination factors given in Chapter 2. The activity on the condensate demineralizer resins will also include the steam generator blowdown activity if the blowdown is recycled to the condensate demineralizers. The radioactivity content of the demineralizer regenerant solution is obtained by considering that all the radioactivity is removed from the resins at the interval dictated by the regeneration frequency.

Methods for calculating collection and processing times and the decontamination factors for radwaste treatment equipment are given in this chapter. The liquid radioactive source terms are adjusted to compensate for equipment downtime and anticipated operational occurrences.

For plants using an onsite laundry, a standard detergent waste source term, adjusted for the treatment provided, is added to the adjusted source term.

1.5 INSTRUCTIONS FOR COMPLETING PWR-GALE CODE INPUT DATA CARDS

1.5.1 PARAMETERS INCLUDED IN THE PWR-GALE CODE

The parameters listed below are built into the PWR-GALE Code since they are generally applicable to all PWR source term calculations and do not require entry on input data cards.

1.5.1.1 The Plant Capacity Factor

0.80 (292 effective full power days per year).

1.5.1.2 Radionuclide Concentrations in the Primary Coolant, Secondary Coolant, and Main Steam

See Section 2.2.3 of Chapter 2 of this document.

1.5.1.3 Radioiodine Releases from Building Ventilation Systems Prior to Treatment

See Table 1-1. For a discussion of the normalization techniques see Section 2.2.4.

1.5.1.4 Radioactive Particulate Releases from Building Ventilation Systems Prior to Treatment

See Table 1-2.

1.5.1.5 Noble Gas Releases from Building Ventilation Systems

Noble Gas Releases from the containment building are based on a leakage rate of 3%/day of primary coolant noble gas inventory. Releases from the auxiliary building are based on 160 lb/day primary coolant leakage. Releases from the turbine building are based on 1700 lb/hr steam leakage.

TABLE 1-1**

RADIOIODINE RELEASES FROM BUILDING VENTILATION SYSTEMS PRIOR TO TREATMENT (Ci/yr/uCi/g)

	Containment Building	Auxiliary Building**	Turbine Building ***
Annual Normalized* Iodine Release Rate			
Power Operation	8.0×10^{-411}	0.72 [†]	3.8×10^3
Refueling/Maintenance Outages	0.32**	2.59	4.2 x 10 ²

t* The values in this table come from Tables 2-13 through 2-16.

- * The normalized release rate, during different modes of operation, represents the effective leak rate for radioiodine. It is the combination of the reactor water leakage rate into the building and the partitioning of the radioiodine between the water phase in the leakage and the gas phase where it is measured. For the turbine building the effective leak rate must consider the carryover for radioiodine from water to steam in the steam generator.
- ** To obtain the actual iodine release from these buildings in Ci/yr, multiply the normalized release by the iodine coolant concentration in μCi/g.
- *** To obtain the actual iodine release from the turbine building in Ci/yr, multiply the normalized release by the secondary coolant concentration in μ Ci/g and by the partition coefficient (NS) from Table 2-6.
- t Includes contribution from the fuel pool area.
- This release rate is expressed in %/day of leakage of primary coolant inventory of iodine and represents the effective leak rate for radioiodine. It is the combination of the reactor water leakage rate into the buildings, and the partitioning of the radioiodine between the water phase in the leakage and the gas phase where it is measured. In order to obtain the releases in curies/year during power operations from the containment building of a particular PWR, the normalized leak rates in Table 1-1, are multiplied in the PWR-GALE Code by the iodine concentration in the reactor coolant for that particular PWR, and then this leak rate is considered along with the containment purging method for that particular PWR.

TABLE 1-2

RADIOACTIVE PARTICULATE RELEASES FROM BUILDING VENTILATION SYSTEMS

PRIOR TO TREATMENT*
(Ci/yr)/Unit

Nuclide	Containment	Auxiliary Building	Fuel Pool Area	Waste Gas System
Cr-51	9.2(-3)†	3.2(-4)	1.8(-4)	1.4(-5)
Mn-54	5.3(-3)	7.8(-5)	3.0(-4)	2.1(-6)
Co-57	8.2(-4)	NA	NA	NA
Co-58	2.5(-2)	1.9(-3)	2.1(-2)	8.7(-6)
Co-60	2.6(-3)	5.1(-4)	8.2(-3)	1.4(-5)
Fe-59	2.7(-3)	5.0(-5)	NA	1.8(-6)
Sr-89	1.3(-2)	7.5(-4)	2.1(-3)	4.4(-5)
Sr-90	5.2(-3)	2.9(-4)	8.0(-4)	1.7(-5)
Zr-95	NA	1.0(-3)	3.6(-6)	4.8(-6)
Nb-95	1.8(-3)	3.0(-5)	2.4(-3)	3.7(-6)
Ru-103	1.6(-3)	2.3(-5)	3.8(-5)	3.2(-6)
Ru-106	NA	6.0(-6)	6.9(-5)	2.7(-6)
Sb-125	NA	3.9(-6)	5.7(-5)	NA
Cs-134	2.5(-3)	5.4(-4)	1.7(-3)	3.3(-5)
Cs-136	3.2(-3)	4.8(-5)	NA	5.3(-6)
Cs-137	5.5(-3)	7.2(-4)	2.7(-3)	7.7(-5)
Ba-140	NA	4.0(-4)	NA	2.3(-5)
Ce-141	1.3(-3)	2.6(-5)	4.4(-7)	2.2(-6)

NA - No release observed from this source. Release assumed to be less than 1.0% of total.

 $^{9.2(-3) = 9.2 \}times 10^{-3}$.

^{*} The values in this table come from Tables 2-17 through 2-21.

1.5.1.6 Containment Building Purge Frequency

Two purges at cold shutdown per year plus a continuous purge specified by the applicant in his containment design.

1.5.1.7 Primary System Volumes Degassed per Year

Two coolant volumes per year for cold shutdowns plus volumes degassed due to continuous stripping.

1.5.1.8 Steam Generator Partition Coefficient (PC)

Once-through	<u>PC</u>
Iodine	1.0
Nonvolatiles	1.0
Recirculation U-Tube	
Iodine	0.01
Nonvolatiles	0.005

1.5.1.9 Radioiodine Releases from the Main Condenser Air Ejector Exhaust Prior to Treatment

The normalized release rate of radioiodine from the main condenser air ejector exhaust prior to treatment is 1.7 x 10^3 Ci/yr/ μ Ci/g. The normalized release rate represents the effective release rate for radioiodine. It is the combination of the steam flow to the main condenser, the partitioning of radioiodine between the main condenser and the air ejector exhaust where it is measured, and the partition coefficient for radioiodine from water to steam in the steam generator. To obtain the actual iodine release from the main condenser air ejector exhaust in Ci/yr, multiply the normalized release by the secondary coolant concentration in μ Ci/g and by the iodine partition coefficient (NS) from Table 2-6.

1.5.1.10 Containment Internal Cleanup System

For systems using an internal cleanup system, the PWR-GALE Code calculates the iodine concentration in the containment atmosphere based on 16 hours of system operation prior to purging, an iodine removal efficiency for the charcoal adsorbers corresponding to Table 1-5, a particulate DF of 100 for HEPA filters and an internal mixing efficiency of 70%.

1.5.1.11 Detergent Wastes

The radionuclides listed in Table 2-27 of Chapter 2 are assumed to be released unless treatment is provided or laundry is not processed on site.

1.5.1.12 Tritium Releases

The tritium releases through the combined liquid and vapor pathways are 0.4 Ci/yr per MWt. The quantity of tritium released through the liquid pathway is based on the calculated volume of liquid released, excluding secondary system wastes, with a primary coolant tritium concentration of 1.0 $\mu\text{Ci/ml}$ up to a maximum of 0.9 of the total quantity of tritium calculated to be available for release. It is assumed that the remainder of the tritium produced is released as a gas from building ventilation exhaust systems.

1.5.1.13 Argon-41 Releases

The annual quantity of argon-41 released from a pressurized water reactor is 34 Ci/yr. The argon-41 is released to the environment via the containment vent when the containment is vented or purged.

1.5.1.14 Carbon-14 Releases

The annual quantity of carbon-14 released is 7.3 Ci/yr, of which the releases from the containment, auxiliary building and waste gas system are 1.6, 4.5 and 1.2 Ci/yr, respectively.

1.5.1.15 Decontamination Factors for Condensate Demineralizer

Demineralizer	Anion	Cs, Rb	Other Nuclides
Deep Bed	10	2	10
Powdex	10	2	10

Note: For a system using filter/demineralizers (Powdex), a zero is entered for a regeneration frequency as explained later in Section 1.5.2.10.

1.5.1.16 Primary Coolant Purification System Demineralizers

Demineralizer	<u>Anion</u>	Cs, Rb	Other Nuclides
Mixed Bed	100	2	50
Cation	1	10	10

1.5.1.17 Releases of Radioactive Material in Liquid Waste from the Turbine Building Floor Drain System

7200 gal/day at main steam activity.

1.5.1.18 Regeneration of Condensate Demineralizers

Flow rates and concentrations of radioactive materials routed to the liquid radwaste treatment system from the chemical regeneration of the condensate demineralizers are based on the following parameters:

- Liquid flow to the demineralizer is based on the radioactivity of the main steam and the fraction of radioactivity which does not bypass the condensate demineralizer if there is pumped forward flow. The steam generator blowdown radioactivity is added to the condensate radioactivity if the blowdown is processed through the condensate demineralizer.
- 2. All radionuclides removed from the secondary coolant by the demineralizer resins are removed from the resins during chemical regeneration. The radioactivity in the regenerant wastes is adjusted for radionuclide decay during demineralizer operation.

1.5.1.19 Adjustment to Liquid Radwaste Source Terms for Anticipated Operational Occurrences

- 1. The calculated source term is increased by 0.16 Ci/yr per reactor using the same isotopic distribution as for the calculated source term to account for anticipated occurrences such as operator errors resulting in unplanned releases.
- 2. Evaporators are assumed to be unavailable for two consecutive days per week for maintenance. If a two-day holdup capacity or an alternate evaporator is available, no adjustment is needed. If less than a two-day capacity is available, the waste excess is assumed to be handled as follows:
 - a. <u>Clean or Dirty Waste</u> Processed through an alternative system (if available) using a discharge fraction consistent with the lower purity system.
 - b. <u>Chemical Waste</u> Discharged to the environment to the extent holdup capacity or an alternative evaporator is not available.

1.5.2 PARAMETERS REQUIRED FOR THE PWR-GALE CODE

Complete the cards designated in the sections below by "(SAR/ER)" from information given in the Safety Analysis and Environmental Reports. Complete the remaining cards (i.e., those not designated below as "(SAR/ER)" cards), using the principal source term parameters specified below and discussed in Chapter 2 of this document.

1.5.2.1 Card 1: Name of Reactor (SAR/ER)

Enter in spaces 33-60 the name of the reactor.

Enter in spaces 78-80 the type of reactor, i.e., PWR.

1.5.2.2 Card 2: Thermal Power Level (SAR/ER)

Enter in spaces 73-80 the maximum thermal power level (in MWt) evaluated for safety considerations in the Safety Analysis Report.

1.5.2.3 Card 3: Mass of Coolant in Primary System (SAR/ER)

Enter in spaces 73-80 the mass of coolant (in 10^3 lb) in the primary system at operating temperature and pressure.

1.5.2.4 Card 4: Primary System Letdown Rate (SAR/ER)

Enter in spaces 73-80 the average letdown rate (gal/min) from the primary system to the purification demineralizers.

1.5.2.5 Card 5: Letdown Cation Demineralizer Flow Rate (SAR/ER)

Enter in spaces 73-80 the annual average flow rate (gal/min) through the cation demineralizers for the control of cesium in the primary coolant. The average flow rate is determined by multiplying the average letdown rate (value entered on Card 4) by the fraction of time the cation demineralizers are in service to obtain the average cation demineralizer flow rate.

1.5.2.6 Card 6: Number of Steam Generators (SAR/ER)

Enter in spaces 73-80 the number of steam generators.

1.5.2.7 Card 7: Total Steam Flow (SAR/ER)

Enter in spaces 73-80 the total steam flow (in 10^6 lb/hr) for all steam generators.

1.5.2.8 Card 8: Mass of Liquid in Each Steam Generator (SAR/ER)

Enter in spaces 73-80 the mass of liquid (in 10^3 lb) in each steam generator.

1.5.2.9 Card 9: Steam Generator Blowdown Rate and Blowdown Treatment Method (SAR/ER)

Enter in spaces 37-44 the steam generator blowdown rate as given in the applicants SAR or ER.

Enter total blowdown rate in thousands of 1b/hr in spaces 37-44. For a once-through steam generator, leave spaces 37-44 blank.

Describe the Blowdown Treatment Method as follows:

- 1. Enter 0 in space 80 if the blowdown is recycled to the condensate system after treatment in the blowdown system whether or not there are condensate demineralizers.
- 2. Enter 1 in space 80 if the steam generator blowdown is recycled directly to condensate system demineralizers without prior treatment in the blowdown system.

3. Enter 2 in space 80 if the steam generator blowdown is not recycled to the condensate system.

If the plant has once-through steam generators, leave space 80 blank.

1.5.2.10 Card 10: Condensate Demineralizer Regeneration Time

For deep-bed condensate demineralizers which do not use ultrasonic resin cleaner, use a 1.2-day regeneration frequency. Multiply the frequency by the number of demineralizers and enter the calculated number of days in spaces 73-80; for deep-bed condensate demineralizers which use ultrasonic resin cleaning, use an 8-day regeneration frequency. For filter/demineralizers (Powdex) or if condensate demineralizers are not used, enter zeros in spaces 73-80.

1.5.2.11 Card 11: Fraction of Feedwater Through Condensate Demineralizer (SAR/ER)

Enter in spaces 73-80 the fraction of feedwater to the steam generator processed through the condensate demineralizers. If condensate demineralizers are not used, enter 0.0 in spaces 73-80.

1.5.2.12 Cards 12-29: Liquid Radwaste Treatment System Input Parameters

Six liquid radwaste inlet streams are considered in the PWR-GALE Code:

- 1. Shim Bleed, Cards 12-14.
- 2. Equipment Drain Waste, Cards 15-17.
- 3. Clean Waste, Cards 18-20.
- 4. Dirty Waste, Cards 21-23.
- 5. Blowdown Waste, Cards 24-26.
- 6. Regenerant Wastes, Cards 27-29.

Three input data cards are used to define the major parameters for each of the six waste streams. Essentially the same information is needed on the three input data cards used for each of the six waste streams. The instructions given in this section are applicable to all six waste streams with the following exception: The inlet waste activity is not entered for Cards 12, 24, and 27 for the shim bleed, blowdown wastes, or regenerant wastes since that activity for these wastes is calculated by the PWR-GALE Code.

Cards 12-14 are used only for the shim bleed stream. For reactor designs that combine the shim bleed with other reactor grade wastes prior to processing, the other wastes are entered as equipment drain wastes on Cards 15-17.

The entries required on the first card (12, 15, 18, 21, 24, and 27) for each of the six waste streams, respectively, considered in the PWR-GALE Code are outlined below and described in more detail in Section 1.5.2.15.1.

- 1. Enter in spaces 17-39 the name of the waste stream (Card 24 spaces 17-44).
- 2. Enter in spaces 42-49 the flow rate (in gal/day) of the inlet stream (except on Cards 24 and 27).
- 3. Enter in spaces 57-61 the activity of the inlet stream expressed as a fraction of primary coolant activity (PCA) (except on Cards 12, 24 and 27).

The second card (13, 16, 19, 22, 25, and 28) for each waste stream contains the overall system decontamination factors for the three categories of radionuclides, as follows:

- 1. Enter in spaces 21-28 the DF for iodine.
- 2. Enter in spaces 34-41 the DF for cesium and rubidium.
- 3. Enter in spaces 47-54 the DF for other nuclides.

The following entries are required on the third card (14, 17, 20, 23, 26, and 29) for each waste stream:

- 1. Enter in spaces 28-33 waste collection time (in days) prior to processing.
- 2. Enter in spaces 48-53 waste processing and discharge times (in days).
- 3. Enter in spaces 72-77 the average fraction of wastes to be discharged after processing.

Cards 24-26 are for waste inputs due to steam generator blowdown.

1. Card 24

- a. For recirculating U-tube steam generator systems, enter the fraction of the blowdown stream processed in spaces 73-80. The PWR-GALE Code will calculate releases based on steam generator blowdown wastes.
- b. For once-through steam generator systems, leave spaces 73-80 blank.

2. Card 25

a. If the steam generator blowdown is not recycled to the condensate system, enter blowdown system DF's as explained for Card 13.

- b. If the steam generator blowdown is recycled directly to the condensate system demineralizers without prior treatment in the blowdown system, enter DF of 1.0 for iodine in spaces 21-28, DF of 1.0 for cesium and rubidium in spaces 34-41, and DF of 1.0 for other nuclides in spaces 47-54.
- c. If the steam generator blowdown is recycled to the condensate system demineralizers after treatment in the blowdown system, enter blowdown system DF's as explained for Card 13.

3. Card 26

Complete Card 26 as explained for Card 14.

Cards 27-29 are for waste inputs due to regenerant wastes.

1. Card 27

- a. For recirculating U-tube steam generator systems that do not utilize condensate demineralizers in the secondary system, leave spaces 73-80 blank.
- b. For once-through steam generator systems and for recirculating U-tube steam generator systems that utilize condensate demineralizers in the secondary system, enter the regeneration solution waste flow (gal/day) in spaces 73-80. The inlet waste activity is not needed since the activity is calculated by the PWR-GALE Code.

2. Cards 28 and 29

Complete Cards 28 and 29 as explained for Cards 13 and 14.

The following sections explain in more detail the use of the parameters in this report and the information given in the SAR/ER to make the data entries on Cards 12-92 listed above.

1.5.2.12.1 Liquid Waste Flow Rates and Activities (Cards 12, 15, 18, 21, 24 and 27)

Flow rates and activity are calculated, using the waste volumes and activities given in Table 1-3. To the input flow rates given in the table, add expected flows and activities more specific to the plant design as given in the SAR/ER. With the exception of the shim bleed, the individual streams are combined based on the radwaste treatment system described in the SAR/ER.

Waste streams processed with the shim bleed are entered as equipment drain wastes on Cards 15-17. Input activities are based on the weighted average activity of the composite stream entering the waste collection

TABLE 1-3
PWR LIQUID WASTES

EXPECTED DAILY AVERAGE INPUT FLOW RATE (in Gal/day)

Type of treatment of blowdown recycled to secondary system (U-tube steam generator plants) or type of treatment of condensate (once-through steam generator plants)

		generator plants)		Plant with		
	SOURCE	Deep-bed cond. demineralizers with ultrasonic resin cleaner	Deep-bed cond. demineralizers without ultrasonic resin cleaner	Filter- demineralizer	ment. Product not recycled to condenser or secondary coolant system	FRACTION OF PRIMARY COOLANT ACTIVITY (PCA)
REA	CTOR CONTAINMENT					
a.	Primary coolant pump seal leakage	20	20	20	20	0.1
b.	Primary coolant leakage, miscellaneous sources	10	10	10	10	1.67*
с.	Primary coolant equipment drains	500	500	500	500	0.001
	· · · · · · · · · · · · · · · · · · ·					
a.	Primary coolant system equipment drains	80	80	80	80	1.0
b.	Spent fuel pit liner drains	700	700	700	700	0.001
с.	Primary coolant sampling system drains	200	200	200	200	0.05
d.	Auxiliary building floor drains	200	200	200	200	0.1
	a. b. c. PR1 (00) a. b. c.	REACTOR CONTAINMENT a. Primary coolant pump seal leakage b. Primary coolant leakage, miscellaneous sources c. Primary coolant equipment drains PRIMARY COOLANT SYSTEMS (OUTSIDE OF CONTAINMENT) a. Primary coolant system equipment drains b. Spent fuel pit liner drains c. Primary coolant sampling system drains d. Auxiliary building floor	Deep-bed cond. demineralizers with ultrasonic resin cleaner REACTOR CONTAINMENT a. Primary coolant pump seal leakage b. Primary coolant leakage, miscellaneous sources c. Primary coolant equipment drains PRIMARY COOLANT SYSTEMS (OUTSIDE OF CONTAINMENT) a. Primary coolant system equipment drains b. Spent fuel pit liner drains c. Primary coolant sampling system drains d. Auxiliary building floor 200	Beep-bed cond. demineralizers without ultrasonic resin cleaner REACTOR CONTAINMENT a. Primary coolant pump seal leakage b. Primary coolant leakage, miscellaneous sources c. Primary coolant equipment drains PRIMARY COOLANT SYSTEMS (OUTSIDE OF CONTAINMENT) a. Primary coolant system equipment drains b. Spent fuel pit liner drains c. Primary coolant sampling system drains d. Auxiliary building floor 200 200	Deep-bed cond. demineralizers without ultrasonic resin cleaner Filter-gesin cleaner Primary coolant pump seal leakage	Plant with blowdown treatment. Product demineralizers without ultrasonic resin cleaner Product not recycled to condenser or secondary coolant condenser or leakage. Primary coolant leakage, miscellaneous sources Primary coolant equipment drains Primary coolant system Source Primary coolant equipment drains Primary coolant system Source Source Source Source Source Primary coolant equipment drains Primary coolant system Source Source

TABLE 1-3 (Continued)

3.	SEC	ECONDARY COOLANT SYSTEMS							
	a.	Secondary coolant sampling system drains	1400	1400	1400	1400	10 ⁻⁴		
	b.	Condensate demineralizer rinse and transfer solutions	3000	12000	-	-	10 ⁻⁸		
	с.	Condensate demineralizer regenerant solutions	850	3400	-	-	Calculated in GALE Code		
	d.	Ultrasonic resin cleaner solutions	15000	-	-	-	10 ⁻⁶		
	е.	Condensate filter- demineralizer backwash	-	~	8100	-	2 x 10 ⁻⁶		
	f.	Steam generator blowdown	-	-	-	Plant dependent**	Plant dependent**		
1-19	g.	Turbine building floor drains	7200	7200	7200	7200	Calculated in GALE Code		
4.		ERGENT AND DECONTAMINATION							
	a.	On-site laundry facility	300	300	300	300	See Table 2-26		
	b.	Hot showers	Negligible	Negligible	Negligible	Negligible	-		
	с.	Hand wash sink drains	200	200	200	200	See Table 2-26		
	d.	Equipment and area decontamination	40	40	40	40	See Table 2-26		
		TOTALS	29,700	26,300	19,000	10,000	······································		

 $[\]star$ About 40 percent of the leakage flashes, resulting in PCA fraction of the leakage greater than 1.0. $\star\star$ Input parameter.

tanks. For example, if the inlet streams A, B, and C enter the dirty waste collector tank at average rates and PCA as listed below,

Stream A 1,000 gal/day at 0.01PCA

Stream B 2,000 gal/day at 0.1PCA

Stream C 500 gal/day at 1.0PCA

the composite A, B, C activity would be calculated as follows:

 $\frac{(1,000 \text{ gal/day})(0.01\text{PCA}) + (2,000 \text{ gal/day})(0.1\text{PCA}) + (500 \text{ gal/day})(1.0\text{PCA})}{(1,000 \text{ gal/day} + 2,000 \text{ gal/day} + 500 \text{ gal/day})} = 0.2\text{PCA}$

The entries on Card 21 for this example would then be: spaces 17-33, "Dirty Waste"; spaces 42-49, 3500.; spaces 57-61, "0.2".

The input flow rates and activities are entered in units of gal/day and fractions of PCA, respectively.

1.5.2.12.2 Decontamination Factors for Equipment Used in the Liquid Radwaste Treatment System (Cards 13, 16, 19, 22, 25, and 28)

The decontamination factors (DF's) given in this document are used in the PWR-GALE Code. The DF's represent the expected equipment performance averaged over the life of the plant, including downtime. The following factors should be considered in calculating the overall decontamination factors for the various systems:

- 1. DF's are categorized by one of the following types of radionuclides:
 - a. Halogens
 - b. Cs, Rb
 - c. Other Nuclides

Note: A DF of 1 is assumed by the PWR-GALE Code for tritium. Noble gases and water activation products, e.g., N-16, are not considered in the liquid code.

- 2. The system DF for each inlet stream is the product of the individual equipment DF's in each of the subsystems.
- 3. Equipment that is used optionally (as required) and not included in the normal flow scheme should not be considered in calculating the overall system DF.

Table 1-4 shows the decontamination factors to be used for PWR systems.

TABLE 1-4

DECONTAMINATION FACTORS FOR PWR LIQUID WASTE TREATMENT SYSTEMS

TREATMENT SYSTEM	DEC	OTTAMINATIO	ON FACTOR
Demineralizer	Anion	Cs, Rb	Other Nuclides
Mixed Bed			
Primary coolant letdown (CVCS)	100	2	50
Radwaste (H ⁺ OH ⁻)	10 ² (10)*	2(10)	10 ² (10)
Evaporator condensate polishing	5	1	10
Boron recycle	10	2	10
Steam generator blowdown	10 ² (10)	10(10)	10 ² (10)
Cation bed (any system)	1(1)	10(10)	10(10)
Anion bed (any system)	10 ² (10)	1(1)	1(1)
Powdex (any system)	10(10)	2(10)	10(10)
Evaporators Miscellaneous radwaste	All Nuclide Except Iod		<u>Iodine</u> 10 ²
Boric acid recovery	10 ³		10 ²
Reverse Osmosis		All Nuc	lides
Laundry wastes		30	
Other liquid wastes		10	
Filters		DF of 1	for all nuclides

^{*} For demineralizers in series, the DF for the second demineralizer is given in parentheses.

The following example illustrates the calculation of the decontamination factor for a dirty waste treatment system: Assume that dirty wastes are collected; processed through a filter, an evaporator, and a mixed-bed polishing demineralizer; and collected for sampling. If required to meet discharge criteria, the contents of the waste sample (test) tank are processed through a mixed-bed demineralizer for additional radionuclide removal. This example may be summarized graphically as:

Demineralizer 2

Dirty waste — Filter — Evaporator — Demineralizer l — Waste sample collector tank

Extracting from Table 1-4 gives the following values for the example:

	Filter	Evaporator	Demineralizer	Demineralizer	Product
Iodine	1	10 ²	5	1	5 x 10 ²
Cs, Rb	1	10 ³	1	1	10 ³
Other Nuclides	1	10 ³	10	1	10 ⁴

These values are obtained as follows:

- A DF of 1.0 is applied to all nuclides for the filter.
- A DF of 10^2 for iodine and 10^3 for Cs, Rb, and other nuclides is applied for the radwaste evaporator.
- A DF of 5 is applied for iodine, a DF of 1 for Cs, Rb and a DF of 10 for the evaporator condensate polishing demineralizer.
- A DF of l is applied to the second demineralizer since this demineralizer's used is optional, and it is not used for normal operations.
- The product of the DF's is obtained by multiplication of the first four columns for each nuclide.

Thus on Card 22, the following would be entered: in spaces 21-28, "500.0"; in spaces 34-41, "1000.0"; and in spaces 47-54, "10000.0".

1.5.2.12.3 Collection Time for Liquid Wastes (Cards 14, 17, 20, 23, 26, and 29 -- Spaces 29-33)

Collection time prior to processing is based on the input flow calculated above. Where redundant tanks are provided, assume the collection tank to be filled to 80% design capacity. If only one tank is provided,

assume the tank to be filled to 40% design capacity. For example, if flow from a 1,000-gal/day floor drain is collected in two 20,000-gallon tanks prior to processing, collection time would be calculated as follows:

Collection time
$$(T_c) = \frac{(0.8)(20,000 \text{ gal})}{(1,000 \text{ gal/day})} = 16 \text{ days}$$

Then, for example, "16.0" should be entered in spaces 29-33 on Card 23.

1.5.2.12.4 Processing and Discharge Time (Cards 14, 17, 20, 23, 26, and 29 -- Spaces 48-53)

Decay during processing and discharge of liquid wastes is shown graphically as follows:

where

A is the capacity of initial tank in flow scheme, in gal;

B is the limiting process based on equipment flow capacity, dimensionless;

C is the capacity of final tank in flow scheme prior to discharge, in gal;

 R_h is the equipment flow capacity of Process B, in gal/day;

 ${\rm R}_{\rm C}$ is the flow capacity of Tank C discharge pump, in gal/day; and

 R_{o} is the rate of flow of additional waste inputs to Tank C, in gal/day.

 $T_{\rm p}$, the process time credited for decay, is calculated as follows, in days:

$$T_p = \frac{0.8A}{R_b}$$
 for redundant tanks, or $T_p = \frac{0.4A}{R_b}$ for a single tank

 $T_{\rm d}$, the discharge time (50% credited for decay), is calculated as follows, in days:

$$T_d = \frac{0.8C}{R_c}$$
 for redundant tanks, or $T_d = \frac{0.4C}{R_c}$ for a single tank.

After performing the above two calculations, calculate whether credit may be taken for decay during discharge by determining whether

0.8C >
$$T_p(R_b + R_o)$$
 for redundant tanks, or
0.4C > $T_p(R_b + R_o)$ for a single tank.

If so, then

Decay =
$$T_p + 0.5T_d$$

where "Decay" is the new processing and discharge time to be entered in spaces 48-53 of the third card for each input stream (Cards 14, 17, 20, 23, 26, and 29).

If, however, 0.8C (or 0.4C, as appropriate) $\leq T_p(R_b + R_o)$, T_p is used for the holdup time during processing, since Tank C may be discharged before Tank A has been completely processed. In this case, the T_p value should be entered in spaces 48-53 of the third card.

For example, for the following input waste stream:

Decay time during processing and discharge is calculated as follows:

Process Time
$$(T_p) = \frac{(0.8)(20,000 \text{ gal})}{(15 \text{ gal/min})(1440 \text{ min/day})} = 0.7 \text{ day}$$

Discharge Time
$$(T_d) = \frac{(0.8)(40,000 \text{ gal})}{(10 \text{ gal/min})(1440 \text{ min/day})} = 2.2 \text{ days}$$

Then, checking for decay credit, $0.8C/(R_b + R_o) = 1.45$ days, which is greater than T_p ; therefore, credit is taken for $(T_p + 0.5T_d)$ or 1.8 days for processing and discharge. The input in spaces 48-53 to the Code is 1.8 days for processing and discharge time.

1.5.2.12.5 Fraction of Wastes Discharged (Cards 14, 17, 20, 23, 26, and 29 -- Spaces 72-77)

The percent of the wastes discharged after processing may vary between 10% and 100%, except as noted below, based on the capability of the system to process liquid waste during equipment downtime, waste volume surges, tritium control requirements, and tank surge capacity. A minimum value of 10% discharge for the liquid radioactive waste treatment system is used when the system is designed for maximum waste recycle, when the system capacity is sufficient to process wastes for reuse during equipment downtime and anticipated operational occurrences, and when a discharge route is provided. For steam generator blowdown treatment systems, less than 10% discharge should be considered on a case-by-base basis, depending on system capacity.

The PWR-GALE Code calculates the release of radioactive materials in liquid waste from the following systems after processing. The quantity released is shown on the printout.

- 1. Boron Recovery System Combined releases from both shim bleed and equipment drains.
- 2. <u>Miscellaneous Liquid Waste System</u> Combined releases from both clean and dirty waste subsystems.
- 3. <u>Secondary Waste System</u> Releases from steam generator blowdown system, regenerant wastes from demineralizer regenerations, or both according to the plant design.
- 4. <u>Turbine Building Floor Drain System</u> Releases of liquid from the turbine building floor drain system are calculated assuming no treatment prior to release. Straight decay time of 6 hours is built into the code.
- 5. <u>Detergent Waste System</u> Combined releases from laundry operations, equipment decontamination solutions, and personnel decontamination showers.

1.5.2.13 Card 30: Letdown System

- 1. Enter 0 in space 80 if there is not continuous gas stripping of the full letdown flow. (This sets Y = 0.0.)
- 2. Enter 1 in space 80 if there is continuous degassification of the full letdown flow to the gaseous radwaste system via a gas stripper. (This sets Y = 1.0.)
- 3. Enter 2 in space 80 if there is continuous purging of the volume control tank. (This sets Y = 0.25.)

The total amount of fission gases routed to the gaseous radwaste system from several systems in the plant (e.g., volume control tank, shim bleed gas stripper, equipment drain tanks, cover gas) is calculated in the PWR-GALE Code. (For definition of "Y", see Tables 2-4 & 2-5.)

1.5.2.14 Cards 31-33: Holdup Time for Fission Gases Stripped from Primary Coolant

The holdup time for gases stripped from the primary coolant is hand calculated because of the multiplicity of holdup system designs. The calculations are based on the following parameters:

1. Pressurized Storage Tanks

- a. One storage tank is held in reserve for back-to-back shutdowns, one tank is in the process of filling, and the remainder are used for storage. The PWR-GALE Code will calculate the effective holdup time for filling and add it to the holdup time for storage.
- b. Calculations are based on the waste gas input flow rate to the pressurized storage tanks, and a storage tank pressure 70% of the design value.
- c. If the calculated holdup time exceeds 90 days, assume the remaining gases are released after 90 days.

The holdup time (T_h) and fill time (T_f) are calculated as follows:

$$T_f = \frac{PV}{F}$$

$$T_h = \frac{PV(n-2)}{F}$$

where

n is the number of tanks;

- n-2 is the correction to subtract the tank being filled and the tank held in reserve;
- P is the storage pressure, in atmospheres (dimensionless in this particular calculation);
- $T_{\mathbf{f}}$ is the time required to fill one tank, in days;
- T_h is the holdup time, in days;
- V is the volume of each tank, in ft^3 (STP); and
- F is the waste gas flow rate to pressurized storage tanks. This flow rate should be supplied by the applicant for the specific type of waste gas system design. In the absence of specific data supplied by the applicant, we will use the data given in Section 2.2.12.1, in which the average value for the PWR's listed in Table 2-24 is 170 ft 3 /day (STP) per reactor for PWR's without recombiners; and for PWR's with recombiners, the average value for the PWR's listed in Table 2-25 is 30 ft 3 /day (STP) per reactor.

Enter on Card 31 the holdup time, in days, for Xe in spaces 73-80.

Enter on Card 32 the holdup time, in days, for Kr in spaces 73-80.

Enter on Card 33 the fill time, in days, in spaces 73-80.

2. Charcoal Delay Systems

Charcoal delay system holdup times are based on the following equation:

T = 0.011 MK/F

where

- F is the system flow rate, in ft³/min; (see 1.5.2.14.1.c, above)
- K is the dynamic adsorption coefficient, in cm^3/g ;
- M is the mass of charcoal adsorber, in thousands of pounds; and
- T is the holdup time, in days.

The dynamic absorption coefficient, K, for Xe and Kr and based on

the system design noted below.

DYNAMIC ABSORPTION COEFFICIENT, K (cm³/g)

	Operating 77°F Dew Point 45°F	Operating 77°F Dew Point O°F	Operating 77°F Dew Point -40°	Operating O°F Dew Point -20°
Kr	18.5	25	70	105
Хe	330.0	440	1160	2410

Enter on Card 31 the holdup time, in days, for Xe in spaces 73-80.

Enter on Card 32 the holdup time, in days, for Kr in spaces 73-80.

Leave Card 33 blank.

Cover Gas Recycle System

For this system or other systems designed to hold gases indefinitely, the calculations are based on a 90-day holdup time.

Enter on Card 31 the holdup time (90 days) for Xe in spaces 73-80.

Enter on Card 32 the holdup time (90 days) for Kr in spaces 73-80.

Enter on Card 33 the fill time (0 days) in spaces 73-80.

1.5.2.15 Card 34: Waste Gas System Particulate Releases

Card 34 identifies the treatment provided for particulate removal from the waste gas system effluent.

- 1. If ventilation exhaust air is treated through HEPA filters which satisfy the guidelines of Regulatory Guide 1.140 (Ref. 2), enter a removal efficiency of 99. for particulates in spaces 39-41.
- 2. If no treatment is provided for the ventilation exhaust air to remove particulates or if the HEPA filters do not satisfy the guidelines of Regulatory Guide 1.140 (Ref. 2), enter 0.0 in spaces 39-41.

1.5.2.16 Cards 35 and 36: Fuel Handling and Auxiliary Buildings Releases

Cards 35 and 36 indicate the fractions of airborne iodine and radioactive particulates released from the fuel handling and auxiliary buildings, respectively.

TABLE 1-5

ASSIGNED REMOVAL EFFICIENCIES FOR CHARCOAL ADSORBERS FOR RADIOIODINE REMOVAL

Activated Carbon ^a Bed Depth	Removal Efficiencies b
2 inches. Air filtration system designed to operate inside reactor containment	90.
2 inches. Air filtration system designed to operate outside the reactor containment and relative humidity is controlled at 70%	70.
4 inches. Air filtration system designed to operate outside the reactor containment and relative humidity is controlled at 70%	90.
6 inches. Air filtration system designed to operate outside the reactor containment and relative humidity is controlled to 70%	99.

^a Multiple beds, e.g., two 2-inch beds in series, should be treated as a single bed of aggregate depth of 4 inches.

The removal efficiencies assigned to HEPA filters for particulate removal and charcoal adsorbers for radioiodine removal are based on the design, testing, and maintenance criteria recommended in Regulatory Guide 1.140, "Design, Testing and Maintenance Criteria for Normal Ventilation Exhaust System Air Filtration and Adsorption Units of Light-Water-Cooled Nuclear Power Plants" (Ref. 2).

- 1. If ventilation exhaust air is treated through charcoal adsorbers which satisfy the guidelines of Regulatory Guide 1.140 (Ref. 2), enter the appropriate removal efficiency in spaces 47-49 for radioiodine corresponding to the depth of charcoal as indicated in Table 1-5.
- 2. If ventilation exhaust air is treated through HEPA filters which satisfy the guidelines of Regulatory Guide 1.140 (Ref. 2), enter a removal efficiency of 99. for particulates in spaces 56-58.
- 3. If no treatment is provided for the ventilation exhaust air to remove radioiodine, enter 0.0 in spaces 47-49; if no treatment is provided to remove particulates, enter 0.0 in spaces 56-58.

1.5.2.17 Card 37: Containment Free Volume (SAR/ER)

Enter the containment volume (in 10^6 ft³) in spaces 73-80.

1.5.2.18 Card 38: Containment Internal Cleanup System (SAR/ER)

- 1. If the containment internal cleanup system uses charcoal adsorbers which satisfy the guidelines of Regulatory Guide 1.140 (Ref. 2), enter the appropriate removal efficiency in spaces 47-49 for radioiodine corresponding to the depth of charcoal as indicated in Table 1-5.
- 2. If the containment internal cleanup system uses HEPA filters which satisfy the guidelines of Regulatory Guide 1.140 (Ref. 2), enter a removal efficiency of 99. for particulates in spaces 56-58.
- 3. If there is no containment internal cleanup system, enter 0.0 in spaces 47-49 and in spaces 56-58.
- 4. Enter the flow rate (in 10^3 ft³/min) through the internal cleanup system in spaces 73-80.

The airborne concentration calculations are based on the following parameters:

- a. A primary coolant leakage rate corresponding to the normalized release rate given in Table 1-1.
- b. A continuous normal ventilation flow rate as specified by the applicant.
- c. Operation of the cleanup system for 16 hours prior to purging.
- d. A DF for the charcoal adsorber corresponding to the values in Table 1-5, a DF of 100 for the HEPA filters, and a mixing efficiency of 70%. The mixing efficiency is an effective removal efficiency which takes into account the effects of incomplete mixing in the containment.

e. Continuous leakage of primary coolant during the operation of the internal cleanup system.

1.5.2.19 <u>Card 39: Containment Building Iodine Releases - During Large</u> Volume Purge System Operation

Card 39 indicates the fraction of airborne iodine and radioactive particulates released during purging of the containment building with the large volume containment purge system.

Note: Treatment referred to below does not include the internal recirculation system.

- 1. If ventilation exhaust air is treated through charcoal adsorbers which satisfy the guidelines of Regulatory Guide 1.140 (Ref. 2), enter the appropriate removal efficiency in spaces 47-49 for radioiodine corresponding to the depth of charcoal as indicated in Table 1-5.
- 2. If ventilation exhaust air is treated through HEPA filters which satisfy the guidelines of Regulatory Guide 1.140 (Ref. 2), enter a removal efficiency of 99. for particulates in spaces 56-58.
- 3. If no treatment is provided for the ventilation exhaust air to remove radioiodine, enter 0.0 in spaces 47-49; if no treatment is provided to remove particulates, enter 0.0 in spaces 56-58.
- 4. Enter the number of purges per year during power operations in spaces 78-80. (Note: The 2 purges at shutdown are stored in the PWR GALE Code and need not be entered on card 39.)

1.5.2.20 <u>Card 40: Containment Building Iodine Releases - Low Volume</u> <u>Purge During Power Operation</u>

Card 40 indicates the fraction of airborne iodine in the containment atmosphere that is released during the low volume purge of the containment building while the reactor is at power.

Note: Treatment referred to below does not include the internal recirculation system.

- 1. If ventilation exhaust air is treated through charcoal adsorbers which satisfy the guidelines of Regulatory Guide 1.140 (Ref. 2), enter the appropriate removal efficiency in spaces 47-49 for radioiodine corresponding to the depth of charcoal as indicated in Table 1-5.
- 2. If ventilation exhaust air is treated through HEPA filters which satisfy the guidelines of Regulatory Guide 1.140 (Ref. 2), enter a removal efficiency of 99. for particulates in spaces 56-58.
- 3. If no treatment is provided for the ventilation exhaust air to remove radioiodine, enter 0.0 in spaces 47-49; if no treatment is provided to remove particulates, enter 0.0 in spaces 56-58.

4. Enter the continuous containment purge rate (ft^3/min) in spaces 73-80.

1.5.2.21 Card 41: Steam Generator Blowdown Tank Vent

- 1. Enter 0.0 in spaces 73-80 if the gases from the blowdown flash tank are vented through a condenser prior to release.
- 2. Enter 0.0 in spaces 73-80 if the blowdown flash tank is vented to the main condenser air ejector.
- 3. Enter 0.0 in spaces 73-80 for a once-through steam generator system.
- 4. For older plants which still use flash tanks which vent directly to the atmosphere an iodine partition factor of 0.05 is used.

1.5.2.22 <u>Card 42: Percentage of Iodine Removed by the Condenser Air Ejector Offgas Treatment System</u>

- 1. If, prior to release, the offgases from the condenser air ejector are processed through charcoal adsorbers which satisfy the guidelines of Regulatory Guide 1.140 (Ref. 2), enter the removal efficiency in spaces 73-80 for radioiodine corresponding to the depth of charcoal as indicated in Table 1-5.
- 2. If the offgases are released from the condenser air ejector without treatment, enter 0.0 in spaces 73-80.

1.5.2.23 Card 43: Detergent Wastes

- 1. If the plant does not have an onsite laundry, enter 0.0 in spaces 73-80.
- 2. If the plant has an onsite laundry and detergent wastes are released without treatment, enter 1.0 in spaces 73-80.
- 3. If detergent wastes are treated prior to discharge, enter the fraction of radionuclides remaining after treatment (1/DF) in spaces 73-80. The parameters in Chapter 2 of this document should be used in determining the DF for the treatment applied to detergent wastes.

CHAPTER 2. PRINCIPAL PARAMETERS USED IN PWR SOURCE TERM CALCULATIONS AND THEIR BASES

2.1 INTRODUCTION

The principal parameters used in source term calculations have been compiled to standardize the calculation of radioactive source terms.

The following sections describe parameters used in the evaluation of radwaste treatment systems. The parameters have been derived from reactor operating experience where data were available. Where operating data were inconclusive or not available, information was drawn from laboratory and field tests and from engineering judgment. The bases for the source term parameters explain the reasons for choosing the numerical values listed. A list of references used in developing the parameters is also included.

The parameters in the PWR-GALE Code will be updated periodically and published in revisions to this NUREG as additional operating data become available. The source term parameters used are believed to provide a realistic assessment of reactor and radwaste system operation.

2.2 PRINCIPAL PARAMETERS AND THEIR BASES

2.2.1 THERMAL POWER LEVEL

2.2.1.1 Parameter

The maximum thermal power level (MWt) evaluated for safety considerations in the Safety Analysis Report.

2.2.1.2 Bases

The power level used in the source term PWR-GALE Code is the maximum power level evaluated for safety considerations in the Safety Analysis Report. Using this value, the evaluation of the radwaste management systems need not be repeated when the applicant applies for a stretch power license at a later date. Past experience indicates that most utilities request approval to operate at maximum power soon after reaching commercial operation.

2.2.2 PLANT CAPACITY FACTOR

2.2.2.1 Parameter

A plant capacity factor of 80% is used, i.e., 292 effective full power days.

2.2.2.2 Bases

The source term calculations are based on a plant capacity factor of 80% averaged over the 30-year operating life of the plant, i.e., the plant operates at 100% power 80% of the time. The plant capacity factors experienced at PWR's are listed in Table 2-1 for the period 1972 through 1977.

The average plant capacity factors shown in Table 2-1 indicate that the 80% factor assumed is higher than the average factors experienced. However, it is expected that the major maintenance problems and extended refueling outages that have contributed to the lower plant capacity factors will be overcome and that the plants will achieve the 80% capacity factor when averaged over 30 years of operation.

2.2.3 RADIONUCLIDE CONCENTRATIONS IN THE PRIMARY AND SECONDARY COOLANT

2.2.3.1 Parameter

As used in the PWR-GALE Code, Tables 2-2 and 2-3 list the expected radionuclide concentrations in the reactor coolant and steam for PWR's with design parameters within the ranges listed in Tables 2-4 and 2-5. Should any design parameter be outside the range in Tables 2-4 and 2-5, the PWR-GALE Code adjusts the concentrations in Tables 2-2 and 2-3, using the factors in Tables 2-6, 2-7, and 2-8. Figures 2-1 and 2-2 show the graphical relationship of the design parameters.

2.2.3.2 Bases

The radionuclide concentrations, adjustment factors, and procedure for effecting adjustments are based on the values and methods in American National Standard ANSI N237, Source Term Specification, (Ref. 1) but have been updated based on a recent compilation of available operating data concerning primary coolant concentrations, steam generator tube leakage, and secondary side radionuclide behavior. Therefore, the concentration values in NUREG-0017, Rev. 1 differ from the ANSI N237 values.

The values in Tables 2-2 and 2-3 provide a set of typical radionuclide concentrations in the primary and secondary systems for reactor designs within the parameters specified in Tables 2-4 and 2-5. The values in Tables 2-2 and 2-3 are those determined to be representative of radionuclide concentrations in a PWR over its lifetime based on the currently available data and models. The secondary coolant concentrations given in Tables 2-2 and 2-3 are calculated by using the reference parameters given in Table 2-6 and the equations given in Tables 2-7 and 2-8. It is recognized that some systems will have design parameters that are outside the ranges specified in Tables 2-4 and 2-5. For that reason, a means of adjusting the concentrations to the actual design parameters has been provided in Tables 2-6 through 2-8. The adjustment factors in Table 2-6 through 2-8 are based on the following expression;

TABLE 2-1

PLANT CAPACITY FACTORS AT OPERATING PWR's a

FACILITY ^b	Date of Commercial Operation	1972	1973	1974	1975	<u>1976</u>	<u> 1977</u>
Haddam Neck San Onofre 1 R. E. Ginna Point Beach 1 H. B. Robinson 2 Palisades Point Beach 2 Turkey Point 3 Surry 1 Maine Yankee Surry 2 Oconee 1 Indian Point 2 Turkey Point 4 Fort Calhoun Prairie Island 1 Zion 1 Kewaunee Three Mile Island Oconee 2 Zion 2 Oconee 3 Arkansas 1 Prairie Island 2 Rancho Seco Calvert Cliffs 1 Cook 1 Millstone 2 Trojan Indian Point 3 Beaver Valley 1 St. Lucie 1	1/68 1/68 7/70 12/70 3/71 12/71 10/72 12/72 12/72 12/72 5/73 7/73 8/73 9/73 9/73 12/73 12/73 12/73 12/74 12/74 12/74 12/74 12/74 12/74 12/74 12/74 12/76 8/76 10/76 12/76	86 72 58 69 78 61	48 ^d 60 81 67 65 40 ^e 72 55 17	89 83 50 ^d 76 81 d 77 61 d 54 51 71 61 e 49 ^g	84 85 73 70 71 46 88 76 60 69 71 68 54 83 68 79 68 69 73	81 66 52 78 82 50 86 75 67 91 64 57 73 55 64 54 69 98 75 68	82 82 83 85 74 78 82 78 77 65 54 73 71 73 87 75 65 64 63 71 72 44 78
AVERAGE		71	64	69	72	69	74

^a From monthly Operating Units Status Reports.

 $^{^{}b}$ Indian Point 1 and Yankee Rowe are not included since they are small reactors [< 700 MW(t)].

Plant capacity factors listed are for the first full year of commercial operation. Therefore, this list does not include the following plants which began commercial operation in 1977 and 1978: Calvert Cliffs 2, Cook 2, Crystal River 3, Davis Besse 1, Farley 1, Salem 1, North Anna 1, and Three Mile Island 2.

d Not included due to extended outage for refueling/amintenance.

e Not included due to extended maintenance/repair to the secondary system.

f Not included due to extended operation at reudced power.

 $^{^{}m g}$ Not included due to extended maintenance outage to repair generator.

TABLE 2-2

NUMERICAL VALUES - CONCENTRATIONS IN PRINCIPAL FLUID STREAMS

OF THE REFERENCE PWR WITH U-TUBE STEAM GENERATORS

(µCi/g)

		Secondary	Coolant*
<u>Isotope</u> Noble Gases	Reactor Coolant**	Water***	Steam ^{††}
Kr-85m Kr-85 Kr-87 Kr-88 Xe-131m Xe-133m Xe-135 Xe-135m Xe-135 Xe-137	1.6(-1) ^{†††} 4.3(-1) 1.5(-1) 2.8(-1) 7.3(-1) 7.0(-2) 2.6(0) 1.3(-1) 8.5(-1) 3.4(-2) 1.2(-1)		3.4(-8) 8.9(-8) 3.0(-8) 5.9(-8) 1.5(-7) 1.5(-8) 5.4(-7) 2.7(-8) 1.8(-7) 7.1(-9) 2.5(-8)
Halogens Br-84 I-131 I-132 I-133 I-134 I-135	1.6(-2) 4.5(-2) 2.1(-1) 1.4(-1) 3.4(-1) 2.6(-1)	7.5(-8) 1.8(-6) 3.1(-6) 4.8(-6) 2.4(-6) 6.6(-6)	7.5(-10) 1.8(-8) 3.1(-8) 4.8(-8) 2.4(-8) 6.6(-8)
Cs, Rb Rb-88 Cs-134 Cs-136 Cs-137	1.9(-1) 7.1(-3) 8.7(-4) 9.4(-3)	5.3(-7) 3.3(-7) 4.0(-8) 4.4(-7)	2.6(-9) 1.7(-9) 2.0(-10) 2.2(-9)
Water Activation	Products		
N-16	4.0(+1)	1.0(-6)	1.0(-7)
Tritium			
H-3	1.0(0)	1.0(-3)	1.0(-3)
Other Nuclides			
Na-24 Cr-51 Mn-54	4.7(-2) 3.1(-3) 1.6(-3)	1.5(-6) 1.3(-7) 6.5(-8)	7.5(-9) 6.3(-10) 3.3(-10)

TABLE 2-2 (continued)

Secondary Cod	οl	ant*	•
---------------	----	------	---

Isotope	Reactor Coolant**	<u>Water***</u>	Steam ^{††}
Fe-55	1.2(-3)	4.9(-8)	2.5(-10)
Fe-59	3.0(-4)	1.2(-8)	6.1(-11)
Co-58	4.6(-3)	1 . 9(-7)	9.4(-10)
Co-60	5.3(-4)	2.2(-8)	1.1(-10)
Zn-65	5.1(-4)	2.1(-8)	1.0(-10)
Sr-89	1.4(-4)	5.7(-9)	2.9(-11)
Sr-90	1.2(-5)	4.9(-10)	2.5(-12)
Sr-91	9.6(-4)	2.8(-8)	1.4(-10)
Y-91 m	4.6(-4)	3.2(-9)	1.6(-11)
Y-91	5.2(-6)	2.1(-10)	1.1(-12)
Y-93	4.2(-3)	1.2(-7)	6.1(-10)
Zr-95	3.9(-4)	1.6(-8)	7.9(-11)
Nb-95	2.8(-4)	1.1(-8)	5.7(-11)
Mo-99	6.4(-3)	2.5(-7)	1.2(-9)
Tc-99m	4.7(-3)	1.1(-7)	5.7(-10)
Ru-103	7.5(-3)	3.1(-7)	1.6(-9)
Ru-106	9.0(-2)	3.7(-6)	1.8(-8)
Ag-110m	1.3(-3)	5.3(-8)	2.7(-10)
Te-129m	1.9(-4)	7.8(-9)	3.9(-11)
Te-129	2.4(-2)	2.2(-7)	1.1(-9)
Te-131m	1.5(-3)	5.4(-8)	2.7(-10)
Te-131	7.7(-3)	2.9(-8)	1.5(-10)
Te-132	1.7(-3)	6.6(-8)	3.3(-10)
Ba-140	1.3(-2)	5.2(-7)	2.6(-9)
La-140	2.5(-2)	9.3(-7)	4.6(-9)
Ce-141	1.5(-4)	6.1(-9)	3.1(-11)
Ce-143	2.8(-3)	1.0(-7)	5.1(-10)
Ce-144	3.9(-3)	1.6(-7)	8.2(-10)
W-187	2.5(-3)	8.7(-8)	4.4(-10) 4.2(-10)
Np-239	2.2(-3)	8.4(-8)	4.2(-10)

^{*} Based on a primary-to-secondary leak of 75 lb/day.

$$t+t = 1.6(-1) = 1.6 \times 10^{-1}$$
.

^{**} The concentrations given are for reactor coolant entering the letdown line. These concentrations are obtained from Tables 2-9 and 2-10. N-16 and H-3 concentrations are obtained from Reference 1.

^{***} The concentrations given are for water in a steam generator.

tt The concentrations given are for steam leaving a steam generator.

TABLE 2-3

NUMERICAL VALUES - CONCENTRATIONS IN PRINCIPAL FLUID STREAMS OF THE REFERENCE PWR WITH ONCE-THROUGH STEAM GENERATORS $(\mu \text{Ci/g})$

Isotope	Reactor Coolant*	Secondary Coolant**
Noble Gases		
Kr-85m Kr-85 Kr-87 Kr-88 Xe-131m Xe-133m Xe-135 Xe-135m Xe-135 Xe-137	1.6(-1) 4.3(-1) 1.5(-1) 2.8(-1) 7.3(-1) 7.0(-2) 2.6(0) 1.3(-1) 8.5(-1) 3.4(-2) 1.2(-1)	3.4(-8) 8.9(-8) 3.0(-8) 5.9(-8) 1.5(-7) 1.5(-8) 5.4(-7) 2.7(-8) 1.8(-7) 7.1(-9) 2.5(-8)
<u>Halogens</u>		
Br-84 I-131 I-132 I-133 I-134 I-135	1.6(-2) 4.5(-2) 2.1(-1) 1.4(-1) 3.4(-1) 2.6(-1)	1.8(-8) 5.2(-8) 2.4(-7) 1.6(-7) 3.8(-7) 3.0(-7)
Cs, Rb		
Rb-88 Cs-134 Cs-136 Cs-137	1.9(-1) 7.1(-3) 8.7(-4) 9.4(-3)	6.0(-7) 3.0(-8) 3.6(-9) 3.9(-8)
Water Activation Produ	ucts	
N-16	4.0(+1)	1.0(-6)
Tritium		
H-3	1.0(0)	1.0(-3)
Other Nuclides		
Na-24 Cr-51 Mn-54 Fe-55 Fe-59 Co-58 Co-60	4.7(-2) 3.1(-3) 1.6(-3) 1.2(-3) 3.0(-4) 4.6(-3) 5.3(-4)	1.0(-7) 6.9(-9) 3.6(-9) 2.7(-9) 6.7(-10) 1.0(-8) 1.2(-9)

TABLE 2-3 (continued)

<u>Isotope</u>	Reactor Coolant*	Secondary Coolant**
Zn-65	5.1(-4)	1.1(-9)
Sr-89	1.4(-4)	3.1(-10)
Sr-90	1.2(-5)	2.7(-11)
Sr-91	9.6(-4)	2.1(-9)
Y-91 m	4.6(-4)	9.7(-10)
Y-91	5.2(-6)	1.2(-11)
Y-93	4.2(-3)	9.3(-9)
Zr-95	3.9(-4)	8.7(-10)
Nb-95	2.8(-4)	6.2(-10)
Mo-99	6.4(-3)	1.4(-8)
Tc-99m	4.7(-3)	1.0(-8)
Ru-103	7.5(-3)	1.7(-8)
Ru-106	9.0(-2)	2.0(-7)
Ag-110m	1.3(-3)	2.9(-9)
Te-129m	1.9(-4)	4.2(-10)
Te-129	2.4(-2)	5.1(-8)
Te-131m	1.5(-3)	3 . 3(-9)
Te-131	7.7(-3)	1.5(-8)
Te-132	1.7(-3)	3.8(-9)
Ba-140	1.3(-2)	2.9(-8)
La-140	2.5(-2)	5.6(-8)
Ce-141	1.5(-4)	3.3(-10)
Ce-143	2.8(-3)	6.2(-9)
Ce-144	3.9(-3)	8.7(-9)
W-187	2.5(-3)	5.6(-9)
Np-239	2.2(-3)	4.9(-9)

^{*} The concentrations given are reactor coolant entering the letdown line. These concentrations are obtained from Tables 2-9 and 2-10. N-16 and H-3 concentrations are obtained from Reference 1.

^{**} Based on primary-to-secondary leakage of 75 lb/day. The concentrations given are for steam leaving a steam generator.

TABLE 2-4

PARAMETERS USED TO DESCRIBE THE REFERENCE PRESSURIZED WATER

REACTOR WITH U-TUBE STEAM GENERATORS

Parameter	Symbol	Units	Nominal Value	Ran Maximum	ge Minimum
Thermal Power	Р	MWt	3,400	3,800	3,000
Steam flow rate	FS	lb/hr	1.5(7)	1.7(7)	1.3(7)
Weight of water in reactor coolant system	WP	16	5.5(5)	6.0(5)	5.0(5)
Weight of water in all steam generators	WS	16	4.5(5)	5.0(5)	4.0(5)
Reactor coolant letdown flow (purification)	FD	lb/hr	3.7(4)	4.2(4)	3.2(4)
Reactor coolant letdown flow (yearly average for boron control)	FB	lb/hr	500	1,000	250
Steam generator blowdown flow (total)	FBD	lb/hr	75,000	100,000	50,000
Fraction of radioactivity in blowdown stream that is not returned to the secondary coolant system	NBD		1.0*	1.0	0.9
Flow through the purification system cation demineralizer	FA	lb/hr	3,700	7,500	0.0
Ratio of condensate demineralizer flow rate to the total steam flow rate	NC		0.0**	0.01	0.0
Ratio of the total amount of noble gases routed to gaseous radwaste from the purification system to the total amount of noble gases routed from the primary coolant system to the purification system (not including the boron recovery system)	Y		0.0	0.01	0.0

^{*} This value is based on a nominal case of blowdown through blowdown demineralizers back to the main condenser (no condensate demineralizers). Value taken from blowdown demineralizer DF's in Section 2.2.18. Value for cesium and rubidium is 0.9.

^{**} This value is based on a nominal case of no condensate demineralizers. For a U-tube steam generator PWR with full flow condensate demineralizers, a value of NC = 1.0 is used by the PWR-GALE Code. For a U-tube steam generator PWR with condensate demineralizers and pumped forward feedwater heater drains, the value for NC used by the PWR-GALE Code is 0.2 for iodine, and 0.1 for Cs, Rb and other nuclides as discussed on page 2-20.

TABLE 2-5

PARAMETERS USED TO DESCRIBE THE REFERENCE PRESSURIZED WATER

REACTOR WITH ONCE-THROUGH STEAM GENERATORS

Parameter	Symbol	<u>Units</u>	Nominal Value	Ranç <u>Maximum</u>	je <u>Minimum</u>
Thermal Power	Р	MWt	3,400	3,800	3,000
Steam flow rate	FS	lb/hr	1.5(7)	1.7(7)	1.3(7)
Weight of water in reactor coolant system	WP	1b	5.5(5)	6.0(5)	5.0(5)
Weight of water in all steam generators	WS	1b	1.0(5)	*	*
Reactor coolant letdown flow (purification)	FD	lb/hr	3.7(4)	4.2(4)	3.2(4)
Reactor coolant letdown flow (yearly average for boron control)	FB	lb/hr	500	1,000	250
Flow through the purification system cation demineralizer	FA	lb/hr	3,700	7,500	0.0
Ratio of condensate demineralizer flow rate to the total steam flow rate	NC		0.65**	0.75	0.55
Ratio of the total amount of noble gases routed to gaseous radwaste from the purification system to the total amount routed from the primary coolant system to the purification system (not including the boron recovery system)	Y		0.0	0.01	0.0

^{*} The secondary coolant inventory is not of importance in a once-through steam generator plant because decay is not an important removal mechanism for most of the isotopes.

^{**} For a PWR that is within the range indicated above, i.e., a PWR with pumped forward feedwater heater drains, the value for NC used by the PWR-GALE Code is 0.2 for iodine and 0.1 for Cs, Rb and other nuclides, as discussed on page 2-20. For a PWR that has full flow condensate demineralizer, a value of NC = 1.0 is used by the PWR-GALE Code.

TABLE 2-6

VALUES USED IN DETERMINING ADJUSTMENT FACTORS FOR PRESSURIZED WATER REACTORS

Element Class

		Zichichic Oluss							
Symbol	Description	Noble Gases	Halogens	Cs, Rb	Water Activation Products	<u>H-3</u>	Other Nuclides		
NA	Fraction of material removed in passing through the cation demineralizer	0.0	0.0	0.9	0.0	0.0	0.9*		
NB	Fraction of material removed in passing through the purification demineralizer	0.0	0.99	0.5	0.0	0.0	0.98		
R	Removal rate - reactor coolant (Hr)**	0.0009	0.067	0.037	0.0	***	0.066		
NS	Ratio of concentration in steam to that in water in the steam generator								
	U-tube steam generator	†	0.01	0.005	††	1.0	0.005		
	Once-through steam generator	†	1.0	1.0	1.0	1.0	1.0		
NX	Fraction of activity removed in passing through the condensate demineralizers	0.0	0.9	0.5	0.0	0.0	0.9		
r	Removal rate =1 secondary coolant (Hr 1) +++								
	U-tube steam generator	†	0.17	0.15	††	***	0.17		
	Once-through steam generator	†	27	7.5	††	***	14		
FL	Primary-to-secondary leakage (lb/day)	75	75	75	75	75	75		

^{*} These represent effective removal terms and include mechanisms such as plateout. Plateout would be applicable to nuclides such as Mo and corrosion products.

TABLE 2-6 (continued)

** These values of R apply to the reference PWR's whose parameters are given in Tables 2-4 and 2-5 and have been used in developing Tables 2-7 and 2-8. For PWR's not included in Tables 2-4 and 2-5, the appropriate value for R may be determined by the following equations.

$$R = \frac{FB + (FD - FB)Y}{WP}$$
 for noble gases

$$R = \frac{(FD)(NB) + (1 - NB)(FB + (FA)(NA))}{WP}$$
 for halogens, Cs, Rb, and other nuclides

- *** The concentration of tritium is a function of (1) the inventory of tritiated liquids in the plant, (2) the rate of production of tritium due to activation in the reactor coolant as well as releases from the fuel, and (3) the extent to which tritiated water is recycled or discharged from the plant. The tritium concentrations given in Tables 2-2 and 2-3 are representative of PWR's with a moderate amount of tritium recycle and can be used to calculate source terms in accordance with Regulatory Guide 1.112, "Calculations of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Light-Water-Cooled Power Reactors."
- t Noble gases are rapidly transported out of the water in the steam generator and swept out of the vessel in the steam; therefore, the concentration in the water is negligible and the concentration in the steam is approximately equal to the ratio of the release rate to the steam generator and the steam flow rate. These noble gases are removed from the system at the main condenser.
- the Water activation products exhibit varying chemical and physical properties in reactor coolants that are not well defined. Most are not effectively removed by the demineralizers, but their concentrations are controlled by decay.
- ttt These values of r apply to the reference PWR's whose parameters are given in Tables 2-4 and 2-5 and have been used in developing Tables 2-7 and 2-8. For PWR's not included in Tables 2-4 and 2-5, the appropriate value for r may be determined by the following equation:

$$r = \frac{(FBD)(NBD) + (NS)(FS)(NC)(NX)}{WS}$$
 for halogens, Cs, Rb, and other nuclides

TABLE 2-7

ADJUSTMENT FACTORS FOR PWR'S WITH U-TUBE STEAM GENERATORS

Adjustment Factors

		Secondary Coolant						
Element Class	Reactor Water (f)*	Water	Steam					
Noble gases	$\frac{162P}{WP} \frac{0.0009 + \lambda **}{R + \lambda}$. 	$\frac{1.5 \times 10^7}{FS}$ f					
Halogens	$\frac{162P}{WP} = \frac{0.067 + \lambda}{R + \lambda}$	$\frac{4.5 \times 10^5}{WS} \frac{0.17 + \lambda}{r + \lambda}$ f	$\frac{4.5 \times 10^5}{WS} \frac{0.17 + \lambda}{r + \lambda}$ f					
Cs, Rb	$\frac{162P}{WP} = \frac{0.037 + \lambda}{R + \lambda}$	$\frac{4.5 \times 10^5}{WS} \frac{0.15 + \lambda}{r + \lambda}$ f	$\frac{4.5 \times 10^5}{\text{WS}} \frac{0.15 + \lambda}{\text{r} + \lambda} \text{f}$					
Water activation products	1.0	$\frac{4.5 \times 10^5}{\text{WS}}$	$\frac{4.5 \times 10^5}{\text{WS}}$					
Tritium	***	***	***					
Other nuclides	$\frac{162P}{WP} = \frac{0.066 + \lambda}{R + \lambda}$	$\frac{4.5 \times 10^5}{WS} \frac{0.17 + \lambda}{r + \lambda}$ f	$\frac{4.5 \times 10^5}{WS} \frac{0.17 + \lambda}{r + \lambda}$ f					

^{*} f is the reactor water adjustment factor and is used in the secondary coolant adjustment factors.

^{**} λ is the isotopic decay constant (hr⁻¹).

^{***} The concentration of tritium is a function of (1) the inventory of tritiated liquids in the plant, (2) the rate of production of tritium due to activation in the reactor coolant as well as releases from the fuel, and (3) the extent to which tritiated water is recycled or discharged from the plant. The tritium concentrations given in Tables 2-2 and 2-3 are representative of PWR's with a moderate amount of tritium recycle and can be used to calculate source terms in accordance with Regulatory Guide 1.112.

TABLE 2-8

ADJUSTMENT FACTORS FOR PWR's WITH ONCE-THROUGH STEAM GENERATORS

Adjustment Factors

Nuclide	Reactor Water (f)*	Secondary Coolant
Noble gases	$\frac{162P}{WP} = \frac{0.0009 + \lambda}{R + \lambda}$	$\frac{1.5 \times 10^7}{FS}$ f
Halogens	$\frac{162P}{WP} \frac{0.067 + \lambda}{R + \lambda}$	$\frac{10^5}{WS} \left(\frac{27 + \lambda}{r + \lambda} \right) f$
Cs, Rb	$\frac{162P}{WP} = \frac{0.037 + \lambda}{R + \lambda}$	$\frac{10^5}{WS} \left(\frac{7.5 + \lambda}{r + \lambda} \right) f$
Water activation products	1.0	1.0 x 10 ⁵ WS
Tritium	**	**
Other nuclides	$\frac{162P}{WP} = \frac{0.066 + \lambda}{R + \lambda}$	$\frac{10^5}{WS} \left(\frac{14 + \lambda}{r + \lambda} \right) f$

^{*} f is the reactor water adjustment factor and is used in the secondary coolant adjustment factors.

^{**} The concentration of tritium is a function of (1) the inventory of tritiated liquids in the plant, (2) the rate of production of tritium due to activation in the reactor coolant as well as releases from the fuel, and (3) the extent to which tritiated water is recycled or discharged from the plant. The tritium concentrations given in Tables 2-2 and 2-3 are representative of PWR's with a moderate amount of tritium recycle and can be used to calculate source terms in accordance with the Regulatory Guide 1.112.

FIGURE 2-1 REMOVAL PATHS FOR PRESSURIZED WATER REACTOR WITH U-TUBE STEAM GENERATORS

FIGURE 2-2 REMOVAL PATHS FOR PRESSURIZED WATER REACTOR WITH ONCE-THROUGH STEAM GENERATORS

$$C = \frac{s}{w(\lambda + R)K}$$

where

- C is the specific activity (in μ Ci/g)
- K is a conversion factor, 454 g/lb
- R is the removal rate of the isotope from the system due to demineralization, leakage, etc. (hr^{-1}) . (If considering secondary coolant R = r).
- s is the rate of release to and/or production of the isotope in the system (in μ Ci/hr)
- w is the fluid weight (in lb), and is the decay constant (hr⁻¹).

The following sample calculations illustrate the method by which the PWR-GALE Code will adjust the radionuclide concentrations in Tables 2-2 and 2-3. As indicated in Tables 2-7 and 2-8, adjustment factors will be calculated for noble gases, halogens, Cs, Rb, and other nuclides.

As an example, the sample case parameters shown below compare with the range of values in Table 2-4 as follows.

Parameter (U-tube steam generator PWR)	<u>Value</u>	Range
Thermal power level, MWt	3800	3000 - 3800
Steam flow rate, lb/hr	17 x 10 ⁶	$13 \times 10^6 - 17 \times 10^6$
Mass of reactor coolant, 1b	5.5 x 10 ⁵	$5.0 \times 10^5 - 6.0 \times 10^5$
Water weight in all steam generators, 1b	4.4×10^5	$4.0 \times 10^5 - 5.0 \times 10^5$
Reactor coolant letdown, lb/hr	4.9×10^4	$3.2 \times 10^4 - 4.2 \times 10^4$
Cation demineralizer flow, 1b/hr	4.9×10^3	$0 - 7.5 \times 10^3$
Shim bleed rate - yearly average, 1b/hr	650	250 - 1000
Steam generator blowdown flow, lb/hr	60,000	50,000 - 100,000
Fraction of blowdown activity not returned to secondary system	0.99	0.9 - 1.0
Cation demineralizer flow, lb/hr	4900	0.0 - 7500
Condensate demineralizer flow fraction	0.0	0.0 - 0.01
Y (see definition in Table 2-4 and page 1-26)		

Since in this example the parameter for reactor coolant letdown rate $(4.9 \times 10^4 \text{ lb/hr})$ is outside the range specified in Table 2-4 $(3.2 - 4.2 \times 10^4 \text{ lb/hr})$, and the sample case employs continuous purging of the volume control tank, the primary coolant activity is recalculated using the actual design value for all parameters employing the methods described below.

1. Noble Gases (Xe-133 is used as an example)

Using the equation for noble gases in Table 2-7, the adjustment factor, f, is calculated as follows:

$$f = \frac{162P}{WP} \frac{0.0009 + \lambda}{R + \lambda} \tag{1}$$

where the terms in the equations are defined in Tables 2-4 and 2-6.

In calculating f, the variable R is calculated first by using the equation given in Table 2-6 for noble gases

$$R = \frac{FB + (FD - FB)(Y)}{WP}$$
 (2)

where the terms of the equation are as defined in Tables 2-4 and 2-6.

Use the sample case parameters given above and the noble gas parameters given in Table 2-6 and substitute in Equation (2) above.

$$R = \frac{650 + (4.9 \times 10^4 - 650) \times 0.25}{5.5 \times 10^5} = 0.023$$

Use the value of R in Equation (1) above.

$$f = \frac{162 \times 3800}{5.5 \times 10^5} \quad \frac{0.0009 + 5.5 \times 10^{-3}}{0.023 + 5.5 \times 10^{-3}} = 0.25$$

The adjusted Xe-133 primary coolant concentration

- = (adjustment factor) x (standard Xe-133 concentration)
- = $0.25 \times 2.6 \mu \text{Ci/q} = 0.65 \mu \text{Ci/q}$

2. Halogens (I-131 is used as an example)

Using the equation for halogens in Table 2-7, the adjustment factor, f, is calculated as follows:

$$f = \frac{162P}{WP} \frac{0.067 + \lambda}{R + \lambda} \tag{3}$$

where the terms in the equations are defined in Tables 2-4 and 2-6.

In calculating f, the variable R is calculated first by using the equation given in Table 2-6.

$$R = \frac{(FD)(NB) + (1 - NB)(FB + (FA)(NA))}{WP}$$
(4)

where the terms in the equation are as defined in Tables 2-4 and 2-6.

Use the sample case parameters given above and the halogen parameters given in Table 2-6 and substitute in Equation (4) above.

$$R = \frac{(4.9 \times 10^4 \times 0.99) + (1 - 0.99)(650 + (4900)(0.0))}{5.5 \times 10^5} = 0.088$$

Use the value of R in Equation (3) above.

$$f = \frac{162(3800)}{5.5 \times 10^5} \quad \frac{0.067 + 3.6 \times 10^{-3}}{0.088 + 3.6 \times 10^{-3}} = 0.86$$

The adjusted I-131 concentration

- = (adjustment factor) x (standard I-131 concentration)
- = $0.86 \times 0.045 \mu \text{Ci/q} = 0.039 \mu \text{Ci/q}$

3. Cs, Rb (Cs-137 is used as an example)

Using the equation for Cs and Rb in Table 2-7, the adjustment factor, f, is calculated as follows:

$$f = \frac{162P}{WP} \frac{0.037 + \lambda}{R + \lambda} \tag{5}$$

where the terms in the equation are as defined in Tables 2-4 and 2-6.

In calculating f, the variable R is calculated first by using Equation (4) above. The Cs and Rb parameters given in Table 2-6 and the sample case parameters given in Table 2-9 are used in the equation.

$$R = \frac{(4.9 \times 10^4 \times 0.5) + (0.5)(650 + (4900)(0.9))}{5.5 \times 10^5} = 0.05$$

Use the value of R in Equation (5) above.

$$f = \frac{162(3800)}{5.5 \times 10^5} \frac{0.037 + 2.6 \times 10^{-6}}{0.05 + 2.6 \times 10^{-6}} = 0.83$$

The adjusted Cs-137 concentration

= (adjustment factor) x (standard Cs-137 concentration)

=
$$0.83 \times 9.4 \times 10^{-3} \mu \text{Ci/g} = 7.8 \times 10^{-3} \mu \text{Ci/g}$$

4. Other Nuclides (Te-132 is used as an example)

Using the equation for other nuclides in Table 2-7, the adjustment factor, f, is calculated as follows:

$$f = \frac{162P}{WP} \frac{0.066 + \lambda}{R + \lambda} \tag{6}$$

where the terms in the equation are as defined in Tables 2-4 and 2-6.

In calculating f, the variable R is calculated first by using Equation (4) above. The parameters for other nuclides given in Table 2-6 and the sample case parameters given in Table 2-9 are used in the equation.

$$R = \frac{(4.9 \times 10^4) (0.98) + (1 - 0.98)(650 + (4900)(0.9))}{5.5 \times 10^5} = 0.087$$

Use the value of R in equation (6) above.

$$f = \frac{162 (3800)}{5.5 \times 10^5} \frac{(0.066 + 8.9 \times 10^{-3})}{0.087 + 8.9 \times 10^{-3}} = 0.87$$

The adjusted concentration of Te-132

= (adjustment factor) x (standard Te-132 concentration)

=
$$0.87 \times 1.7 \times 10^{-3} \mu \text{Ci/g} = 1.5 \times 10^{-3} \mu \text{Ci/g}$$

A similar method is used in the PWR-GALE Code to adjust secondary coolant concentrations for reactors with parameters outside the ranges specified in Tables 2-4 and 2-5.

The radionuclide primary coolant concentrations in Tables 2-2 and 2-3 are based on data submitted by utilities with operating PWR's (Ref. 3). The data are also based on measurements taken by the NRC at Ft. Calhoun (Ref. 4), Zion 1 and 2 (Ref. 5), Turkey Point 3 and 4 (Ref. 6), Rancho Seco (Ref. 43), and Prairie Island 1 and 2 (Ref. 42); by EPRI (Ref. 7) at Three Mile Island 1 and Calvert Cliffs; and by measurements at various other PWR's (Ref. 8, 9, and 39).

These data are summarized in Table 2-9 and Table 2-10 indicating the average value of the nuclide concentration for each plant, the years over which the data was obtained, and the total number of years of data for each nuclide.

The secondary coolant concentrations are based on the primary coolant concentrations as obtained above, on 75 lb/day primary-to-secondary leakage in the steam generators, on appropriate steam generator carryover factors, on the appropriate main steam flow, steam generator blowdown flow and fraction of a blowdown flow returned to the secondary coolant, as defined in the plant design, and on the fraction of the nuclides in the main steam which return to the steam generators.

The secondary coolant concentrations are based on 75 lb/day primary-to-secondary leakage. The primary-to-secondary leakage rate experience for 79 years of experience at operating PWR's is given in Table 2-11. The average primary-to-secondary leakage rate in Table 2-11 is 75 lb/day. Westinghouse estimates that the data in Table 2-11 are accurate within \pm 25% (Ref. 8, 39).

For plants using recirculating U-tube steam generators, carryover due to mechanical entrainment is based on 0.5% moisture in the steam. Table 2-12 provides measured values for moisture carryover at five operating PWR's that use recirculating U-tube steam generators. Based on data from Turkey Point 3 and 4 (Ref. 6) a value of 1% iodine carryover with the steam is used in our evaluations. For once-through steam generators, it is assumed that 100% of both nonvolatile and volatile species is carried over with the steam since this type of steam generator has no liquid reservoir and 100% of the feed is converted to steam.

For PWR's that use condensate demineralizers in the secondary system, the nominal value of the ratio of the condensate demineralizer flow rate to the total steam flow rate is 0.65. This indicates that the nominal case is a design which utilizes a pumped forward model, that is, one in which the reactor steam flow is split with 65% flowing to the low pressure turbines and the main condenser, and 35% pumped forward to the feedwater. The fraction pumped forward to the feedwater does not undergo any treatment in the condensate demineralizers. We have determined that the iodine, Cs, Rb, and "Other Nuclides" of Table 2-2 and Table 2-3 preferentially go with the "pumped forward" fraction. The reason for this is that these nuclides show a tendency to go with the condensed steam in the moisture separator-reheater drains and with the extraction steam lines from the high pressure turbines to the feedwater system. Based on data provided in Ref. 6, 7, 12 and 13 for Turkey Point, Point Beach and Brunswick, the percentages used in the PWR-GALE Code for the amount of activity which is pumped forward and which bypasses the condensate demineralizers is 80% for iodine and 90% for Cs, Rb, and "Other Nuclides" of Table 2-2 and Table 2-3. Since the remainder of the nuclides listed in Tables 2-2 and 2-3 are not removed in the condensate demineralizers, we have not considered the magnitude of bypass for those nuclides.

TABLE 2-9

SUMMARY OF I-131 AND I-133 PRIMARY COOLANT CONCENTRATIONS IN PWR'S*

(uCi/g)

	Isotope	H.B. Robinson 2 (1973-1978)**	Arkansas 1 (1976)	D.C. Cook 1 (1976-1978)	Trojan [1977-1978]	Palisades (1972-1970		t Beach 1/2 972-1979)	R.E. Ginna (1971-1978)
	I-131 I-133	3.1E-03 1.2E-02	7.3E-03 ***	7.8E-03 1.8E-02	1.3E-02 1.5E-02	1.2E-02 1.6E-02		7.7E-02 3.6E-01	2.2E-01 6.9E-01
	Isotope	Fort Calhoun 1 (1976-1977)	Zion 1/2 (1975-1978)	Turkey Point 3/4 (1974-1978)	Three Mile (1975-1		Calvert C		eaver Valley 1 (1977-1978)
2-21	I-131 I-133	1.8E-01 1.6E-01	2.3E-02 6.9E-02	2.1E-02 6.9E-02	2.1E- ***		3.6E- ***		1.8E-03 5.5E-03
	Isotope	Indian Point 2/3 (1975-1978)	Kewaunee (1975-1978)	Prairie Island 1/2 (1975-1981)	2 Surry 1/2 (1973-1978		arley 1 978)	Yankee Rowe (1975)	Rancho Seco (1978)
	I-131 I-133	2.5E-02 5.1E-02	5.3E-03 1.3E-02	8.1E-03 1.0E-02	2.1E-02 3.2E-02		E-04 E-03	4.9E-03 2.4E-02	1.3E-02 4.7E-02

^{*} Data in this table are based on I-131 and I-133 primary coolant concentrations in Ref. 3 through 9, 42 and 43, and have been adjusted to the NSS parameters listed in Table 2-4 of this report. These adjustments were made using the individual plant parameters and the nominal plant parameters (Table 2-4) and adjusting the actual coolant concentration using the equations in Table 2-7 of this report.

^{**} Data in this table were gathered during the indicated inclusive dates. It does not necessarily imply that data were available during each of the years covered by the period, nor does it mean that the number of data points should be the same for each radionuclide.

^{***} No value reported.

TABLE 2-10 SUMMARY OF RADIONUCLIDE PRIMARY COOLANT CONCENTRATIONS IN PWR'S* $\frac{(\mu \text{Ci/g})}{}$

	<u>Isotope</u>	H.B. Robinson 2 (1973-1978)**	Arkansas 1 (1976)	D.C. Cook 1 (1976-1978)	Trojan (1977-1978)	Palisades (1972-1976)	Point Beach 1/2 (1972-1979)	R.E. Ginna (1971-1978)
	Kr-85m	1.8E-02	8.0E-03	3.4E-02	2.2E-02	4.0E-01	2.2E-01	2.4E-01
	Kr-85	***	5.2E-03	***	3.5E+00	8.3E-04	2.9E-02	***
	Kr-87	1.7E-02	6.7E-03	4.7E-02	4.2E-02	4.6E-01	1.1E-01	3.8E-01
	Kr-88	2.3E-02	1.3E-02	5.7E-02	4.0E-02	7.5E-01	3.0E-01	6.3E-01
	Xe-131m	***	***	***	***	4.4E+00	9.4E-01	***
	Xe-133m	1.6E-03	3.3E-03	1.5E-02	2.7E-03	1.9E-01	6.5E-02	***
	Xe-133	2.3E-01	2.1E-01	5.8E-01	5.7E-01	4.9E+00	2.8E+00	6.0E+00
	Xe-135m	2.1E-02	***	***	***	1.0E-02	1.4E-01	1.5E-01
	Xe-135	7.8E-02	2.7E-02	1.9E-01	1.2E-01	1.1E+00	1.1E+00	2.2E+00
	Xe-137	***	***	***	***	***	***	***
	Xe-138	***	***	***	6.7E-02	2.2E-03	1.7E-01	***
2	Br-84	***	***	***	***	***	***	***
22	I-132	1.5E-02	***	***	1.9E-02	7.1E-03	3.6E-01	7.3E-01
	I-134	3.2E-02	***	2.4E-02	2.2E-02	1.0E-02	6.2 E-01	1.2E+00
	I-135	1.9E-02	***	2.0E-02	1.7E-02	9.2E-03	5.7E-01	6.6E-01
	Rb-88	***	***	***	3.5E-02	2.6E-02	1.7E-01	3.7E-01
	Cs-134	1.9E-03	5.6E-04	2.7E-03	6.0E-04	1.7E-04	1.4E-02	1.1E-02
	Cs-136	3.1E-04	***	5.2E-03	7.2E-04	4.6E-05	2.2E-03	***
	Cs-137	2.3E-03	1.5E-03	4.9E-03	1.3E-03	2.6E-04	1.1E-02	3.1E-02
	N-16	***	***	***	***	***	***	***
	H-3	***	6.3E-02	2.1E-01	***	7.5E-02	5.0E-01	6.7E-01
	Na-24	1.3E-01	8.7E-02	1.2E-02	1.3E-02	5.6E-03	7.6E-02	***
	Cr-51	3.5E-04	3.2E-03	***	***	9.1E-03	***	1.1E-04
	Mn-54	3.4E-04	7.6E-04	8.3E-03	9.7E-04	1.1E-04	2.8E-03	2.5E-05
	Fe-55	***	***	***	***	***	***	***
	Fe-59	1.4E-05	1.6E-03	***	***	1.6E-04	***	2.6E-05
	Co-58	1.3E-03	7.0E-03	1.4E-02	2.2E-03	3.4E-03	9.6E-03	7.6E-04
	Co-60	3.5E-04	6.4E-04	4.5E-03	3.4E-05	1.1E-04	2.3E-04	1.6E-04
	Zn-65	1.7E-05	***	***	***	7.0E-05	***	***
	Sr-89	2.3E-05	***	***	***	***	2.4E-04	***
	Sr-90	5.2E-06	***	***	***	1.1E-04	***	***

2-22

TABLE 2-10 (continued)

SUMMARY OF RADIONUCLIDE PRIMARY COOLANT CONCENTRATIONS IN PWR'S* $({}_{\mu}\text{Ci/g})$

	<u>Isotope</u>	H.B. Robinson 2 (1973-1978)**	Arkansas 1 (1976)	D.C. Cook 1 (1976-1978)	Trojan (1977-1978)	Palisades (1972-1976)	Point Beach 1/2 (1972-1979)	R.E. Ginna (1971-1978)
	Sr-91	4.9E-04	***	***	***	1.1E-04	***	***
	Y-91m	***	***	***	***	***	***	***
	Y-91	***	***	***	***	***	***	***
	Y-93	***	***	***	***	***	***	***
	Zr-95	1.3E-05	3.4E-04	4.5E-03	***	1.0E-04	***	1.5E-03
	Nb-95	1.3E-05	3.1E-04	2.4E-03	***	7.6E-05	3.6E-04	8.1E-05
	Mo-99	***	7.2E-05	***	***	5.7E-04	3.8E-02	4.1E-04
	Tc-99m	***	***	***	***	7.3E-04	2.5E-02	***
	Ru-103	***	***	***	***	***	***	1.2E-03
2	Ru-106	***	***	***	***	***	***	***
2	Ag-110m	***	***	***	***	***	8.8E-03	***
-23	Te-129m	***	***	***	***	***	***	***
	Le-129	***	***	***	***	***	***	***
	Te-131m	***	***	***	***	***	***	***
	Te-131	***	***	***	***	***	***	***
	Te-132	***	1.3E-03	***	***	6.6E-05	8.8E-03	***
	Ba-140	2.0E-04	***	***	***	6.2E-06	1.6E-01	5.9E-05
	La-140	9.2E-05	***	***	***	3.0E-05	5.2E-01	***
	Ce-141	***	***	***	***	***	***	***
	Ce-143	***	***	***	***	***	***	***
	Ce-144	2.6E-04	1.4E-03	***	***	***	4.5E-02	***
	W-187	3.4E-04	***	***	***	5.8E-04	***	***
	Np-239	***	***	***	***	***	***	2.0E-03

-23

TABLE 2-10 (continued)

SUMMARY OF RADIONUCLIDE PRIMARY COOLANT CONCENTRATIONS IN PWR'S*

(µCi/g)

	Isotope	Fort Calhoun 1 (1976-1977)	Zion 1/2 (1975-1978)	Turkey Point 3/4 (1974-1978)	Indian Pt 2/3 (1975-1978)	Yankee Rowe (1975)	Calvert Cliffs 1 (1976)	Three Mile Island 1 (1975-1977)	Prairie Island 1/2 (1981)	Rancho Seco (1979)
	Kr-85m	1.9E-01	***	7.8E-02	3.4E-02	5.7E-03	***	***	4.9E-04	5.5E-02
	Kr-85	3.4E-02	***	***	***	***	***	***	3.3E-04	2.2E-01
	Kr-87	1.9E-01	***	9.0E-02	***	7.6E-03	***	***	1.1E-03	5.9E-02
	Kr-88	3.2E-01	***	1.3E-01	7.3E-02	1.9E-02	***	***	1.1E-03	9.9E-02
	Xe-131m	6.8E-02	***	1.2E-03	***	***	***	***	4.2E-05	3.5E-03
	Xe-133m	1.6E-01	***	9.1E-03	***	***	***	***	7.2E-05	4.5E-02
	Xe-133	6.7E+00	***	8.8E-01	8.3E-01	2.1E-01	***	***	2.2E-03	1.5E+00
	Xe-135m	9.5E-02	***	1.7E-01	1.0E-01	***	***	***	1.4E-03	6.0E-01
	Xe-135	9.3E-01	***	5.1E-01	1.9E-01	3.0E-02	***	***	3.6E-03	4.6E-01
7	Xe-137	***	***	3.4E-02	***	***	***	***	***	***†
2	Xe-138	1.8E-01	***	7.6E-02	***	***	***	***	2.9E-03	1.7E-01
	Br-84	***	***	1.1E-02	***	***	***	***	1.0E-03	5.5E-02
	I-132	7.1E-02	9.6E-02	9.3E-02	***	1.8E-02	***	***	5.1E-03	5.3E-02
	I-134	3.8E-02	1.3E-01	1.5E-01	***	***	***	***	9.0E-03	8.3E-02
	I-135	7.4E-02	1.1E-01	8.6E-02	***	***	***	***	5.8E-03	6.0E-02
	Rb-88	5.0E-01	2.3E-01	1.0E-01	***	***	***	***	5.7E-03	1.5E-01
	Cs-134	1.8E-02	9.4E-03	1.8E-03	1.9E-02	***	***	***	2.2E-05	7.7E-03
	Cs-136	1.7E-03	1.2E-03	1.1E-04	***	***	***	***	3.2E-06	1.9E-04
	Cs-137	2.0E-02	1.2E-02	3.1E-03	2.4E-02	***	***	***	6.7E-05	9.4E-03
	N-16	***	***	***	***	***	***	***	***	***
	H-3	1.3E-01	1.5E-01	***	***	***	4.4E-02	1.2E-01	2.9E-01	2.5E-01
	Na-24	8.8E-03	1.0E-01	1.0E-02	3.6E-03	***	***	***	9.0E-03	1.4E-02
	Cr-51	1.5E-02	2.1E-03	3.4E-04	***	1.7E-03	***	***	3.0E-05	6.4E-03
	Mn-54	4.4E-03	2.2E-03	3.9E-05	1.5E-02	1.1E-04	***	***	1.0E-05	6.8E-04
	Fe-55	6.5E-04	1.6E-04	***	***	***	***	***	2.1E-05	9.1E-03
	Fe-59	5.2E-04	6.2E-04	2.3E-04	***	6.9E-04	***	***	1.5E-06	5.2E-04
	Co-58	1.4E-02	4.6E-03	6.7E-04	3.6E-03	5.8E-04	***	***	8.0E-05	2.4E-02
	Co-60	1.0E-03	7.8E-04	1.2E-04	3.1E-03	4.7E-04	***	***	1.6E-05	9.2E-04
	Zn-65	2.6E-03	2.4E-03	1.6E-05	***	***	***	***	1.7E-06	2.2E-05
	Sr-89	6.8E-04	7.7E-05	6.8E-07	***	***	***	***	6.6E-06	***
	Sr-90	4.2E-06	3.4E-06	1.6E-06	***	***	***	***	5.4E-08	***

TABLE 2-10 (continued) $\frac{\text{SUMMARY OF RADIONUCLIDE PRIMARY COOLANT CONCENTRATIONS IN PWR'S*}}{(\mu Ci/g)}$

		Fort		Turkey	Indian	Yankee	Calvert	Three Mile	Prairie	Rancho
<u>I</u>		Calhoun 1	Zion 1/2	Point 3/4	Pt 2/3	Rowe	Cliffs l	Island l	Island 1/2	Seco
	<u>Isotope</u>	<u>(1976-1977)</u>	<u>(1975–1978)</u>	<u>(1974-1978)</u>	(1975-1978)	(1975)	(1976)	<u>(1975-1977)</u>	(1981)	(1979)
	Sr-91	***	3.8E-03	3.7E-04	***	***	***	***	3.3E-05	7.2E-04
	Y-91m	***	8.7E-04	***	***	***	***	***	5.0E-05	***
	Y-91	5.0E-06	4.4E-06	***	***	***	***	***	4.3E-07	1.8E-05
	Y-93	***	7.9E-03	2.2E-03	***	***	***	***	2.1E-04	2.6E-03
	Zr-95	1.5E-03	4.2E-04	4.5E-05	***	2.8E-04	***	***	4.6E-06	2.9E-04
	Nb-95	1.3E-03	2.2E-04	3.8E-05	***	2.4E-04	***	***	3.9E-06	4.6E-04
	Mo-99	5.7E-03	3.5E-03	8.1E-04	***	5.0E-03	***	***	1.3E-04	1.7E-03
	Tc-99m	4.1E-04	***	2.7E-06	***	4.9E-03	***	***	***	***
N	Ru-103	5.4E-02	1.8E-04	2.1E-05	***	***	***	***	6.7E-07	7.0E-05
	Ru-106	***	9.0E-02	***	***	***	***	***	***	***
	Ag-110m	2.2E-04	3.1E-03	1.1E-05	***	***	***	***	3.7E-06	9.7E-05
	Te-129m	2.1E-04	3.8E-04	1.9E-04	***	***	***	***	2.0E-06	***
	Te-129	***	***	2.4E-02	***	***	***	***	***	***
	Te-131m	***	2.1E-03	3.7E-04	***	***	***	***	***	***
	Te-131	***	***	7.9E-03	***	***	***	***	***	7.4E-03
	Te-132	***	1.8E-04	4.0E-05	***	***	***	***	1.2E-06	3.1E-05
	Ba-140	1.1E-03	1.0E-03	1.1E-04	***	***	***	***	1.9E-05	2.5E-04
	La-140	4.2E-04	1.8E-03	1.3E-04	***	***	***	***	1.4E-05	1.1E-04
	Ce-141	4.3E-04	1.1E-04	1.7E-05	***	***	***	***	***	4.6E-05
	Ce-143	8.2E-03	4.6E-04	4.9E-05	***	***	***	***	1.9E-05	***
	Ce-144	***	1.4E-04	1.2E-05	***	2.6E-05	***	***	5.4E-06	4.6E-04
	W-187	1.4E-02	3.1E-03	3.0E-04	***	***	***	***	1.1E-04	2.9E-03
	Np-239	1.2E-02	9.3E-04	1.0E-04	***	***	***	***	3.7E-06	7.6E-04

^{*} See Footnote of Table 2-9.

^{**} See Footnote of Table 2-9.

^{***} See Footnote of Table 2-9.

t Data unreliable.

TABLE 2-11

MONTHLY AVERAGE* PRIMARY/SECONDARY LEAKAGE (REF. 8, 39)

(gal/day at 70°F; density = 8.3 lb/gal)

						1970	<u>)</u>					
Plant	J	F	М	Α	M	J	J	Α	S	0	N	D
San Onofre	4	4	4	4	3	9	11	8	14	S**	S	0
Connecticut Yankee	0	10	0	S	0	0	20	10	20	0	0	0
R. E. Ginna							0	0	0	0	0	0
Point Beach 1												0
						1971	_					
Plant	J	F	М	A	М	J	J	A	S	0	N	D
San Onofre	0	0	0	0	0	0	0	0	0	0	0	0
Connecticut Yankee	0	30	15	0	0	10	20	20	15	40	40	40
R. E. Ginna	0	0	S	S	0	0	0	0	0	0	0	0
H. B. Robinson			S	S	S	S	S	S	0	50	55	20
Point Beach 1	0	0	0	10	90	100	53	30	20	20	20	20
						1972	<u>)</u>					
Plant	J	F	М	Α	М	J	J	A	S	0	N	D
San Onofre	S	0	0	0	0	0	22	0	10	30	4	31
Connecticut Yankee	40	40	40	40	40	S	0	0	0	0	0	0
R. E. Ginna	0	0	0	S	S	0	0	0	0	S	0	0
H. B. Robinson	60	60	60	60	3	0	0	0	0	0	0	0
Point Beach 1	40	50	55	55	55	55	55	55	55	S	S	S
Point Beach 2										0	0	0
Surry 1												0
Turkey Point 3												0

^{*} Leakage values listed begin with the first year of commercial operation.

NA - Not Available.

^{**} Shutdown not included in average.

TABLE 2-11 (continued)

MONTHLY AVERAGE* PRIMARY/SECONDARY LEAKAGE (gal/day at 70°F; density = 8.3 lb/gal)

						1973	3_					
Plant	J	F	М	Α	М	J	J	Α	S	0	N	D
San Onofre	3	3	0	0	0	0	0	0	0	0	S	S
Connecticut Yankee	0	0	0	0	10	S	0	S	S	S	S	0
R. E. Ginna	0	0	0	0	0	0	0	0	0	0	0	0
H. B. Robinson	6	6	6	S	0	0	1	1	1	1	7	5
Point Beach 1	S	S	0	0	0	0	0	0	0	0	0	0
Point Beach 2	0	0	0	0	0	0	0	0	0	0	0	0
Surry 1	0	0	0	0	0	0	0	0	0	0	0	0
Turkey Point 3	0	0	0	0	0	0	0	0	0	0	0	0
Surry 2					0	0	0	0	0	0	0	0
Turkey Point 4									0	0	0	0
						1974	<u>-</u>					
Plant	J	F	М	_A	М	J	J	Α	S	0	N	D
San Onofre	0	44	60	60	0	0	0	0	0	2	2	2
Connecticut Yankee	0	0	0	S	0	0	0	0	0	0	0	0
R. E. Ginna	S	S	S	0	0	0	0	0	0	0	0	0
H. B. Robinson 2	2	10	112	98	NA	19	2	1	1	1	1	1
Point Beach 1	0	0	0	S	0	0	0	0	0	0	0	0
Point Beach 2	0	0	0	0	0	0	0	0	0	0	S	S
Surry 1	S	S	0	0	0	115	55	115	115	4	S	S
Turkey Point 3	0	0	0	0	0	0	0	NA	NA	S	S	S
Surry 2	0	0	0	0	S	38	0	0	0	S	S	S
Turkey Point 4	S	0	0	0	0	0	0	22	0	0	0	0
Zion 1	S	S	S	0	0	0	S	S	0	0	0	0
Zion 2									0	0	0	0
Indian Point 2								0	0	0	0	0
Prairie Island l							0	0	0	0	0	0

TABLE 2-11 (continued)

MONTHLY AVERAGE* PRIMARY/SECONDARY LEAKAGE (gal/day at 70°F; density = 8.3 lb/gal)

1975

Plant	J	F	М	Α	М	J	J	Α	S	0	N	D
San Onofre	2	2	2	2	3	5	0	0	0	0	0	0
Connecticut Yankee	0	0	0	0	0	S	0	0	0	0	0	0
R. E. Ginna	0	0	3	S	0	0	0	0	0	0	0	0
H. B. Robinson 2	1	1	1	3	1	5	3	2	0	0	S	7
Point Beach 1	0	61	S	0	1	2	2	2	1	2	S	S
Point Beach 2	0	0	0	0	0	0	0	1	0	0	0	0
Surry 1	S	0	0	0	0	0	0	0	125	S	S	26
Turkey Point 3	0	0	0	0	0	0	0	0	0	0	S	S
Surry 2	0	0	0	0	S	0	0	0	0	0	0	0
Turkey Point 4	0	0	0	S	S	S	7	20	79	0	0	50
Zion 1	0	0	S	0	0	S	0	0	S	0	0	0
Zion 2	0	S	0	0	0	S	0	0	S	0	0	0
Indian Point 2	0	102	S	0	0	0	0	0	0	S	0	0
Prairie Island l	0	0	0	0	0	0	0	0	0	0	0	0
Prairie Island 2	0	0	0	0	0	0	0	0	0	0	0	0
Cook 1									0	0	0	0

TABLE 2-11 (continued)

MONTHLY AVERAGE* PRIMARY/SECONDARY LEAKAGE (qa1/day at 70°F; density = 8.3 lb/qa1)

F Plant. J М Α М J J Α S N D S San Onofre S S S S Connecticut S Yankee R. E. Ginna S S S S H. B. Robinson 2 S S Point Beach 2 Surry 1 NA S S S S Turkey Point 3 S S S Surry 2 S Turkey Point 4 S S S S S S Zion 1 S S S Zion 2 S S S S S Indian Point 2 S S S S S S S S Prairie Island 1 S S Prairie Island 2 S S S S Cook 1 S S Trojan S S S S S Indian Point 3 S

S

S

Point Beach 1

TABLE 2-11 (continued)

MONTHLY AVERAGE* PRIMARY/SECONDARY LEAKAGE (gal/day at 70°F; density = 8.3 lb/gal)

						197	7_					
Plant	J	F	M	Α	M	J	J	<u> </u>	S	0	N_	D
San Onofre	S	S	S	0	0	1	2	2	S	0	2	1
Connecticut	0	0	0	0	0	0	0	0	0	S	S	0
R. E. Ginna	0	0	0	S	S	0	0	0	0	0	0	0
H. B. Robinson 2	1	1	0	1	1	0	0	1	0	6	41	52
Point Beach 1	4	5	3	6	3	5	5	5	4	S	8	7
Point Beach 2	25	35	33	S	0	0	0	. 0	0	0	0	0
Surry 1	S	77	144	53	0	0	0	26	58	5 8	21	0
Turkey Point 3	0	0	0	0	0	0	0	28	72	72	56	S
Surry 2	54 8	360	S	0	NA	18	10	8	4	0	14	0
Turkey Point 4	23	29	71	96	7	S	S	0	0	4	0	0
Zion 1	0	0	0	0	0	0	0	0	S	S	S	0
Zion 2	S	S	S	0	0	0	0	0	0	0	0	0
Indian Point 2	0	0	0	S	0	0	S	0	0	0	0	0
Prairie Island l	0	0	0	S	0	0	0	0	0	0	0	0
Prairie Island 2	0	0	0	0	0	0	0	0	0	1	S	S
Cook 1	S	S	0	0	0	0	0	0	0	0	0	0
Trojan	0	0	0	0	S	S	0	0	0	0	0	0

0

0

0

0

0

S

0

0

0

0

0

0

0

S

0

S

S

S

S

0

S

S

0

0

0

Indian Point 3

Beaver Valley 1

Salem 1

Farley 1

0 0

0

TABLE 2-11 (continued)

MONTHLY AVERAGE* PRIMARY/SECONDARY LEAKAGE (gal/day at 70°F; density = 8.3 lb/gal)

1978

Plant	J	F	М	Α	M	J	Average,* gal/day
San Onofre	1	1	1	S	1	1	4.6
Connecticut Yankee	0	0	0	0	0	0	5.7
R. E. Ginna	4	0	0	S	S	0	0.27
H. B. Robinson 2	441	S	S	18	88	190	21
Point Beach 1	20	7	7	7	120	7	15
Point Beach 2	0	0	0	S	0	0	7.9
Surry 1	0	0	0	0	S	S	22
Turkey Point 3	S	0	0	0	0	0	5.5
Surry 2	0	46	278	0	0	0	32.
Turkey Point 4	36	193	0	0	0	0	17.
Zion 1	0	0	0	0	0	0	0
Zion 2	0	S	S	S	S	0	0
Indian Point 2	0	S	S	S	S	0	7.8
Prairie Island l	0	0	0	S	0	0	0
Prairie Island 2	0	0	0	0	0	0	0.03
Cook 1	0	0	0	S	S	S	0
Trojan	2	2	2	S	S	S	0.38
Indian Point 3	0	0	0	0	0	S	0
Beaver Valley 1	0	0	0	0	S	S	0
Salem 1	0	0	0	S	S	S	0
Farley 1	0	0	0	0	0	0	0
Operation Weighted	Averag	e					9

^{*} Average daily value for each reactor is obtained by the sum of the total monthly leakage rates divided by the total number of days in operation.

TABLE 2-12

MOISTURE CARRYOVERS IN RECIRCULATING U-TUBE

STEAM GENERATORS*

<u>Facility</u>		Percent Carryovers	Reference
Palisades		0.08	10, 11
Kansai		0.05	10, 11
Point Beach		0.2	8, 12
Turkey Point 3		0.6	6
Turkey Point 4		1.6	6
			
	Average	0.5	

^{*} Measurement based on Na concentration.

The category "Other Nuclides" includes Mo, Y, and Tc which are generally present in colloidal suspensions or as "crud." Although the actual removal mechanism for Y, Mo, and Tc is expected to be plateout or filtration, the quantitative effect of removal is expected to be commensurate with the removal of ionic impurities by ion exchange (within the accuracy of the calculations) and consequently plateout of these nuclides is included in the parameters for ion exchange.

2.2.4 IODINE RELEASES FROM BUILDING VENTILATION SYSTEMS

2.2.4.1 Parameter

The iodine releases from building ventilation systems prior to treatment are calculated by the PWR-GALE Code using the data in Tables 1-1, Tables 2-2 through 2-8 and 2-13 through 2-16.

2.2.4.2 Bases

The iodine-131 releases from building ventilation systems are based on measurements made at a number of operating reactors. The measurements were made during routine plant operation and during plant shutdowns. Work on identifying sources of radioiodine at PWR's has been conducted by C. Pelletier, et al. (Ref. 7) for the Electric Power Research Institute (EPRI), at three operating PWR's; Ginna, Calvert Cliffs 1, and Three Mile Island 1. Measurements have also been made by EG&G Idaho, Inc., Allied Chemical Corp., Idaho National Engineering Laboratory, for the U. S. Nuclear Regulatory Commission at Fort Calhoun (Ref. 4), Zion 1 and 2 (Ref. 5), Turkey Point 3 and 4 (Ref. 6), Prairie Island (Ref. 42), and Rancho Seco (Ref. 43).

These measurements indicate that iodine-131 building vent releases are directly related to the reactor coolant iodine-131 concentration. As a result, the releases of iodine are expressed as "normalized" releases, that is, the absolute measured release rate in Ci/yr is divided by the reactor coolant concentration in μ Ci/g to give a "normalized" release rate of iodine-131 in Ci/yr/ μ Ci/g as shown in the following equation:

$$R_{N} = \frac{R_{A}}{C_{RW}}$$

where

 R_N = normalized release rate of iodine-131, Ci/yr/ μ Ci/g

 R_A = absolute (measured) iodine-131 release rate, Ci/yr

 C_{RW} = measured reactor water iodine-131 concentration, $\mu Ci/g$

TABLE 2-13

ANNUAL IODINE NORMALIZED RELEASES FROM CONTAINMENT VENTILATION SYSTEMS+

NORMAL OPERATION LEAK RATE*

Data Source	Normalized Release/Unit 10 ⁻³ %/day
Ft. Calhoun (Ref. 4)	0.0014
Three Mile Island 1 (Ref. 7)	2.5
Turkey Point 3/4 (Ref. 6)	0.9
Main Yankee (Ref. 16)	0.1
Ginna (Ref. 19)	0.064
Yankee Rowe (Ref. 14, 16)	1.0
Prairie Island 1/2 (Ref. 42)	0.005
Rancho Seco (Ref. 43)	2.56
Average	0.80

RELEASE FOR EXTENDED OUTAGES**

Data Source	Normalized Release/Unit (Ci/yr/μCi/g)
Three Mile Island 1 (Ref. 7)	0.44
Calvert Cliffs 1 (Ref. 7)	0.19
	
Average	0.32

^{*} The normalized release rate, expressed in %/day of leakage of primary coolant inventory of iodine, represents the effective leak rate for radioiodine. It is the combination of the reactor water leakage rate into the buildings, and the partitioning of the radioiodine between the water phase in the leakage and the gas phase where it is measured.

^{**} The normalized release rate, expressed in Ci/yr/ μ Ci/g, represents the effective leak rate for radioiodine. It is the combination of the reactor water iodine leakage rate into the buildings, and the partitioning of the radioiodine between the water phase in the leakage and the gas phase where it is measured.

t These results were obtained using ^{131}I data. The normalized release rates are applicable to both ^{131}I and ^{133}I .

TABLE 2-14

ANNUAL IODINE NORMALIZED RELEASES* FROM AUXILIARY BUILDING VENTILATION SYSTEMS†

NORMAL OPERATION

Data Source	Normalized Release/Unit (Ci/yr/µCi/g)
Zion 1/2 (Ref. 5)	1.0
Fort Calhoun (Ref. 4)	0.12
Ginna (Ref. 7)	0.032
Calvert Cliffs 1 (Ref. 7)	0.57
Three Mile Island 1 (Ref. 7)	0.034
Turkey Point 3/4 (Ref. 6)	1.85
Prairie Island 1/2 (Ref. 42)	0.013
Rancho Seco (Ref. 43)	0.97
Average	0.68
SHUTDOWN	
Data Sourco	Normalized Release/Unit

Data Source	Normalized Release/Unit (Ci/yr/µCi/g)
Ginna (Ref. 7)	0.08
Calvert Cliffs 1 (Ref. 7)	0.016
Three Mile Island 1 (Ref. 7)	0.14
Turkey Point 3/4 (Ref. 6)	6.8
Rancho Seco (Ref. 43)	1.14
Average	2.50

^{*} The normalized release rate, expressed in Ci/yr/ μ Ci/g during different modes of operation, represents the effective leak rate for radioiodine. It is the combination of the reactor water iodine leakage rate into the buildings and the partitioning of the radioiodine between the water phase in the leakage and the gas phase where it is measured.

t These results were obtained using ^{131}I data. The normalized release rates are applicable to both ^{131}I and ^{133}I .

TABLE 2-15

ANNUAL IODINE NORMALIZED RELEASES* FROM REFUELING AREA VENTILATION SYSTEMS†

NORMAL OPERATION

Data Source	Normalized Release/Unit (Ci/yr/μCi/g)
Ginna (Ref. 7)	0.008
Calvert Cliffs 1 (Ref. 7)	0.049
Three Mile Island 1 (Ref. 7)	0.0012
Turkey Point 3 (Ref. 6)	0.16
Prairie Island 1/2 (Ref. 42)	0.019
Rancho Seco (Ref. 43)	0.01
Average	0.038

SHUTDOWN

Data Source	Normalized Release/Unit (Ci/yr/µCi/g)
Ginna (Ref. 7)	0.014
Calvert Cliffs 1 (Ref. 7)	0.039
Three Mile Island 1 (Ref. 7)	0.06
Turkey Point 3 (Ref. 6)	0.05
Rancho Seco (Ref. 43)	0.30
Average	0.093

^{*} The normalized release rate, expressed in Ci/yr/ μ Ci/g during different modes of operation, represents the effective leak rate for radioiodine. It is the combination of the reactor water iodine leakage rate into the building, and the partitioning of the radioiodine between the water phase in the leakage and the gas phase where it is measured.

t These results were obtained using $^{131}{\rm I}$ data. The normalized release rates are applicable to both $^{131}{\rm I}$ and $^{133}{\rm I}$.

TABLE 2-16*

ANNUAL IODINE NORMALIZED RELEASES** FROM TURBINE BUILDING VENTILATION SYSTEMS+

NORMAL OPERATION

Data Source	Normalized Release/Unit (Ci/yr/µCi/g)			
Monticello	3.1×10^3			
Oyster Creek	6.0×10^3			
Vermont Yankee	0.35 x 10 ³			
Pilgrim	8.5 x 10 ³			
Browns Ferry	1.3 x 10 ³			
References 3, 5 of Ref. 15	3.3×10^3			
Average	3.8×10^3			

EXTENDED SHUTDOWN

Data Source	Normalized Release/Unit (Ci/yr/μCi/g)
Monticello	1.7×10^2
Oyster Creek	3.5×10^2
Vermont Yankee	0.63×10^2
Browns Ferry	1.3 x 10 ²
References 3, 5 of Ref. 15	1.4×10^3
Average	4.2×10^2

^{*} The data in this table are taken from Table 2-8, NUREG-0016, Revision 1, January 1979 (Ref. 15).

^{**} The normalized release rate, expressed in Ci/yr/ μ Ci/g during different modes of operation represents the effective leak rate for radioiodine. It is a function of iodine leak rate via steam and the partition coefficient for radioiodine from reactor water to steam in the reactor vessel.

[†] These results were obtained using $^{131}\mathrm{I}$ data. The normalized release rates are applicable to both $^{131}\mathrm{I}$ and $^{133}\mathrm{I}$.

The normalized reactor water release rate, expressed in Ci/yr/ μ Ci/g represents an effective leak rate for reactor water containing iodine. It is the combination of the water leakage rate into the building and the effect of iodine partitioning between the water phase in the systems leakage and the vapor phase in the building atmosphere.

For the turbine building, the secondary coolant iodine releases are directly related to the secondary coolant iodine-131 concentration. Therefore, for the turbine building, the normalized iodine release, $R_{\rm N}$, is determined using the following expression:

$$R_N = \frac{R_A}{C_{RW} \times PC}$$

where

 R_N = normalized release rate of secondary coolant water containing iodine-131, Ci/yr/ μ Ci/g

 R_{Λ} = absolute (measured) iodine-131 release rate, Ci/yr

 C_{RW} = measured secondary coolant iodine-131 concentration, $\mu\text{Ci/g}$

PC = measured iodine partition coefficient from secondary coolant water to steam.

The normalized release rate is used to estimate the release from PWR's since this expression for release rate is least variable with time for a given mode of operation. For this reason, it is useful in the determination of releases from PWR's.

Data on normalized release rates from the three reactors used in the EPRI study and the five reactors used in the NRC sponsored study are given for normal operation and shutdown periods in Tables 2-13 through 2-15, for the containment building, auxiliary building and refueling area, respectively. Also given in Table 2-13 is the normalized value of the iodine release data discussed in NUREG-0017, April 1976 (Ref. 14). For Table 2-16, it was considered that since the basic design and operation of PWR and BWR power generation equipment which is housed in the turbine building is essentially identical, the turbine building leakage rates from PWR's and BWR's should be similar. Therefore, for the PWR turbine building normalized iodine release rate, the values for BWR's given in Table 2-15 of NUREG-0016, Revision 1 (Ref. 15) have been used and reproduced here as Table 2-16 of this report.

The data in Tables 2-14 through 2-16 are expressed as total normalized releases during power operation of 300 days and the total normalized releases during shutdowns of 65 days. Since the reactors used in the EPRI study and the NRC study experienced several intermittent

shutdowns of short duration during the power operation measurement period, the iodine releases during these short duration outages are included under power operation.

Since the releases from the containment building are dependent on the method of containment purging (see Section 2.2.9, Containment Purging Frequency), the releases in Table 2-13 are expressed in terms of a leak rate (in %/day of primary coolant inventory). In addition, the release from the containment building during extended outages is expressed as a total normalized release as discussed above for other buildings.

In order to obtain the releases in curies/year from the auxiliary building and the refueling area of a particular PWR, the normalized release data in Tables 2-14 and 2-15, respectively, are multiplied in the PWR-GALE Code by the iodine concentrations in the reactor coolant for that particular PWR using the following expression:

$$R_{PWRi} = R_N \times C_{PWRi}$$

where

 R_{PWRi} = calculated annual release rate for particular PWR for iodine isotope i, Ci/yr

 R_N = normalized annual release rate of iodine from Tables 2-14 and 2-15, $Ci/yr/\mu Ci/g$

 C_{PWRi} = calculated reactor water concentration for particular PWR for iodine isotope i, $\mu Ci/g$

To obtain the release in curies/year from the turbine building of a particular PWR, the normalized release data in Table 2-16 are multiplied in the PWR-GALE Code by the iodine concentration in the secondary coolant water and the iodine partition coefficient from the water to steam in the steam generator for that particular PWR using the following expression:

$$R_{PWRi} = R_N \times SC_{PWRi} \times PC_{PWR}$$

where

R_{PWRi} = calculated annual release rate for particular PWR for iodine isotope i, Ci/yr

 R_N = normalized annual release rate of iodine from Table 2-16, $Ci/yr/\mu Ci/q$

 SC_{PWRi} = calculated secondary coolant concentration for particular PWR for iodine isotope i, $\mu Ci/g$

PC_{PWR} = partition coefficient from the secondary coolant water to steam for the particular PWR (see Table 2-6)

In order to obtain the releases in curies/year from the containment building of a particular PWR, the normalized leak rates in Table 2-13, are multplied in the PWR-GALE Code by the iodine concentration in the reactor coolant for that particular PWR, and then this leak rate is considered along with the containment purging method for that particular PWR.

To obtain the releases during shutdown, multiply the normalized release rates for the shutdown period by the same reactor coolant concentration as for power operations. Use of this reactor coolant concentration is acceptable since the normalization technique based the shutdown normalized release rate on the reactor coolant concentrations prior to shutdown.

Iodine released from PWR building ventilation systems appear in one of the following chemical forms: particulate, elemental, hypoiodious acid (HOI) and organic. Based on data in References 4, 5, 6, 7, 42 and 43, the fraction of the iodine appearing in each of the chemical forms for each building ventilation system is given below:

FRACTION OF IODINE APPEARING IN EACH CHEMICAL FORM FROM PWR BUILDING VENTILATION SYSTEMS

	Containment	Auxiliary	Turbine	Fuel Handling
Particulate	0.09	0.04	*	0.01
Elemental	0.21	0.21	0.78	0.17
HOI	0.21	0.22	*	0.57
Organic	0.49	0.53	*	0.25

^{*} No data on breakdown of other species.

2.2.5 RADIOACTIVE PARTICULATES RELEASED IN GASEOUS EFFLUENTS

2.2.5.1 Parameter

Use the radioactive particulate release rates in gaseous effluents given in Table 2-17.

TABLE 2-17

PARTICULATE RELEASE RATE FOR GASEOUS EFFLUENTS*

(Ci/yr)/unit

Nuclide	Containment	Auxiliary Building	Fuel Pool Area	Waste Gas System
Cr-51 Mn-54 Co-57 Co-58 Co-60 Fe-59 Sr-89** Sr-90** Zr-95 Nb-95 Ru-103 Ru-106 Sb-125 Cs-134 Cs-136 Cs-137 Ba-140 Ce-141	9.2(-3) 5.3(-3) 8.2(-4) 2.5(-2) 2.6(-3) 2.7(-3) 1.3(-2) 5.2(-3) NA 1.8(-3) 1.6(-3) NA NA 2.5(-3) NA 1.3(-3)	3.2(-4) 7.8(-5) NA 1.9(-3) 5.1(-4) 5.0(-5) 7.5(-4) 2.9(-4) 1.0(-3) 3.0(-5) 2.3(-5) 6.0(-6) 3.9(-6) 5.4(-4) 4.8(-5) 7.2(-4) 4.0(-4) 2.6(-5)	1.8(-4) 3.0(-4) NA 2.1(-2) 8.2(-3) NA 2.1(-3) 8.0(-4) 3.6(-6) 2.4(-3) 3.8(-5) 6.9(-5) 5.7(-5) 1.7(-3) NA 2.7(-3) NA 4.4(-7)	1.4(-5) 2.1(-6) NA 8.7(-6) 1.4(-5) 1.8(-6) 4.4(-5) 1.7(-5) 4.8(-6) 3.7(-6) 3.2(-6) 2.7(-6) NA 3.3(-5) 5.3(-6) 7.7(-5) 2.3(-5) 2.2(-6)
	• •	` ,	` '	(- /

^{*} Particulate release rates are prior to filtration.

NA - No release observed from this source. Release assumed to be less than 1% of total.

^{**} Data not available from Ref. 4, 5, 6 or 7, therefore Sr-89 and Sr-90 data were extracted from Semi-annual Effluent Release Reports. Release from each area above calculated by use of percent released from each area from Ref. 4, 5, 6 and 7 data.

2.2.5.2 Bases

Tables 2-18 through 2-21 list measured particulate releases at 12 operating reactors (Ref. 4, 5, 6, 7, 42, and 43). The average annual release rates for each nuclide released from four sources within the plant have been calculated based on the data in Tables 2-18 through 2-21. The measurements shown in Tables 2-18 through 2-21 were taken upstream of HEPA filters on streams on which HEPA filters are located. Based on the data in Tables 2-18 through 2-21, 63% of the releases came from the containment, 5% from the auxiliary building, 31% from the fuel pool area, and less than 1% from the waste gas processing system.

2.2.6 NOBLE GAS RELEASES FROM BUILDING VENTILATION SYSTEMS

2.2.6.1 Parameter

The noble gas releases from building ventilation systems are based on a daily leak rate of 3% of the noble gas inventory in the primary coolant released to the containment atmosphere; on a 160 lb/day primary coolant leak to the auxiliary building; and on a 1700 lb/hr steam leak rate in the turbine building.

2.2.6.2 Bases

The containment building leakage rate is derived from xenon-133 measurements in the containment atmosphere at Ginna and Maine Yankee (Ref. 17). The xenon-133 concentrations in the containment atmospheres at steady state were approximately 5 x $10^{-3}~\mu\text{Ci/cc}$ for Main Yankee and 7 x $10^{-3}~\mu\text{Ci/cc}$ for Ginna. The containment volumes at these facilities are approximately 1.8 x $10^6~\text{ft}^3$ for Maine Yankee and 1 x $10^6~\text{ft}^3$ for Ginna. Based on these values, the total microcuries of xenon-133 in the containment building atmosphere are

Maine Yankee

$$(5 \times 10^{-3} \, \mu \text{Ci/cc})(1.8 \times 10^6 \, \text{ft}^3)(2.83 \times 10^4 \, \text{cc/ft}^3) = 2.5 \times 10^8 \, \mu \text{Ci Xe-133}$$

Ginna

$$(7 \times 10^{-3} \, \mu \, \text{Ci/cc})(1 \times 10^6 \, \text{ft}^3)(2.83 \times 10^4 \, \text{cc/ft}^3) = 2.0 \times 10^8 \, \mu \, \text{Ci Xe-133}$$

Based on the half-life of xenon-133 (5.3d) and the assumption of a constant leakage rate to containment, the daily leakage rate of xenon-133 to the containment for the two plants is

Main Yankee

$$\frac{2.5 \times 10^8 \, \mu \text{Ci}}{(5.3 \, \text{day}/0.693)} = 3.3 \times 10^7 \, \mu \text{Ci/day} \, \text{Xe-}133 \, \text{leakage}$$

TABLE 2-18

MEASURED RELEASES UPSTREAM OF HEPA FILTERS - CONTAINMENT (Ci/yr)

Nuc	lide	Three Mile Island l (Ref. 7)	Fort Calhoun (Ref. 4)	Zion 1 & 2 (Ref. 5)	Turkey Point 3 & 4 (Ref. 6)	Calvert Cliffs l (Ref. 7)	Ginna (Ref. 7)	Prairie Island 1 & 2 (Ref. 42)	Rancho Seco (<u>Ref. 43)</u>	Average (Ci/yr)/unit
Cr-	51	5.5(-2)	ND	ND	ND	NA	NA	NA	NA	9.2(-3)
Mn-!	54	2.1(-2)	1.4(-8)	3.9(-6)	NA	NA	NA	NA	NA	5.3(-3)
Co-	57	4.9(-3)	ND	ND	ND	NA	NA	NA	NA	8.2(-4)
Co-	58	2.2(-1)	5.6(-8)	1.5(-5)	3.2(-6)	NA	NA	6.6(-8)	2.5(-3)	2.5(-2)
Co-	60	2.3(-2)	3.8(-8)	1.2(-5)	3.0(-5)	NA	NA	1.4(-7)	3.3(-4)	2.6(-3)
Fe-	59	1.6(-2)	NĎ	NĎ	NĎ	NA	NA	NA	NA	2.7(-3)
∾ Zr-	95	NÀ	NA	NA	NA	NA	NA	NA	NA	NÁ
43 Nb-	95	1.1(-2)	ND	ND	ND	NA	NA	NA	NA	1.8(-3)
Ru-	103	9.5(-3)	ND	ND	ND	NA	NA	NA	NA	1.6(-3)
Ru-	106	NÀ	NA	NA	NA	NA	NA	NA	NA	NÁ
Sb-	125	NΑ	NA	NA	NA	NA	NA	NA	NA	NA
Cs-	134	2.1(-2)	3.2(-6)	2.3(-4)	7.7(-5)	NA	NA	3.2(-8)	1.5(-3)	2.5(-3)
Cs-	136	1.9(-2)	NĎ	NĎ	NĎ	NA	NA	NA	NÁ	3.2(-3)
Cs-	137	4.4(-2)	4.1(-6)	3.2(-4)	1.9(-4)	NA	NA	6.6(-8)	5.0(-3)	5.5(-3)
Ba-	140	NÀ	NÀ	NÀ	NÀ	NA	NA	NÁ	NÁ	NA
Ce-	141	8.0(-3)	ND	ND	ND	NA	NA	NA	NA	1.3(-3)

ND = Not detected. For averaging purposes, a value of zero was assumed.

NA = Not analyzed (or no measurement taken); plants not included in averaging.

TABLE 2-19

MEASURED RELEASES UPSTREAM OF HEPA FILTERS - AUXILIARY BUILDING (Ci/yr)

	<u>Nuclide</u>	Three Mile Island 1 (Ref. 7)	Fort Calhoun (Ref. 4)	Zion 1 & 2 (Ref. 5)	Turkey Point 3 & 4 (Ref. 6)	Calvert Cliffs 1 (Ref. 7)	Ginna (Ref. 7)	Prairie Island 1 & 2 (Ref. 42)	Rancho Seco (Ref. 43)	Average (Ci/yr)/unit
	Cr-51	1.4(-3)	ND	NA	ND	NA	1.9(-4)	NA	NA	3.2(-4)
	Mn-54	1.1(-4)	NA	NA	6.3(-5)	3.0(-4)	6.7(-5)	2.7(-6)	NA	7.8(-5)
	Co-57	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Co-58	1.1(-3)	2.0(-3)	NA	1.1(-3)	4.8(-4)	6.3(-4)	4.0(-5)	1.2(-2)	1.9(-3)
	Co-60	2.0(-4)	2.7(-4)	NA	6.0(-4)	2.0(-3)	7.7(-4)	4.5(-5)	7.3(-4)	5.1(-4)
	Fe-59	2.3(-4)	ND	ND	NĎ	NÁ	1.9(-5)	ŇA	NÀ	5.0(-5)
	Zr-95	2.7(-4)	ND	ND	ND	7.9(-3)	4.1(-5)	5.7(-6)	NA	1.0(-3)
Ņ	Nb-95	1.4(-4)	ND	ND	ND	NÀ	6.0(-5)	1.0(-5)	NA	3.0(-5)
4	Ru-103	9.1(-5)	ND	NA	ND	NA	6.9(-5)	2.7(-6)	NA	2.3(-5)
42	Ru-106	NÀ	ND	NA	ND	NA	2.4(-5)	ŇΑ´	NA	6.0(-6)
	Sb-125	NA	NA	NA	NA	NA	NÀ	7.7(-6)	NA	3.9(-6)
	Cs-134	8.0(-5)	1.6(-3)	NA	7.9(-4)	2.0(-3)	3.4(-4)	1.5(-6)	5.2(-5)	5.4(-4)
	Cs-136	NÀ ´	NĎ	NA	NĎ ´	NÀ	1.9(-4)	ŇΑ´	NÀ ′	4.8(-5)
	Cs-137	2.0(-4)	1.8(-3)	NA	1.4(-3)	1.9(-3)	1.1(-3)	9.4(-6)	8.0(-5)	7.2(-4)
	Ba-140	NÀ	NĎ	ND	NĎ	NÀ	1.6(-3)	ŇA	NÀ	4.0(-4)
	Ce-141	1.5(-4)	ND	NA	ND	NA	2.8(-5)	1.5(-6)	NA	2.6(-5)

ND = Not detected. For averaging purposes, a value of zero was assumed.

Measurements were made downstream of the auxiliary building HEPA filter. Due to uncertainty in the DF's of the HEPA filter, the data is not considered.

NA = Not analyzed (or no measurement taken); plants not included in averaging.

TABLE 2-20

MEASURED RELEASES UPSTREAM OF HEPA FILTERS - FUEL POOL AREA
(Ci/yr)/unit

	Nuclide	Three Mile Island 1 (Ref. 7)	Fort Calhoun (Ref. 4)	Zion 1 & 2 (Ref. 5)	Turkey Point 3 & 4 (Ref. 6)	Calvert Cliffs 1 & 2 (Ref. 7)	Ginna (Ref. 7)	Prairie Island 1 & 2 (Ref. 42)	Rancho Seco (Ref. 43)	Average
	Cr-51	1.8(-4)	NA	NA	NA	NA	NA	NA	NA	1.8(-4)
	Mn-54	1.0(-5)	NA	NA	NA	1.2(-3)	NA	2.6(-6)	NA	2.4(-4)
	Co-57	NÀ	NA	NA	NA	NÀ	NA	NÀ	NA	NÀ
	Co-58	8.5(-5)	NA	NA	NA	1.1(-2)	NA	8.8(-6)	6.7(-5)	1.8(-3)
	Co-60	4.4(-5)	NA	NA	NA	5.0(-3)	NA	6.9(-6)	7.6(-6)	8.4(-3)
	Fe-59	NÀ	NA	NA	NA	NÀ	NA	NÀ	ŇΑ	NÀ
	Zr-95	NA	NA	NA	NA	NA	NA	7.2(-6)	NΑ	3.6(-6)
	Nb-95	3.0(-5)	NA	NA	NA	9.5(-3)	NA	1.7(-5)	NA	1.9(-3)
Ņ	Ru-103	9 . 8(-5)	NA	NA	NA	NÀ	NA	1 . 7(-5)	NA	3.8(-5)
-45	Ru-106	6.9(-5)	NA	NA	NA	NA	NA	NÀ	NA	6.9(-5)
O1	Sb-125	1.7(-4)	NA	NA	NA	NA	NA	ND	NA	5.7(-5)
	Cs-134	9.0(-6)	NA	NA	NA	2.2(-3)	NA	9.8(-7)	9.6(-7)	3.7(-4)
	Cs-136	NÀ ´	NA	NA	NA	NÀ	NA	NÀ ´	ŇΑ	NÀ
	Cs-137	2.4(-5)	NA	NA	NA	5.6(-3)	NA	4.1(-6)	7.4(-7)	9.4(-4)
	Ba-140	NÀ ´	NA	NA	NA	NÀ	NA	NÀ	ŇΑ	NÀ '
	Ce-141	NA	NA	NA	NA	NA	NA	8.8(-7)	NA	4.4(-7)

ND = Not detected. For averaging purposes, a value of zero was assumed.

NA = Not analyzed (or no measurement taken); plants not included in averaging.

TABLE 2-21

MEASURED RELEASES UPSTREAM OF HEPA FILTERS - WASTE GAS SYSTEM (Ci/yr)

	<u>Nuclide</u>	Three Mile Island l (Ref. 7)	Fort Calhoun (Ref. 4)	Zion 1 & 2 (Ref. 5)	Turkey Point 3 & 4 (Ref. 6)	Calvert Cliffs l (Ref. 7)	Ginna (Ref. 7)	Prairie Island 1 & 2 (Ref. 42)	Rancho Seco (Ref. 43)	Average (Ci/yr)/unit
2-46	Cr-51 Mn-54 Co-57 Co-58 Co-60 Fe-59 Zr-95 Nb-95 Ru-103 Ru-106 Sb-125 Cs-134	8.4(-5) 1.1(-5) NA 4.5(-5) 8.0(-5) 7.2(-6) 1.9(-5) 2.2(-5) 1.9(-5) NA 1.2(-4)	ND NA 3.8(-6) NA 1.8(-6) ND ND ND ND ND NA 1.2(-6)	ND 4.0(-6) NA 1.1(-5) 3.2(-6) 1.9(-6) ND ND ND ND ND ND	ND NA 8.8(-7) 2.9(-7) ND NA ND ND ND ND NA 3.8(-8)	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA	NA 8.4(-9) NA 5.1(-8) 5.9(-8) NA	1.4(-5) 2.1(-6) NA 8.7(-6) 1.4(-5) 1.8(-6) 4.8(-6) 3.7(-6) 3.2(-6) 2.7(-6) NA 3.3(-5)
	Cs-136 Cs-137 Ba-140 Ce-141	3.2(-5) 3.5(-4) 1.4(-4) 1.3(-5)	ND NA ND ND	ND 1.1(-4) ND ND	ND 8.8(-8) ND ND	NA NA NA NA	NA NA NA	NA NA NA NA	NA 2.6(-8) NA NA	5.3(-6) 7.7(-5) 2.3(-5) 2.2(-6)

ND = Not detected. For averaging purposes, a value of zero was assumed.

NA = Not analyzed (or no measurement taken); plants not included in averaging.

Ginna

$$\frac{2 \times 10^8 \, \mu \text{Ci}}{(5.3 \, \text{day}/0.693)} = 2.6 \times 10^7 \, \mu \text{Ci/day Xe-133 leakage}$$

Based on the xenon-133 concentration during power operation (Ref. 29) and the masses of primary coolant of the two plants, the fraction of the xenon-133 inventory in the containment released per day is

Maine Yankee

$$\frac{3.3 \times 10^7 \, \mu \text{Ci/day}}{(10^{\dagger} \, \mu \text{Ci/cc} \times 28,300 \, \text{cc/ft}^3 \times 11,000 \, \text{ft}^3)} = 0.01/\text{day} = 1\%/\text{day}$$

Ginna

$$\frac{2.6 \times 10^7 \, \mu \text{Ci/day}}{(30^{\dagger} \, \mu \text{Ci/cc} \times 28,300 \times 6,234 \, \text{ft}^3)} = 0.005/\text{day} - 0.5\%/\text{day}$$

Reference 16 also contains data for the xenon-133 concentration in the containment atmosphere and the primary coolant at Yankee Rowe for the periods August-October 1971, December 1971 - January 1972 and August-November 1973. These periods encompass several shutdowns and a wide variety of operating conditions, and during these periods the xenon concentration in the containment and in the primary coolant varied by two orders of magnitude. The percent of xenon-133 inventory in the coolant released to the containment atmosphere varied from approximately 0.05%/day to 0.5%/day. Also from Ref. 43, this percent was determined to be 10.4 for Rancho Seco.

On the basis of these data, we consider that 3%/day of the noble gas inventory in the primary coolant is released to the containment atmosphere.

In the auxiliary building, the source term calculation is based on an assumed primary coolant leakage rate of 160 lb/day (20 gal/day). In the absence of available data, this value is based on engineering judgment and is consistent with values proposed in Environmental Reports.

[†] The reactor coolant concentrations for Xe-133 are measured values during 12/73 - 6/74 for Main Yankee and September and October of 1971 for Ginna (Ref. 16).

In the turbine building, it is assumed that steam will leak to the turbine building atmosphere at a rate of 1700 lb/hr. The leakage is considered to be from many sources, each too small to be detected individually, but which, taken collectively, total 1700 lb/hr. The most significant leakage pathway is considered to be leakage through valve stem packings.

2.2.7 STEAM GENERATOR BLOWDOWN FLASH TANK VENT

2.2.7.1 Parameter

- 1. Pressurized water reactors, with U-tube steam generators, that are currently under design, either direct their blowdown through a heat exchanger to cool the blowdown or, if a flash tank is used, vent the flash tank to a flash tank vent condenser or the main condenser. For these plants, iodine releases by this path are negligible and a partition factor of zero is used for the steam generator blowdown flash tank vent.
- 2. For older plants which still utilize flash tanks which vent directly to the atmosphere an iodine partition factor of 0.05 is used.

2.2.7.2 Bases

Approximately one-third of the blowdown stream flashes to steam in the flash tank, provided there is a heat balance between steam generator operating conditions (550°F, 1000 psia) and the blowdown flash tank conditions (240°F, sat.). Although the iodine species in the blowdown stream will be predominantly nonvolatile (volatile species are degassed in the steam generator), significant iodine removal will occur because of entrainment by the flashing steam. A steam quality of 85% is considered in the evaluation. For currently designed PWR's which have provisions to prevent flashing (cooling blowdown below 212°F) or to condense the steam leaving the flash tank, the entrainment losses will be negligible, i.e., a partition factor of zero.

2.2.8 IODINE RELEASES FROM MAIN CONDENSER AIR EJECTOR EXHAUST

2.2.8.1 Parameter

The iodine releases from the main condenser air ejector exhaust prior to treatment are calculated by the PWR-GALE Code using the data in Tables 2-2 through 2-8, and in Table 2-22.

2.2.8.2 Bases

The iodine releases from the main condenser air ejector exhaust are based on secondary side measurements made by EPRI at Point Beach 2, (Ref. 7), by EG&G Idaho, Inc., for the NRC, at Turkey Point 3 and 4 (Ref. 6), and by Westinghouse at Point Beach 1 (Ref. 12) and Haddam Neck (Ref. 38).

TABLE 2-22

ANNUAL IODINE NORMALIZED RELEASES FROM MAIN CONDENSER AIR EJECTOR EXHAUST*

Data Source	Normalized Release (Ci/yr/µCi/g)
Turkey Point 3/4 (Ref. 6)	3.5 (+3)
Point Peach 1/2 (Ref. 7, 12)	6.1 (+2)
Haddam Neck (Ref. 38)	3.0 (+1)
Average	1.7 (+3)

^{*} The normalized release rate represents the effective release rate for radioiodine. It is the combination of the steam flow to the main condenser, the partitioning of radioiodine between the main condenser and the air ejector exhaust where it is measured and the partition coefficient for radioiodine from water to steam in the steam generator.

In a manner similar to the discussion of normalized releases for building ventilation releases in Section 2.2.4, the main condenser air ejector exhaust iodine releases are directly related to the secondary coolant iodine-131 concentration. Therefore, for the air ejector exhaust, the normalized iodine release, ${\sf R}_{\sf N}$, is determined using the following expression:

$$R_N = \frac{R_A}{C_{RW} \times PC}$$

where

 R_N = normalized effective release rate of iodine-131, Ci/yr/ μ Ci/g

 R_{Δ} = measured (absolute) iodine-131 release rate, Ci/yr

 C_{RW} = measured secondary coolant iodine-131 concentration, $\mu\text{Ci/g}$

PC = measured iodine partition coefficient from secondary coolant water to steam in the steam generator.

Data on normalized release rates from the main condenser air ejector exhaust are given in Table 2-22. To obtain the release in curies/year from the air ejector exhaust of a particular PWR, the normalized release data in Table 2-22 are multiplied in the PWR-GALE Code by the iodine concentration in the secondary coolant water and the iodine partition coefficient from the water to steam for that particular PWR using the following expression:

$$R_{PWRi} = R_N \times C_{PWRi} \times PC_{PWR}$$

where

R_{PWRi} = calculated annual release for particular PWR for iodine isotope i, Ci/yr

R_N = normalized annual release rate of iodine from Table 2-22, Ci/yr/μCi/g

 $c_{PWRi}^{}$ = calculated secondary coolant concentration for particular PWR for iodine isotope i, $\mu \, Ci/g$

 PC_{PWR} = Iodine partition coefficient from water to steam in the steam generator for the particular PWR (see Table 2-6)

As discussed in references 6 and 7, most of the iodine in the secondary system is not available for release to the main condenser air ejector exhaust due to iodine bypassing the condenser hotwell in the moisture separator/reheater drains and extraction steam, and possibly due to iodine plating out in the moisture separator/reheater, turbine and main condenser. As a result, the iodine release from the main condenser air ejector exhaust is small compared to the building ventilation releases.

2.2.9 CONTAINMENT PURGE FREQUENCY

2.2.9.1 Parameter

For those plants equipped with small diameter purge lines (diameter of about 8 inches or less), releases are based on continuous ventilation during power operation and on 2 purges per year at cold shutdown with the large containment purge lines. The continuous ventilation rate used in the evaluation is based on the applicant's design.

For older plants (those under review for operating licenses or those for which the construction permit SER was issued prior to July 1, 1975) not equipped with small diameter purge lines, releases are based on 2 purges per year at cold shutdown and 22 purges per year during power operation. The 22 purges consider the effect of use of large containment purge lines and of separate vent lines, if any. If, for a specific plant, there is filtration on the large purge lines but not on the vent lines, an additional GALE Code run will be made to account for the effect of the vent.

Operating experience and special design features (for example, little or no air operated equipment in the containment) to reduce the frequency of containment purging will be considered on a case-by-case basis.

2.2.9.2 Bases

It is assumed that the containment building is purged twice a year for refueling and maintenance. The two purges are considered for cold shutdowns for annual fuel loading and planned maintenance. In addition, experience at operating reactors (Table 2-23) has indicated a need to purge or vent the containment frequently during full power operation and hot standby to control the containment pressure, temperature, humidity, and airborne activity levels (Ref. 17). For the above reasons, new plant designs are to include the capability to purge the containment continuously through small-diameter purge lines (about 8 inches in diameter) and only use the large containment purge lines at cold shutdowns and refueling outages (Ref. 18). On this basis, source term calculations for new plants should consider a continuous ventilation rate based on the applicant's containment design, along with the two cold shutdown purges per year with the large containment purge lines, unless special provisions are made to eliminate or reduce the need for continuous ventilation flow.

TABLE 2-23

PWR CONTAINMENT PURGING AND VENTING EXPERIENCE (REF. 17)

Yankee Rowe

Purge and vent only after cooldown following shutdown

Routinely pressurize containment for leak detection system Reasons:

checks and bring activity down

2 to 6 hours Duration:

Maine Yankee

Purge once per quarter

Reason:

Bring activity down

2 to 3 days each quarter Duration:

Indian Point 2

Vent 2 times each day

Reason: Pressure balance control Approximately 1 to 2 hours Duration:

Purge once every 2 weeks (duration not stated)

Three Mile Island 1

Purge approximately once per week during operation, always purge prior to shutdown

Reason:

Improve temperature and humidity conditions

Duration:

Approximately 48 hours

Connecticut Yankee

Purge - Cannot purge during operation, only during shutdown

Reason:

Primarily to remove activity

Duration: 1 to 2 days

San Onofre 1

Purge each cooldown approximately 4 times per year, no purging during power operation Purge for at least 24 hours, ventilate during entire shutdown period

Oconee 1

Continuous purge from startup through 7/1/74

Purged twice since 7/1/74, once on 7/8/74 for several days and again

on 8/22/74 for 1 to 2 days

Reason: Reduction of gaseous activity for maintenance, etc.

TABLE 2-23 (continued)

PWR CONTAINMENT PURGING AND VENTING EXPERIENCE (REF. 17)

Oconee 2

Continuous purge since startup, lowest purge rate approximately $20,000 \text{ ft}^3/\text{min}$

Reason: Reduction of gaseous activity for maintenance, etc.

Robinson 2

Purge approximately 20 times per year for 2 minutes each purge for testing of purge valves. In addition, purge approximately 10 times per year for an average of 100 hours each purge for personnel comfort reasons.

Vent about 75 times per year for about four hours each. Venting occurs to control containment pressure and to bring containment pressure to zero gauge prior to purging as noted above.

Turkey Point 3

For period 1/1/74 to 7/1/74

Total purges 14

Total time 502 hours*
Maximum duration (1 purge) 253 hours
Minimum duration (1 purge) 3 hours

Infrequent purges or vents of 10 minutes for pressure control.

Turkey Point 4

For period 1/1/74 to 7/1/74

Total purges

Total time 984 hours*
Maximum time (1 purge) 742 hours
Minimum time (1 purge) 5 hours

Surry 1 and 2

Containment operates at negative pressure. Discharge from vacuum pumps through filters to stack. During cold shutdown, there is continuous purging of containment.

Prairie Island

Frequency: Once per week for about 8 hours

Reason: To relieve pressure buildup due to instrument air leakage

to containment

TABLE 2-23 (continued)

PWR CONTAINMENT PURGING AND VENTING EXPERIENCE (REF. 17)

Kewaunee

Frequency: 5 times in 60 days usually for less than 1 hour, longer

if for personnel entry.

Reason: Pressure control. During the 60-day period, purging

occurred for personnel entry.

Point Beach

Continuous venting through a monitoring line at about $10 \, \mathrm{ft}^3/\mathrm{min}$ flow. Gas filtered on way to stack.

Palidades

One per week for about 10 minutes duration (planned upon resumption of power operation)

Reason: To control pressure buildups

Zion

Venting for pressure buildup about twice per week depending on outside temperature. Ranges from twice per day to once every two weeks.

Purges to control environment range from once per day to once every two weeks.

Duration: 3/4 hour on venting; 3-4 hours on purging.

Fort Calhoun**

For periods from 1/1/76 to 6/31/76 and 5/5/77 to 12/31/77. Average of 65 purges per year with an average duration of about 20 hours.

Millstone 2**

For period from 7/1/75 through 12/31/77. About 45 purges per year with an average duration of about 9 hours.

^{*} Generally, long purges occur during plant outages while at cold shutdown conditions.

^{**} Data for these plants was obtained from the Semi-annual Release Reports for the plants for the period indicated.

For older plants (those under review for operating licenses or those for which the construction permit SER was issued prior to July 1, 1975) (Ref. 18) not equipped with small diameter purge lines, frequent periodic purges or vents will be used to control the above parameters (Ref. 18). A frequency of 22 purges per year during power operation is considered representative of plant operating experience for the combined effects of purging and venting.

2.2.10 CONTAINMENT INTERNAL CLEANUP SYSTEM

2.2.10.1 Parameter

Assume the internal cleanup system will operate for 16 hours prior to purging, that it provides a DF for radioiodine removal on charcoal adsorbers corresponding to the values in Table 1-5, and a DF of 100 for particulate removal on HEPA filters and that there is a containment air mixing efficiency of 70%.

2.2.10.2 Bases

Internal cleanup systems may be used to reduce airborne iodine concentrations in the containment air prior to purging. Such systems normally recirculate containment air through HEPA filters and charcoal adsorbers to effect iodine and particulare removal. For source term calculations, it is assumed that the cleanup systems are operated for 16 hours prior to purging. It is considered that charcoal adsorbers provide a DF for iodine corresponding to the values in Table 1-5, that HEPA filters provide a DF of 100 for particulates, and that the containment air mixing efficiency is 70%. The system operation time of 16 hours considers that two shifts will elapse following a decision to enter the containment. The time period of two shifts is a reasonable amount of time for pre-entry preparations.

A 70% mixing efficiency, based on data from the Ginna Station containment building atmosphere test conducted in 1971 (Ref. 19), is used in evaluations. Data from Reference 19 are

Parameter	Symbol Symbol	Value
Length of test run	T	6 hours
Initial iodine activity	A _o	1.2 x 10 ⁻⁸ μCi/cc
Final iodine activity	Α	1.2 x 10 ⁻⁹ μCi/cc
Containment volume	٧	10^6 ft^3
Internal recirculation system flow rate	F	6.1 x 10^5 ft ³ /hr

The efficiency of iodine removal, E, can be estimated from

$$\frac{A_0}{A} = \exp(\frac{FET}{V})$$

Substituting Ginna data into the equation

$$\frac{1 \times 10^{-8}}{1 \times 10^{-9}} = \exp \left[(6.1 \times 10^5)(E)(6)/(10^6) \right]$$

$$10 = \exp (3.7E)$$
, therefore $E = 0.63$.

The iodine removal efficiency E is a function of filter efficiency, ${\rm E_a}$, and mixing efficiency, ${\rm E_m}$.

$$E = E_a E_m = 0.63$$

In calculating $\rm E_m$ we used the assumed DF of 10 for charcoal derived from Table 1-5, (90% removal). Using $\rm E_a$ equal to 0.9, $\rm E_m$ is calculated to be 70%.

$$E_{\rm m} = E/E_{\rm a} = 0.63/0.9 = 0.7$$

2.2.11 RADIOIODINE REMOVAL EFFICIENCIES FOR CHARCOAL ADSORBERS AND PARTICULATE REMOVAL EFFICIENCIES FOR HEPA FILTERS

2.2.11.1 Parameter

Use a removal efficiency of 99% for particulate removal by HEPA filtration. For charcoal adsorbers, which satisfy the guideline of Reg. Guide 1.140 (Rev. 2), removal efficiencies for all forms of radioiodine are as follows:

Activated Carbon Bed Depth ^a	Removal Efficiencies For Radioiodine(%)
2 inches. Air filtration system designed to operate inside primary containment.	90
2 inches. Air filtration system designed to operate outside the primary containment and relative humidity is controlled to 70%.	70

^a Multiple beds, e.g., two 2-inch beds in series, should be treated as single bed of aggregate depth of 4 inches.

Activated Carbon Bed Depth ^a	For Radioiodine(%)	
4 inches. Air filtration system designed to operate outside the primary containment and relative humidity is controlled to 70%.	90	
6 inches. Air filtration system designed to operate outside the primary containment and relative humidity is controlled to 70%.	99	

Romoval Efficiencies

2.2.11.2 Bases

The removal efficiencies assigned to HEPA filters for particulate removal and charcoal adsorbers for radioiodine removal are based on the design, testing and maintenance criteria recommended in Regulatory Guide 1.140, "Design, Testing and Maintenance Criteria for Normal Ventilation Exhaust System Air Filtration and Adsorption Units of Light-Water-Cooled Nuclear Power Plants" (Ref. 2).

2.2.12 WASTE GAS SYSTEM INPUT FLOW TO PRESSURIZED STORAGE TANKS

2.2.12.1 Parameter

The input flow rate to the pressurized storage tanks is variable depending on the system design as can be seen from Table 2-24 and 2-25. Therefore each applicant should supply the value of F, the waste gas system input flow to the pressurized storage tanks. If detailed design information is not available, the data given in Tables 2-24 and 2-25 may be used. These data show that the average waste gas input flow is $170 \, \text{ft}^3/\text{day}$ (STP) per reactor for PWR's without recombiners and $30 \, \text{ft}^3/\text{day}$ (STP) per reactor for PWR's with recombiners.

2.2.12.2 Bases

As can be seen from Tables 2-24 and 2-25 there is variation among PWR system designs for the waste gas system input flow.

A review of the waste gas processing systems proposed for a number of PWR's as given in the respective PSAR's and FSAR's has yielded the design flow rates shown in Tables 2-24 and 2-25. Table 2-24 indicates that for reactors designed without recombiners to treat the gas prior to holdup in pressurized storage tanks, the average expected flow is approximately 170 ft 3 /day (STP) per reactor. Table 2-25 indicates that for reactors designed with recombiners to remove hydrogen prior to holdup in pressurized storage tanks, the average expected flow is approximately 30 ft 3 /day (STP) per reactor.

TABLE 2-24

WASTE GAS SYSTEM INPUT FLOW TO PRESSURIZED STORAGE TANKS
FOR PWR'S WITHOUT RECOMBINERS

	Net Flow per Reactor	
Reactor	ft ³ /day (STP)	
in Onofre 2/3	57	
iterford 3	171	
lgrim 2	69	
Lucie 1/2	139	
llstone 2	49	
kansas 1/2	68	
on 1/2	173	
quoyah 1/2	173	
ble Hill 1/2	173	
blo Canyon 1/2	343	
jan	225	
onee 1/2/3	180	
vis Besse l	144	
lefonte 1/2	163	
erage Net Flow for PWR's	2	
	170 st 3 (de., (STD) = ==	

Average Net Flow for PWR's without recombiners = 170 ft³/day (STP) per reactor

TABLE 2-25

WASTE GAS SYSTEM INPUT FLOW TO PRESSURIZED STORAGE TANKS
FOR PWR'S WITH RECOMBINERS

Reactor	Net Flow per Reactor ft ³ /day (STP)		
WPPSS 1	96		
Farley 1/2 McGuire 1/2	3 18		
Average Net Flow for PWR's with recombiners	= 30 ft ³ /day (STP) per reactor		

^{*} Net flow rate is determined downstream of any recombiner (which is assumed 100% effective in removing hydrogen).

2.2.13 HOLDUP TIMES FOR CHARCOAL DELAY SYSTEMS

2.2.13.1 Parameter

T = 0.011 MK/F

where

T is the holdup time, in days; and

K is the dynamic adsorption coefficient, in cm³/g, (see chart below):

M is the mass of charcoal adsorber, in 10^3 lbs;

F is the system flow rate, in ft³/min;

0.011 is the factor to convert from $(10^3 \text{ lb. cm}^3/\text{g})/(\text{ft}^3/\text{min})$ to days.

Dynamic adsorption coefficients, K, (in cm^3/g) are as follows:

	Operating 77°F Dew Point 45°F	Operating 77°F Dew Point O°F	Operating 77°F Dew Point -40°F	Operating O°F Dew Point -20°F
Kr	18.5	25	70	105
Хе	330	440	1160	2410

2.2.13.2 Bases

Charcoal delay systems are evaluated using the above equation and dynamic adsorption coefficients. T = MK/F is a standard equation for the calculation of delay times in charcoal adsorption systems (Ref. 20). The dynamic adsorption coefficients (K values) for Xe and Kr are dependent on operating temperature and moisture content (Ref. 21 and 22) in the charcoal, as indicated by the values in the above parameter. The K values represent a composite of data from operating reactor charcoal delay systems (Ref. 23 and 24) and reports concerning charcoal adsorption systems (Ref. 20-22, 24-27).

The factors influencing the selection of K values are:

1. Operational data from KRB (Ref. 23) and from KWL (Ref. 24), and from Vermont Yankee (Ref. 28).

- 2. The effect of temperature on the dynamic adsorption coefficients, indicated in Figure 2-3 (Ref. 21).
- 3. The effect of moisture on the dynamic adsorption coefficients, shown in Figure 2-4. The affinity of charcoal for moisture, shown in Figure 2-5.
- 4. The variation in K values between researchers and between the types of charcoal used in these systems (Refs. 21 and 27). Because of the variation in K values based on different types of charcoal and the data reported, average values taken from KRB and KWL data shown in Figure 2-3 are used.

The coefficient 0.011 adjusts the units and was calculated as follows:

$$T(days) = \frac{M(10^3 \text{ lbs}) \ K(cm^3/g)(454 \ g/\text{lb}) \ 3.53 \times 10^{-5} \ ft^3/cm^3)}{F(ft^3/\text{min})(1440 \ \text{min/day})}$$

$$T = 0.011 \frac{MK}{F}$$

2.2.14 LIQUID WASTE INPUTS

2.2.14.1 Parameter

The flow rates listed in Table 2-26 are used as inputs to the liquid radwaste treatment system. Flows that cannot be standardized are added to those listed in Table 2-26 to fit an individual application, e.g., shim bleed and equipment leaks to the reactor coolant drain tank. Disposition of liquid streams to the appropriate collection tanks is based on the applicant's proposed method of processing.

2.2.14.2 Bases

The flow rates used represent average values for a plant operating at steady-state conditions. The values are derived from values proposed by the ANS 55.6 Working Group in proposed American National Standard, "Liquid Radioactive Waste Processing System for Light Water Reactor Plants," (Ref. 29) from operating and design data, and from information furnished by applicants in response to source term questions. Data from Zion (Ref. 5) indicate that the values for fraction of primary coolant activity given in Table 2-26 provide reasonable estimates of plant operating experience.

2.2.15 DETERGENT WASTE

2.2.15.1 Parameters

For plants with an onsite laundry, use the radionuclide distribution given in Table 2-27 for untreated detergent wastes. The quantities shown

FIGURE 2-3 KRYPTON AND XENON K VALUES AS A FUNCTION OF RECIPROCAL TEMPERATURE

FIGURE 2-4 EFFECT OF MOISTURE CONTENT ON THE DYNAMIC ADSORPTION COEFFICIENT

FIGURE 2-5 CHARCOAL MOISTURE AS A FUNCTION OF RELATIVE HUMIDITY

TABLE 2-26
PWR LIQUID WASTES

EXPECTED DAILY AVERAGE INPUT FLOW RATE (in Gal/day)

Type of treatment of blowdown recycled to secondary system (U-tube steam generator plants) or type of treatment of condensate (once-through steam generator plants)

					enerator plants)	m ough steam	Plant with blowdown treat-	
-				Deep-bed cond. der demineralizers with ultrasonic u		Deep-bed cond. demineralizers without ultrasonic Filter- resin cleaner demineralizer		FRACTION OF PRIMARY COOLANT ACTIVITY (PCA)
2	۱.	REA	CTOR CONTAINMENT					
-65		a.	Primary coolant pump seal leakage	20	20	20	20	0.1
		b.	Primary coolant leakage, miscellaneous sources	10	10	10	10	1.67*
		с.	Primary coolant equipment	500	500	500	500	0.001
	2.		MARY COOLANT SYSTEMS TSIDE OF CONTAINMENT)					
		a.	Primary coolant system equipment drains	80	80	80	80	1.0
		b.	Spent fuel pit liner drains	700	700	700	700	0.001
		с.	Primary coolant sampling system drains	200	200	200	200	0.05
		d.	Auxiliary building floor drains	200	200	200	200	0.1

3. SECONDARY COOLANT SYSTEMS

^{**} GALE Code uses release data given in Table 2-27 to calculate releases from this source.

^{††} Input parameter

^{*} About 40% of the leakage flashes, resulting in PCA fraction of the leakage greater than 1.0.

TABLE 2-27

CALCULATED ANNUAL RELEASE OF RADIOACTIVE MATERIALS

IN UNTREATED DETERGENT WASTE

Nuclide		Ci/yr/reactor
P-32		1.8(-4)
Cr-51		4.7(-3)
Mn-54		3.8(-3)
Fe-55		7.2(-3)
Fe-59		2.2(-3)
Co-58		7.9(-3)
Co-60		1.4(-2)
Ni-63		1.7(-3)
Sr-89		8.8(-5)
Sr-90		1.3(-5)
Y-91		8.4(-5)
Zr-95		1.1(-3)
Nb-95		1.9(-3)
Mo-99		6(-5)
Ru-103		2.9(-4)
Ru-106		8.9(-3)
Ag-110m		1.2(-3)
Sb-124		4.3(-4)
I-131		1.6(-3)
Cs-134		1.1(-2)
Cs-136		3.7(-4)
Cs-137		1.6(-2)
Ba-140		9.1(-4)
Ce-141		2.3(-4)
Ce-144		3.9(-3)
	TOTAL	0.09 Ci

in Table 2-27 should be added to the adjusted liquid source term. Detergent waste releases should be reduced, using appropriate decontamination factors from this report if treatment is provided.

2.2.15.2 Bases

In the evaluation of liquid radwaste treatment systems, it is assumed that detergent wastes (laundry and personnel drains) will have the radio-nuclide distribution given in Table 2-27. The radionuclide distribution is based on measurements at four nuclear power plants, which are given in Table 2-28.

2.2.16 CHEMICAL WASTES FROM REGENERATION OF CONDENSATE DEMINERALIZERS

2.2.16.1 Parameter

- 1. Liquid flows to demineralizer at main steam activity.
- 2. All nuclides removed from the secondary coolant by the demineralizers are removed from the resins during regeneration.
- 3. Use a regeneration cycle of 1.2 days times the number of demineralizers for deep bed condensate system without ultrasonic resin cleaner (URC); for systems using URC, use a regeneration cycle of 8 days times the number of demineralizers.

2.2.16.2 Bases

Operating data (Ref. 30, 31) from Arkansas Nuclear One-Unit 1 indicate that one condensate demineralizer (without URC) is chemically regenerated every 1.2 days. The 8-day period for systems using URC is from Reference 29.

All material exchanged or filtered out by the resins between regenerations is contained in the regenerant waste streams, therefore, each regeneration will have approximately the same effectiveness (i.e., each regeneration removes all material collected since the previous regeneration, leaving a constant quantity of material on the resins after regeneration). Regeneration cycles are normally controlled by particulate buildup on resin beds, resulting in high pressure drops across the bed.

2.2.17 TRITIUM RELEASES

2.2.17.1 Parameter

The tritium releases through the combined liquid and vapor pathways are 0.4 Ci/yr per MWt. The quantity of tritium released through the liquid pathway is based on the calculated volume of liquid released, excluding secondary system wastes, with a primary coolant tritium concentration of 1.0 μ Ci/ml up to a maximum of 90% of the total quantity of tritium calculated to be available for release. It is assumed that the remainder of the tritium produced is released as a gas from building

TABLE 2-28

RADIONUCLIDE DISTRIBUTION OF DETERGENT WASTE (millicuries/month)

<u>Nuclide</u>	Oyster Creek (1971-1973) (Ref. 41)	Ginna (1972-1973) (Ref. 8)	Zion* (1977) (Ref. 5)	Fort Calhoun (1977) (Ref. 4)
P-32 Cr-51 Mn-54 Fe-55 Fe-59 Co-58 Co-60 Ni-63 Sr-89 Sr-90 Y-91 Zr-95 Nb-95 Mo-99 Ru-103 Ru-106 Ag-110m Sb-124 I-131 Cs-134 Cs-136 Cs-137 Ba-140 Ce-141 Ce-144	1.5(-2) 2.3(-1) 1.3 3.5(-1) 2.9(-1) 3.5(-1) 3.8 NA 2.1(-2) 2.5(-3) NA 8.3(-2) 1.6(-1) NA 1.3(-2) NA NA 6.1(-2) 4.3(-1) 1.7(-1) NA 2.9(-1) 7.6(-2) 3.3(-2) 7.3(-2)	NA NA 1.2(-1) NA NA 4.1(-1) 9(-1) NA NA NA NA 1.6(-1) 2(-1) 5(-3) 3.2(-2) 7.4(-1) 1(-1) NA 5.5(-2) 1.4 NA 2.5 NA 5(-3) 5.8(-1)	NA 9.4(-1) 1.6(-1) 1.9 2.6(-1) 2.4 9.8(-1) 3.5(-1) 7(-3) 7.6(-4) 1.4(-2) 1.4(-1) 2.7(-1) NA 5.2(-2) NA NA 4.7(-2) 1.7(-1) 1.5 6.2(-2) 2.1 NA NA NA	NA NA 1.9(-2) 1.6(-1) NA 1.5(-1) 3(-2) 7.1(-2) 1.4(-3) NA
TOTAL	7.7	7.2	11.4	3.5

Note: NA = radionuclides were not analyzed.

^{*} For two units.

ventilation exhaust systems. About eighty percent of the tritium in the gaseous effluents is released from the auxiliary building ventilation system, including the refueling area, and the remaining 20% of the tritium in gaseous effluents is released from the containment building ventilation system.

2.2.17.2 Bases

The release rate of 0.4 Ci/yr/MWt is based on a review of the tritium release rates at a number of PWR's and on data from specific measurements of tritium inventory and tritium releases at the Ginna plant (Ref. 8). The measurements at Ginna were made during the first two core cycles during which the reactor operated 605 effective full power days. The observed tritium buildup during this period was 1410 Ci. For the same period, 910,000 MWd of thermal power were generated. Using these data, considering an 80% plant capacity factor and considering tritium decay, the annual average tritium release is

$$\frac{1410 \text{ Ci}}{910,000 \text{ MWd}}$$
 (0.8)(365 days/yr) $e^{-0.693(1)/12.3} = 0.43 \text{ Ci/yr per MWt}$

Table 2-29 gives the reported liquid and gaseous tritium releases for 1972-1978 for thirty-five operating PWR's that use zircaloy clad fuel and started commercial operation before 1978. Table 2-29 shows these data expressed as the average release rate from the plants as a function of the number of years of operation of each plant. The tritium release rate from a PWR should reach a steady state value after a few years as a result of leakages from the plant. Table 2-30 illustrates the fact that the tritium release rate is approaching a steady state value of approximately 0.4 Ci/yr/MWt which is the value obtained from the Ginna measurements. At steady state, the release rate from a plant is approximately equal to the amount entering the primary coolant since only about 5% per year of the plant tritium inventory will decay. Based on the data from Ginna and the data in Table 2-30 we will use a release rate of 0.4 Ci/yr/MWt, which considers both liquid and vapor pathways.

The amount of tritium released via the liquid pathway is calculated from the volume of primary coolant that is released in the nonrecyclable waste streams for the boron recovery, clean waste, and dirty waste systems. The concentration of tritium in wastes originating from primary coolant is assumed to be $1~\mu\text{Ci/ml}$, consistent with the N237 source term. Tritium in liquid that leaks into, or is used as makeup to, the secondary system is considered to be released in liquid effluents through the turbine building floor drain discharge. The parameters for primary coolant activity prior to processing are used to calculate the tritium concentration in the waste streams.

Data in Table 2-31 indicate that tritium released in liquid effluents can make up a large fraction of the total tritium produced. Therefore we have considered that the tritium calculated to be released in liquid effluents is up to a maximum of 90% of the total quantity of tritium calculated to be available for release.

TABLE 2-29

TRITIUM RELEASE DATA FROM OPERATING PWR'S WITH ZIRCALOY-CLAD FUELS*

D	Power er unit	Startup			ar Ther per uni 10 ⁶ MWD	t	put	
Reactor Name	MWt	Date	<u>1972</u>	<u>1973</u>	<u>1974</u>	1975	<u>1976</u>	<u>1977</u>
R. E. Ginna H. B. Robinson Point Beach 1/2 Palisades Maine Yankee Indian Point 2/3 Surry 1/2 Turkey Point 3/4 Oconee 1/2/3 Zion 1/2 Fort Calhoun Prairie Island 1/2 Kewaunee Three Mile Island 1 Rancho Seco Arkansas 1 Calvert Cliffs 1/2 Cook 1 Millstone 2 Trojan St. Lucie 1 Beaver Valley 1 Salem 1	1520 2200 1518 2530 2440 2758 2441 2200 2568 3250 1420 1650 2535 2772 2568 2700 3250 2560 3411 2560 2652 3338	1969 1970 1970/72 1971 1972 1973/76 1972/73 1972/73 1973/74/74 1973/73 1973 1973/74 1974 1974 1974 1974 1974 1975 1975 1975 1975	0.32 0.62 0.42 0.24	0.45 0.51 0.77 0.27	0.28 0.39 0.43 0.02 0.48 0.80 1.08 0.51	0.40 0.57 0.87 0.37 0.61 0.69 1.21 1.16 1.95 1.37 0.28 0.94 0.45 0.73 0.17 0.64 0.58	0.29 0.66 0.91 0.40 0.81 0.56 1.05 1.12 1.65 1.29 0.30 0.86 0.45 0.58 0.29 0.50 0.84 0.90 0.63 0.31	0.46 0.59 0.93 0.72 0.69 1.46 1.27 1.13 1.67 1.53 0.39 1.03 0.75 0.68 1.24 0.64 0.59 0.88 0.73 0.42 0.28

^{*} Data from semiannual reports of reactors listed.

TABLE 2-29 (continued)

TRITIUM RELEASE DATA FROM OPERATING PWR'S WITH ZIRCALOY-CLAD FUELS*

	Power	C++	Tr	itium R) Per S	ite
Reactor Name	per unit MWt	Startup Date	1972	1973	Gase 1974	1975	1976	1977
Reactor Name	PINC	Date	13/2	13/3	13/4	19/3	1370	13//
R. E. Ginna	1520	1969	0.01	1.1	0.36	5.8	23.6	50
H. B. Robinson	2200	1970	1.0	4.0	52.0	193	158	61
Point Beach 1/2	1518	1970/72	8.0	25.0	43.0	177	395	194
Palisades	2530	1971	5.0	0.3	**	**	**	2.2
Maine Yankee	2440	1972			7.5	4.7	3.7	2.1
Indian Point 2/3	2758	1973/76			20.0	24.5	23.7	12.4
Surry 1/2	2441	1972/73			60.0	32	372	879
Turkey Point 3/4	2200	1972/73			9.2	3.5	5.2	3.9
Oconee 1/2/3	2568	1973/74/74			0.75	1600	502	62.6
Zion 1/2	3250	1973/73				**	**	**
Fort Calhoun	1420	1973				2.4	2.5	3.0
Prairie Island 1/2	1650	1973/74				10.1	33.1	88
Kewaunee	1650	1974				37.3	0.70	3.75
Three Mile Island 1	2535	1974				40.3	717	129
Rancho Seco	2772	1974				7.73	9.1	20.7
Arkansas 1	2568	1974				0.52	6.7	190
Calvert Cliffs 1/2	2700	1974/76				1.23	41	117
Cook 1	3250	1975					0.11	0.20
Millstone 2	2560	1975					21.3	47
Trojan	3411	1975					1.5	2.9
St. Lucie 1	2560	1976						320
Beaver Valley 1	2652	1976						213
Salem 1	3338	1976						51

^{*} Data from semiannual reports of reactors listed.

^{**} No reported data.

TABLE 2-29 (continued)

TRITIUM RELEASE DATA FROM OPERATING PWR'S WITH ZIRCALOY-CLAD FUELS*

	Power	6 .	Tr	itium Re		(Ci/Yr)	Per Si	te
Dogator Name	per unit	Startup	1072	1072	Liqu		1076	1077
Reactor Name	MWt	Date	<u> 1972</u>	<u> 1973</u>	<u> 1974</u>	<u> 1975</u>	<u>1976</u>	<u>1977</u>
R. E. Ginna	1520	1969	120	286	195	261	242	119
H. B. Robinson	2200	1970	410	431	475	624	980	685
Point Beach 1/2	1518	1970/72	560	556	832	886	694	1000
Palisades	2530	1971	210	185	8.3	41.3	9.6	56
Maine Yankee	2440	1972			219	177	368	153
Indian Point 2/3	2758	1973/76			48	366	332	371
Surry 1/2	2441	1972/73			246	442	782	408
Turkey Point 3/4	2200	1972/73			580	793	771	924
Oconee 1/2/3	2568	1973/74/74			124	3550+	2192.	1918.
Zion 1/2	3250	1973/73				39.4	1.1 '	727 '
Fort Calhoun	1420	1973				111	122	157
Prairie Island 1/2	1650	1973/74				763	1925	1349
Kewaunee	1650	1974				277	213	295
Three Mile Island 1	2535	1974				463	189 0.0 ^{††}	192 ++
Rancho Seco	2772	1974				132		0.09
Arkansas 1	2568	1974				460	212	245
Calvert Cliffs 1/2	2700	1974/76				263	274	575
Cook 1	3250	1975					192	285
Millstone 2	2560	1975					277	211
Trojan	3411	1975					36	311
St. Lucie 1	2560	1976						242
Beaver Valley 1	2652	1976						108
Salem 1	3338	1976						296

Data from semiannual reports of reactors listed.

No radioactive liquid wastes were discharged from Unit 2 during the entire year. Note: For 1975, there were no radioactive liquid wastes discharged from Unit 1 during the last 6 months.

 $^{^{\}dagger\dagger}$ Rancho Seco is designed to be a zero or very low liquid release plant.

TABLE 2-29 (continued)

TRITIUM RELEASE DATA FROM OPERATING PWR's WITH ZIRCALOY-CLAD FUELS*

Reactor Name	Power per unit MWt	Startup Date		Tritium /yrMwt 1973				1977
REACCOI Name	TINC	Date	13/2	13/3	13/4	1973	1970	13/1
R. E. Ginna H. B. Robinson Point Beach 1/2 Palisades Maine Yankee	1520 2200 1518 2530 2440	1969 1970 1970/72 1971 1972	0.11 0.19 0.39 0.26	0.19 0.25 0.22 0.20	0.20 0.39 0.59 -	0.19 0.42 0.36 - 0.09	0.27 0.50 0.35 -	0.11 0.37 0.37 0.02 0.07
Indian Point 2/3 Surry 1/2 Turkey Point 3/4 Oconee 1/2/3	2758 2441 2200 2568	1973/76 1972/73 1972/73 1973/74/74			0.04 0.11 0.16 0.07	0.17 0.11 0.20 0.79	0.19 0.32 0.20 0.48	0.08 0.30 0.24 0.35
Zion 1/2 Fort Calhoun Prairie Island 1/2 Kewaunee Three Mile Island 1 Rancho Seco Arkansas 1 Calvert Cliffs 1/2 Cook 1 Millstone 2 Trojan St. Lucie 1 Beaver Valley 1 Salem 1	3250 1420 1650 1650 2535 2772 2568 2700 3250 2560 3411 2560 2652 3338	1973/73 1973 1973/74 1974 1974 1974 1974/76 1975 1975 1975 1976 1976				0.12 0.24 0.20 0.20 0.24 0.21 0.13	0.12 0.66 0.14 0.46 0.01 0.13 0.11 0.06 0.14	0.12 0.41 0.19 0.13 0.01 0.19 0.16 0.13 0.10 0.22 0.22

^{*} Data from semiannual reports of reactors listed.

TABLE 2-30

TRITIUM RELEASE RATE FROM OPERATING PWR'S

AS A FUNCTION OF NUMBER OF YEARS OF OPERATION

(Ci/yr.-MWt per unit at 80% capacity)

	1	2	3		_5	_6	
Ginna	0.11	0.19	0.20	0.19	0.27	0.11	0.17
Robinson	0.19	0.25	0.39	0.42	0.50	0.37	-
Pt. Beach 1/2	0.39	0.22	0.59	0.36	0.35	0.37	0.51
Maine Yankee	0.14	0.09	0.13	0.07	0.18	-	-
Indian Pt. 2/3	0.04	0.17	0.19	0.08	-		
Surry 1/2	0.11	0.11	0.32	0.30	-		
Turkey Pt. 3/4	0.16	0.20	0.20	0.24	0.20		
Oconee 1/2/3	0.07	0.77	0.48	0.35	0.19		
Ft. Calhoun	0.12	0.12	0.12	0.13	-		
Prairie Is. 1/2	0.24	0.66	0.41	0.25			
Kewaunee	0.20	0.14	0.19	0.20	-		
TMI 1	0.20	0.46	0.13	0.17	-		
Arkansas 1	0.21	0.13	0.19	-	-		
Calvert Cliffs 1/2	0.13	0.11	0.16	-	-		
Cook	0.06	0.13	0.31	-	-		
Millstone	0.14	0.13	-	-	-		
Trojan	0.04	0.10	_	-	-		
St. Lucie	0.22	-	-	-	-		
Beaver Valley	0.22	0.51	-	-	-		
Salem	0.36	0.41	<u>-</u>				
Average	0.16	0.29	0.30	0.25	0.26	0.31	0.40

TABLE 2-31

TRITIUM RELEASE DATA FROM OPERATING PWR'S

PERCENT OF TOTAL TRITIUM RELEASED IN LIQUID EFFLUENTS

Reactor	1972	1973	<u>1974</u>	1975	1976	1977
R. E. Ginna	100.0	99.6	99.8	97.8	91.1	70.4
H. B. Robinson	99.8	99.1	90.1	76.4	86.1	91.8
Point Beach 1/2	98.6	95.7	95.1	83.3	63.7	83.8
Palisades	97.7	99.8	**	**	**	96.2
Maine Yankee			96.7	97.4	99.0	98.6
Indian Point 2/3			70.6	93.7	93.3	96.8
Surry 1/2			80.4	93.2	67.8	31.7
Turkey Point 3/4			98.4	99.6	99.3	99.6
Oconee 1/3			99.4	68.9	81.4	96.8
Zion 1/2				**	**	**
Fort Calhoun				97.9	98.0	98.1
Prairie Island 1/2				98.7	98.3	93.9
Kewaunee				88.1	99.7	98.7
Three Mile Island l				92.0	20.9	59.8
Rancho Seco				94.5	0.0	0.43
Arkansas 1				99.9	96.9	56.3
Calvert Cliffs 1/2				99.5	87.0	83.1
Cook 1					100.0	100.0
Millstone 2					92.9	81.8
Trojan					96.0	99.1
St. Lucie 1						43.1
Beaver Valley 1						33.6
Salem 1						85.3
						70
Weighted Average*	99.2	98.0	91.1	89.5	83.5	78.5

^{*} Average weighted by nuclear thermal output per unit.

^{**} No reported data.

tt Rancho Seco is designed to be a zero or very low liquid release plant.

The difference between the tritium calculated to be available for release from the primary coolant and the tritium calculated to be released in liquid effluents is considered to be released as a vapor through building ventilation exhaust systems. Based on measurements taken in 1975 through 1977 at Ginna, Calvert Cliffs and Three Mile Island (Ref. 7) and in 1976 and 1977 at Zion 1/2 (Ref. 5), and in 1977 at Turkey Point (Ref. 6), in 1978-79 at Rancho Seco (Ref .43), and in 1980-1981 at Prairie Island 1/2 (Ref. 42), Table 2-32 provides the distribution of tritium released from various sources within the plant. Based on data in Table 2-32, approximately 32% of tritium in gaseous effluents is released from the auxiliary building, 50% from the refueling area, and 18% from the containment. Since the refueling area in a PWR generally vents to the same release point as the auxiliary building, we have included these two releases together in our parameter.

2.2.18 DECONTAMINATION FACTORS FOR DEMINERALIZERS

2.2.18.1 Parameter

	Anion	<u>Cs, Rb</u>	Other Nuclides
Mixed bed purification system (LiB0 $_3$)	100	2	50
Boron recycle system	10	2	10
Evaporator condensate (H ⁺ OH ⁻)	5	1	10
Radwaste (H ⁺ OH ⁻)	10 ² (10)	2(10)	10 ² (10)
Steam Generator Blowdown	10 ² (10)	10(10)	10 ² (10)
Cation bed (H^{\dagger}) (any system)	1(1)	10(10)	10(10)
Anion bed (OH ⁻) (any system)	10 ² (10)	1(1)	1(1)
Powdex (any system)	10(10)	2(10)	10(10)

Note: For two demineralizers in series, the DF for the second demineralizer is given in parentheses.

The following operating conditions were considered for the evaluation of demineralizer performance:

The DF is dependent upon the inlet radioactivity and ion concentrations and bed volume ion exchange capacity. For demineralizer performance within the same range of controlled operating conditions, the DF increases with inlet radioactivity concentration and decreases with bed volume throughout.

TABLE 2-32*

DISTRIBUTION OF TRITIUM RELEASE IN GASEOUS EFFLUENTS

Source of Gaseous Tritium Release (% of Total)

Plant	Auxiliary Building	Refueling Area	Containment Building
Ginna (Ref. 7)	31	69	NM
Calvert Cliffs 1 (Ref. 7)	38	46	16
Three Mile Is. 1 (Ref. 7)	5	43	52
Zion 1/2 (Ref. 5)	79	WA	21
Turkey Point 3/4 (Ref. 6)	75	17	8
Rancho Seco (Ref. 43)	92	WA	8
Prairie Island 1/2 (Ref. 43)	7.2	91.8	1.0
Average	32	50	18

NM - Not measured.

WA - Release from refueling area combined with auxiliary building release.

* The following method is used to determine the $^3\mathrm{H}$ release in this table.

Containment Building operation average % of total release

$$(16 + 52 + 21 + 8 + 8 + 1)\% \div (6) = 17.7\% = 18\%$$

Then the Refueling Area for Ginna is reduced by

$$18\%$$
, i.e., $(69-18)\% = 51\%$

Now the operation average % of the total release for the Refueling Area is

$$(51 + 46 + 43 + 17 + 91.8)\% \div (5) = 50\%$$

Then use (79-50)% = 29% and (92-50)% = 42% into Zion and Rancho Seco auxiliary building's data, respectively, to calculate the operational average of Auxiliary Building release which is equal to

$$(31 + 38 + 5 + 29 + 75 + 42 + 7.2)\% \div (7) = 32\%$$

- 2. When two demineralizers are used in series, the first demineralizer will have a higher DF than the second. However, the data in Reference 32 indicate that Cs and Rb will be more strongly exchanged in the second demineralizer in series than the first as the concentration of preferentially exchanged competing nuclides is reduced.
- 3. As indicated in Reference 32, compounds of Y, Mo, and Tc form colloidal particles that tend to plate out on solid surfaces. Mechanisms such as plateout on the relatively large surface areas provided by demineralizer resin beds result in removal of these nuclides to the degree stated above. An analysis of effluent release data indicates that these nuclides, although present in the primary coolant, are not found in the effluent streams.

2.2.18.2 Bases

The decontamination factors (DF's) for purification, radwaste, and evaporator condensate demineralizers are based on (1) source term measurements made at Fort Calhoun, Zion, Turkey Point, Prairie Island, and Rancho Seco stations by In-Plant Source Term Measurement Program (Refs. 4, 5, 6, 42, and 43); (2) the findings of a generic review in the nuclear industry by the Oak Ridge National Laboratory (ORNL) (Ref. 32); and (3) measurements taken at Three Mile Island 1 (Ref. 40). The DF's for the remaining demineralizers are based on ORNL findings.

The ORNL generic review contains operating and theoretical data which provides a basis for the numerical values assigned. The ORNL data were projected to obtain a performance value expected over an extended period of operation. It is considered that attempts to extend the service life of the resin will reduce the DF's below those expected under controlled operating conditions.

Average DF's for Ft. Calhoun, Zion, Turkey Point, Rancho Seco, and Prairie Island stations were obtained by dividing the average inlet radionuclide concentration of samples by that of the average outlet concentrating for each nuclide.

Based on the data in References 4, 5, 6, 32, 42, and 43, the DF used for the parameter was that considered to be representative of the data.

2.2.19 DECONTAMINATION FACTORS FOR EVAPORATORS

2.2.19.1 Parameter

	<u>Decontamination</u>	Factors
	All Nuclides Except Iodine	<u> Iodine</u>
Miscellaneous radwaste evaporators	10 ³	10 ²
Boric acid evaporators	10 ³	10 ²
Separate evaporator for detergent wastes	10 ²	10 ²

2.2.19.2 Bases

The decontamination factors for evaporators are based on: (1) source term measurements made at Fort Calhoun, Zion, Turkey Point, Prairie Island, and Rancho Seco stations by In-Plant Source Term Measurement Program (Ref. 4, 5, 6, 42, and 43) and (2) the findings of a generic review in the nuclear industry by the Oak Ridge National Laboratory (Ref. 33).

Average DF's for Zion, Ft. Calhoun, Turkey Point, Rancho Seco, and Prairie Island, were obtained by dividing the average inlet radioactivity of samples by the average outlet radioactivity of samples for each radionuclide.

Based on the data given in References 4, 5, 6, 33, 42, and 43, the DF used for the parameter was that considered to be the most representative of the data.

2.2.20 DECONTAMINATION FACTORS FOR LIQUID RADWASTE FILTERS

2.2.20.1 Parameter

A DF of 1 for liquid radwaste filters is assigned for all radionuclides.

2.2.20.2 Bases

Reference 34 contains findings of a generic review by ORNL of liquid radwaste filters used in the nuclear industry. Due to various filter types and filter media employed, reported values of decontamination factors vary widely, with no discernible trend. The principal conclusion reached in the ORNL report is that no credit should be assigned to liquid radwaste filters (DF of 1) until a larger data base is obtained.

Additional data from Ft. Calhoun (Ref. 4), Zion 1/2 (Ref. 5) and Turkey Point 3/4 (Ref. 6), Rancho Seco (Ref. 43), and Prairie Island 1/2 (Ref. 42) indicate that decontamination factors in liquid radwaste filters vary widely from less than 1 to greater than 50 (with a mean value of 1.3). Therefore a DF of 1 for liquid radwaste filters is used.

2.2.21 DECONTAMINATION FACTORS FOR REVERSE OSMOSIS

2.2.21.1 Parameter

Overall DF of 30 for laundry wastes and DF of 10 for other liquid radwastes.

2.2.21.2 Bases

Reverse osmosis processes are generally run as semibatch processes. The concentrated stream rejected by the membrane is recycled until a desired fraction of the batch is processed through the membrane. The ratio of the volume processed through the membrane to the inlet batch volume is the percent recovery. The DF normally specified for the

process is the ratio of nuclide concentrations in the concentrated liquor stream to the concentrations in the effluent stream. This ratio is termed as the membrane DF (DF_m). For source term calculations, the system DF (DF_s) should be used. The system DF is the ratio of the nuclide concentrations in the feed stream to those in the effluent stream. The relationship between the system DF and the membrane DF is nonlinear and is a function of the percent recovery. This relationship can be expressed as follows:

$$DF_s = \frac{F}{1 - (1 - F)^{1/DF_m}}$$

where

 DF_{m} is the membrane DF ;

 DF_{s} is the system DF; and

F is the ratio of effluent volume to inlet volume (fractional recovery).

Tables 2-33 through 2-36 give membrane DF's derived from operating data at Point Beach, Ginna and Robinson (Ref. 35) and laboratory data on simulated radwaste liquids (Ref. 36). These data indicate that the overall membrane DF is approximately 100. The percent recovery for liquid radwaste processes using reverse osmosis is expected to be approximately 95%, i.e., 5% concentrated liquor. Using these values in the above equation, the system DF is approximately 30.

$$DF_{s} = \frac{0.95}{1 - (1 - 0.95)^{1/100}} = 30$$

The data used were derived mainly from tests on laundry wastes. The DF for other plant wastes, e.g., floor drain wastes, is expected to be lower because of the higher concentrations of iodine and cesium isotopes. As indicated by the data in Tables 2-33, 2-35 and 2-36, the membrane DF for these isotopes is lower than the average membrane DF used in the evaluation for laundry waste.

2.2.22 GUIDELINES FOR CALCULATING LIQUID WASTE HOLDUP TIMES

The holdup times to permit radioactive decay applied to the input waste streams are calculated using the following parameters:

1. The collection time should be calculated for an 80% volume change in the tank, based on the liquid waste flow rates from the inlet sources.

TABLE 2-33
REVERSE OSMOSIS DECONTAMINATION FACTORS, GINNA STATION

	Concentrate Activity	Product Activity	
Nuclide	(µCi/cm ³)	$(\mu \text{Ci/cm}^3)$	Membrane DF
Ce-144	2.68 (-4)	<2.2 (-7)	1200
Co-58	8.55 (-5)	<3.4 (-8)	2500
Ru-103	5.83 (-5)	<5.5 (-8)	1100
Cs-137	4.09 (-4)	6.6 (-6)	60
Cs-134	2.02 (-4)	3.2 (-6)	60
Nb-95	5.35 (-5)	<5.3 (-8)	1000
Zr-95	2.36(-5)	<3.7 (-8)	640
Mn-54	8.82 (-5)	<3.4 (-8)	2600
Co-60	9.62 (-4)	<8.1 (-8)	12,000
Total isotopic	2.15(-3)	9.8 (-6)	219
Gross beta	1.63 (-3)	1.86 (-5)	88
TOTAL	3.78(-3)	2.84(-5)	
Average			133

TABLE 2-34

REVERSE OSMOSIS DECONTAMINATION FACTORS, POINT BEACH

	Time	Concentrate Activity (µCi/ml)	Product Activity (µCi/ml)	Membrane DF
6/14/71	0840	1.1 (-5)	6.8 (-7)	16
	1225	6.3 (-5)	4.2 (-7)	150
	1350	6.8 (-5)	3.2 (-7)	213
6/15/71	1030	2.7 (-4)	3.1 (-6)	87
	1315	1.0 (-4)	1.7 (-6)	59
	1440	1.3 (-4)	1.1 (-7)	1200
	1510	1.6 (-4)	1.1 (-7)	1500
	1530	1.8 (-4)	5.7 (-7)	316
TOTAL		9.8 (-4)	7.0 (-6)	
	Averag	je		140

TABLE 2-35

REVERSE OSMOSIS DECONTAMINATION FACTORS,
H. B. ROBINSON NO. 2 STATION

	<u>Co-60</u>	<u>Co-58</u>	<u>I-131</u>
	264	29	14
	382		20
	436		39
	107	229	26
	76	490	96
	94	131	11
_			
Average	227	220	34

TABLE 2-36

EXPECTED REVERSE OSMOSIS DECONTAMINATION FACTORS
FOR SPECIFIC NUCLIDES

<u>Nuclide</u>	Concentrate Activity (µCi/ml)	Product Activity (μCi/ml)	Membrane DF
Co-60	2.5 (-4)	5 (-7)	500
Mo-99	3.8 (-2)	1 (-3)	40
I-131, 132, 133, 134, 135	1.2 (-1)	4 (-3)	30
Cs-134, 137	4.3 (-2)	2 (-4)	200
TOTAL	2 (-1)	5 (-3)	
AVERA	GE		40

- 2. The process time is the total time liquid remains in the system for processing, based on the flow rate through the limiting process step.
- 3. The discharge time is one-half the time required to empty the final liquid waste sample (test) tank to the environment. This value is based on the maximum rate of the discharge pumps and the nominal tank volume.

The calculated values in 1. and the total of 2. and 3. are used as inputs to the computer PWR-GALE Code.

2.2.23 ADJUSTMENT TO LIQUID RADWASTE SOURCE TERMS FOR ANTICIPATED OPERATIONAL OCCURRENCES

2.2.23.1 Parameter

- 1. Increase the calculated source term by 0.16 Ci/yr per reactor using the same isotopic distribution as for the calculated source term to account for anticipated operational occurrences such as operator errors that result in unplanned releases.
- 2. Assume evaporators to be unavailable for two consecutive days per week for maintenance. If a 2-day hold-up capacity exists in the system (including surge tanks) or an alternative evaporator is available, no adjustment is needed. If less than a 2-day capacity is available, assume the waste excess is handled as follows:
 - a. <u>High-purity or low-purity waste</u> Processed through an alternative system (if available) using a discharge fraction consistent with the lower purity system.
 - b. <u>Chemical Waste</u> Discharged to the environment to the extent holdup capacity or an alternative evaporator is available.
- 3. The following methods should be used for calculating holdup times and effective system DF:
 - a. Holdup Capacity If two or more holdup tanks are available, assume one tank is full (80% capacity) with the remaining tanks empty at the start of the two-day outage. If there is only one holdup tank, assume that it is 40% full at the start of the two-day outage with a usable capacity of 80%.
 - b. Effective System DF Should the reserve storage capacity be inadequate for waste holdup over a two-day evaporator outage, and should an alternate evaporator be unavailable to process the wastes from the out-of-service evaporator, the subsystem DF should be adjusted to show the effect of the evaporator outage.

For example, a DF of $10^{5\dagger}$ was calculated for a radwaste demineralizer and radwaste evaporator in series. If an adjustment were required for the evaporator being out-of-service two days/week, with only one day holdup tank capacity, then the effective system DF can be calculated as follows:

- 1. For 6 days (7 2 + 1) out of 7 the system DF would be 10^5 .
- 2. For the remaining one day, the system DF would be 10^2 (only the demineralizer DF is considered). The effective DF is:

DF =
$$\left[\left(\frac{6}{7} \right) (10^{-5}) + \left(\frac{1}{7} \right) (10^{-2}) \right]^{-1} = 7.0 \times 10^{2}$$

2.2.23.2 Bases

Reactor operating data over an 8 year period, January 1970 through December 1977, representing 154 reactor years of operation, were evaluated to determine the frequency and extent of unplanned liquid releases. During the period evaluated, 62 unplanned liquid releases occurred; 23 due to operator errors, 26 due to component failures, 5 due to inadequate procedures or failure to follow procedures, and the remaining 8 due to miscellaneous causes such as design errors. Table 2-37 summarizes the findings of this evaluation. Based on the data provided in Table 2-37 it is estimated that 0.16 Ci/reactor year will be discharged in unplanned releases in liquid effluents.

The availability of evaporators in waste treatment systems is expected to be in the range of 60 to 80%. Unavailability is attributed to scaling, fouling of surfaces, instrumentation failures, corrosion, and occasional upsets resulting in high carryovers requiring system cleaning. A value of two consecutive days unavailability per week was chosen as being representative of operating experience. For systems having sufficient tank capacity to collect and hold wastes during the assumed 2-day/week outage, no adjustments are required for the source term. If less capacity is available, the difference between the waste expected during two days of normal operation and the available holdup capacity is assumed to follow an alternative route for processing. Since processing through an alternative route implies mixing of wastes having different purities and different dispositions after treatment, it is assumed that the fraction of waste discharged following processing will be that normally assumed for the less pure of the two waste streams combined.

Since chemical and regenerant wastes are not amenable to processes other than evaporation, it is assumed that unless an alternative evaporation route is available, chemical and regenerant wastes in excess of the storage capacity are discharged without treatment.

 $^{^{\}dagger}$ 10³ (Evap.) x 10² (demin) = 10⁵ is obtained using DF's from Section 2.2.19.1.

TABLE 2-37

FREQUENCY AND EXTENT OF UNPLANNED LIQUID RADWASTE RELEASES FROM OPERATING PLANTS*

Unplanned Liquid Releases

Total number (unplanned releases)	62
Fraction due to personnel error	0.37
Fraction due to component failure	0.42
Fraction due to inadequate procedures or failure to follow procedures	0.08
Fraction due to other causes	0.13
Approximate activity (Ci)	24.
Fraction of cumulative occurrence per reactor year (plants reporting releases <5 gals of liquid waste/reactor year)	0.16
Fraction of cumulative occurrences per reactor year (plants reporting activity released >0.01 Ci/reactor year)	0.28
Activity per release (Ci/release)	0.39
Activity released per reactor year (Ci/reactor year)	0.16
Volume of release per reactor year (gal/reactor year)	633.

^{*} Values in this table are based on reported values in 1970-1977 Licensee Event Reports representing 154 reactor years of operation.

2.2.24 ATMOSPHERIC STEAM DUMP

2.2.24.1 Parameter

Noble gases and radioiodines released to the atmosphere from the steam dumps because of turbine trips and low-power physics tests will have a negligible effect on the calculated gaseous source term.

2.2.24.2 Bases

In the evaluation, consideration has been given to the quantity of noble gases and radioiodine released to the atmosphere from steam dumps because of low-power physics testing and turbine trips from full power. The evaluation indicates that the iodine-131 and noble gas releases will be less than 1% of the turbine building gaseous source term.

The evaluation of releases following a turbine trip from full power is based on the following parameters:

- 1. An average of two turbine trips annually;
- 2. 40% turbine bypass capacity to the main condenser;
- Two-second rod insertion time required to scram the reactor following a turbine trip; and
- 4. Twelve-second cycle time to recirculate one primary coolant volume through the reactor and steam generator.

The above parameters are based on a 3400-MWt RESAR-3 reactor. Using these parameters, it is postulated that steam will continue to be produced at a full-power rate during the time the control rods are inserted and during the time required to recirculate one primary coolant volume. After this time, the turbine bypass will be adequate to handle steam generated from decay heat. The quantity of steam released

=
$$(1.5 \times 10^7 \text{ lb/hr})(60\%)(14 \text{ sec})(2 \text{ trips/year})(454 \text{ g/lb})(\frac{\text{hr}}{3600 \text{ sec}})$$

= $3 \times 10^7 \text{ g-steam/yr}$

The iodine-131 concentration in the main steam for a U-tube steam generator is approximately 1.8 x 10^{-8} μ Ci/g-steam from Table 2-2.

Based on the steam release calculated above, the associated iodine-131 release is approximately 6.0×10^{-7} Ci/yr.

I-131/yr =
$$(3.2 \times 10^7 \frac{g-steam}{yr})(1.8 \times 10^{-8} \mu Ci/g-steam)(10^{-6} \frac{Ci}{\mu Ci})$$

= $5.8 \times 10^{-7} Ci/yr$

Releases due to low-power physics testing are calculated based on one 10-hour release of steam each year following a refueling. For a RESAR-3 reactor, low-power physics testing is conducted at 5% power. The conditions given above for power level and steady-state main steam iodine-131 activity are used. In addition, it is assumed that the reactor will be shut down for 30 days for refueling prior to low-power physics testing. The iodine-131 releases are calculated to be approximately 4.6×10^{-6} Ci/yr using the following equation:

I-131/yr =
$$(1.5 \times 10^7 \text{ lb/hr steam})(0.05)(454 \text{ g/lb})(10 \text{ hr/yr})$$

 $(1.8 \times 10^{-8} \, \mu\text{Ci/g-steam}) \, \exp \left[\frac{-(0.693)(30 \, \text{days})}{(8.05 \, \text{days})}\right] \, 10^{-6} \, \text{Ci/}\mu\text{Ci}$
I-131/yr = $4.6 \times 10^{-6} \, \text{Ci/yr}$

2.2.25 CARBON-14 RELEASES

2.2.25.1 Parameter

The annual quantity of carbon-14 released from a pressurized water reactor is 7.3 Ci/yr. It is assumed that most of the carbon-14 will form volatile compounds that will be released from the waste gas processing system and from the containment and auxiliary building atmospheres to the environment.

2.2.25.2 Bases

The annual release of 7.5 Ci of carbon-14 is based on measurements at ten operating PWR's presented in Table 2-38. Kunz et al. (Ref. 37) found that the carbon-14 reacts to form volatile compounds (principally $\mathrm{CH_4}$, $\mathrm{C_2H_6}$, and $\mathrm{CO_2}$) that are collected in the waste gas processing system through degassing of the primary coolant and released to the environment via the plant vent. Data from Refs. 4, 5, 6, 42, and 43 also indicate carbon-14 is released from the containment and auxiliary building vent as a result of leakage of primary coolant into the containment and auxiliary building atmospheres.

As shown in Table 2-39, an average of measurements, made at Turkey Point 3 and 4, Zion 1 and 2, Fort Calhoun, Prairie Island 1 and 2, and Rancho Seco indicates that the release of carbon-14 breaks down to 22.6% from the containment building, 61.0% from the auxiliary building vents and 16.4% from the waste gas processing system. Therefore on this basis, it is assumed that 1.6 Ci/yr of carbon-14 is released from the containment building, 4.5 Ci/yr of carbon-14 is released from the auxiliary building vents and 1.2 Ci/yr of carbon-14 is released from the waste gas processing system.

TABLE 2-38 CARBON-14 RELEASE DATA FROM OPERATING PWR's

Plant*	1975	<u> 1976</u>	<u> 1977</u>	1978	Annual Average Ci/yr-unit
Conn. Yankee	44	40	30	70	46
Yankee Rowe	1.6	0.13	0.24	0.33	0.58
Plant**			Area		Annual Release Ci/yr-unit
Turkey Point 3/4		Aux. Bldg. Containment WGPS [†] Spent Fuel	Area		2.4 0.075 0.82 <u>0.38</u>
		Total			3.7
Fort Calhoun		Fuel Pool a WGPS Containment		dg.	0.30 0.81 0.78
		Total			1.9
Zion 1/2		Cont. Bldg. Fuel Handli WGPS	ng and Aux.	. Bldg.	1.8 1.4 0.062
		Total			3.3
Prairie Island 1	/2	Cont. Build Fuel Handli WGPS		. Bldg.	0.016 3.3 0.25
		Total			3.6
Rancho Seco		Cont. Build Fuel Handlin WGPS		. Bldg.	0.9 1.85 0.85
		Total			3.6
		Average			7.3

^{*} Based on semi-annual release reports.

** Based on In-Plant Source Term Measurements.

Waste gas processing system.

TABLE 2-39
DISTRIBUTION OF CARBON-14 RELEASED IN GASEOUS EFFLUENTS

Plant	Plant Areas: Containment	Aux. Bldg. and Fuel Handling	WGPS
Turkey Point 3/4	2%	75%	23%
Fort Calhoun	41%	16%	43%
Zion 1/2	55%	43%	2%
Rancho Seco	25%	51%	24%
Prairie Island 1/2	0.5%	92.5%	7%
Average:	22.6%	61.0%	16.4%

2.2.26 ARGON-41 RELEASES

2.2.26.1 Parameter

The annual quantity of argon-41 released from a pressurized water reactor is 34 Ci/yr. The argon-41 is released to the environment via the containment vent when the containment is vented or purged.

2.2.26.2 Bases

Argon-41 is formed by neutron activation of stable naturally occurring argon-40 in the containment air surrounding the reactor vessel. The argon-41 is released to the environment when the containment is vented or purged. Table 2-40 provides a summary of available data and gaseous argon-41 releases from operating PWR's. The information reported by the licensees is not sufficiently detailed to correlate reported argon-41 releases with plant size and plant operating parameters. However, the average argon-41 release is estimated to be 34 curies per year.

TABLE 2-40

SUMMARY OF ARGON-41 RELEASES FOR OPERATING PWR's FOR 1973-1978

(Ci/yr per reactor)

Reactor Name	Year	<u>Release</u>
Yankee Rowe	1974 1975 1976 1977 1978 (1/2 yr)	0.85 0.93 0.3 0.49 0.47
Haddam Neck	1973 1977 1978 (1/2 yr)	0.044 0.08 0.041
Ginna	1975 1976	5.8 0.19
Point Beach 1/2	1973 1974 1975 1976 1977 1978 (1/2 yr)	17.6 16 208 31 9.2 13.3
H. B. Robinson	1975 (1/2 yr) 1976 1977 1978 (1/2 yr)	16.2 15.4 23.1 46.2
Surry	1974 (1/2 yr) 1975 1976 1977 (1/2 yr)	15 0.32 9.15 16.5
D. C. Cook	1978 (1/2 yr)	19.7
Turkey Pt. 3/4	1974 1975 1976 1977	26 51.3 39.4 45
Oconee 1/2/3	1974 (1/2 yr) 1975 1976 1977 1978 (1/2 yr)	59.5 42 118 8.1 19.9

TABLE 2-40 (continued)

SUMMARY OF ARGON-41 RELEASES FOR OPERATING PWR's FOR 1973-1978 (Ci/yr per reactor)

Reactor Name	<u>Year</u>	Release
Fort Calhoun	1975 1976 1977 1978 (1/2 yr)	8.2 2.2 2.3 0.27
Palisades	1978 (1/2 yr)	0.01
Zion 1/2	1978 (1/2 yr)	24.8
Prairie Island 1/2	1975 1976 1977 1978	1.3 21 31.8 13.5
Kewaunee	1976 (1/2 yr) 1978 (1/2 yr)	30 5.9
Three Mile Island 1	1975 (1/2 yr) 1976 1977 1978 (1/2 yr)	50 12 66 46.5
Calvert Cliffs	1976 (1/2 yr) 1977 (1/2 yr)	2 3.1
Rancho Seco	1977 1978 (1/2 yr)	9.8 1.8

^{*} All data provided by the semiannual effluent release reports and the annual operating reports for each PWR listed.

		•

CHAPTER 3. INPUT FORMAT, SAMPLE PROBLEM, AND FORTRAN LISTING OF THE PWR-GALE CODE

3.1 INTRODUCTION

This chapter contains additional information for using the PWR-GALE Code. Chapter 1 of this report described the entries required to be entered on input data cards. Section 3.2 of this chapter contains sample input data and an explanation of the input to orient the user in making the entries described in Chapter 1.

Section 3.3 of this chapter contains a listing of the input data for the sample problem and the resultant output. Section 3.4 contains a discussion of the nuclear data library used and a FORTRAN listing of the PWR-GALE Code.

3.2 INPUT DATA

This section contains (a) an explanation of the input used in the sample problem and (b) input coding sheets for the sample problem.

3.2.1 EXPLANATION OF THE INPUTS FOR THE SAMPLE PROBLEM

Only the inputs for the GALE code runs for the sample problem that are not obvious are explained:

Condensate demineralizer regeneration time (days)
Input - 8.4 days
Put this input in card 10 in the appropriate field allotted for this input.

Basis

The sample problem assumes eight condensate deep beds, one of which is spare in parallel with no ultrasonic resin cleaning. The regeneration time for a bed is therefore 7×1.2 days = 8.4 days.

The liquid waste inputs are based on assuming the following:

A. Waste Generation Rates and Effective PCA Fractions

Waste Type	Gal/day	PCA Fraction		
Shim Bleed	1440	Code applies the CVCS DFs internally		
Equipment Drains				
Pump seal leakage Pump seal leakage (Table 2-26)	300 20	1.0 0.1		

A. Waste Generation Rates and Effective PCA Fractions (Cont'd)

Waste Type	Gal/day	PCA Fraction
Other primary coolant leakage from miscellaneous sources inside the containment (Table 2-26) Total equipment drain wastes	10 330	1.67 0.97 effective
Clean Wastes		
Primary coolant equipment drains (Outside containment) Spent fuel pit liner drains Primary coolant sampling system drains (segregated from	80 700	1.0
secondary coolant samples)	200	0.05
Total Clean Wastes	980	0.093 effective
Dirty Wastes		
Primary coolant equipment Reactor containment cooling system Auxiliary building floor drains Secondary coolant sampling system drains	500 200 1400	0.001 0.1 0.0001
Total Dirty Wastes	2100	0.01 effective
Regenerant Wastes	3400	Code internally calculates the buildup on the beds
Condensate demineralizer rinse and transfer solution (secondary system wastes)	12000	10 ⁻⁸

B. Available Equipment for Liquid Wastes Processing

Equipment	Number	Capacity (Each)
Recycle holup tank		
(To collect shim bleed and equipment drains)	2	50,000 gal
Clean waste holdup tank	2	7,000 gal
Dirty waste holdup tank	2	10,000 gal
Regenerant solution receiving tank	2	20,000 gal

B. Available Equipment for Liquid Wastes Processing (Cont'd)

Equipment	Number	Capacity (Each)
Resin and transfer solution receiving tank (To collect secondary system condensate demineralizer resin and transfer solution) Clean waste monitor tank	2	20,000 gal
(For processed shim bleed, equipment drains and clean wastes)Dirty waste monitor tankSecondary waste monitor tank	1 2	10,000 gal 10,000 gal
(For processed regenerant wastes and secondary system condensate demineralizer resin and transfer solution)	2	10,000 gal
Recycle feed demineralizer (To process shim bleed and equipment drains and located upstream of the recycle holdup		
tank) Recycle evaporator condensate demineralizer]]	50 GPM 50 GPM
Evaporator condensate demineralizer A (For clean wastes)	1	50 GPM
Evaporator condensate demineralizer B (For dirty wastes)	1	50 GPM
Secondary waste evaporator condensate demineralizer (To process regenerant wastes)	1	50 GPM
Secondary waste demineralizer (To process secondary system condensate demineralizer resin and transfer solution)	1	50 GPM
Steam generator blowdown demineralizer (To process steam generator blowdown)	2 in series	300 GPM
Recycle evaporator		
(For processing shim bleed and equipment drains) Radwaste evaporator	1	30 GPM
(For processing dirty wastes and clean wastes)	1	30 GPM
Secondary waste evaporator (For processing regenerate wastes)	ì	30 GPM

C. Additional Notes about Liquid Wastes

1. The above list includes only the processing equipment assumed for generating the liquid waste inputs for running the GALE code. For example, it does not consider such equipment as filters, evaporator condensate tank, reactor makeup water storage tank, etc.

- 2. Except the condensate deep bed demineralizers in the secondary system, all other demineralizers are assumed to be mixed bed and non-regenerative.
- 3. The processed steam generator blowdown is assumed to be totally returned to the secondary system. It is also assumed that the steam generator blowdown is 75,000 pounds/hr (~150 GMP).
- 4. Secondary system condensate demineralizer rinse and transfer solution waste has not been included as input for the sample problem GALE code run for the following reasons:
 - a. This waste is assumed to be collected in a collection system dedicated for this waste in the sample problem.
 - b. Even if 100 percent of this waste is released without treatment, the release from this stream is expected to be \leq 0.15 percent of the total liquid effluent release. If, however, this waste is processed by the secondary waste demineralizer listed above, the release from this stream is expected to be \leq 0.012 percent of the total liquid effluent release. Furthermore, it is likely that this waste will be processed and a major fraction of this processed waste will be recycled to the condensate storage system for eventual reuse in the secondary plant.

Note that if assumption \underline{a} is not satisfied in any design, then the inputs for this waste should be properly integrated with the appropriate subsystem inputs (for example, the dirty waste subsystem) and the effective inputs for the combined waste system should be included for the GALE code run for that design.

- 5. The detergent wastes are assumed to be released without any prior treatment.
- 6. All the liquid waste subsystems included in the GALE code run for the sample problem have at least a two-day holdup capacity for holding up the wastes prior to processing them.
- 7. In view of what has been stated above, no additional run need be made to evaluate the liquid effluent releases; also no adjustments need be made to waste subsystem DFs for possible equipment downtime.
- D. The gaseous waste inputs to the GALE code run for the sample problem are based on assuming the following:
 - 1. There is neither continuous degassification of the full letdown flow to the gaseous radwaste system via a gas stripper nor continuous purging of the volume control tank.
 - 2. Fill time and holdup time for gases stripped from the primary system are based on the following:

Number of pressurized storage tanks - 4 Volume of each tank at STP - 650 CF Design pressure for each tank - 150 psig No recombiners

- 3. Containment has small diameter (8 inches) purge line and the low volume containment purge rate is 1000 CFM.
- 4. Containment has no internal cleanup (kidney) system.
- Number of high volume containment purges during power operation -
- 6. Fuel, auxiliary and containment buildings have HEPA filters and four inch charcoal adsorbers on their exhaust lines and these filter units satisfy the guidelines of Regulatory Guide 1.140. Containment building has these filters both on the low and high volume purge exhaust lines. Waste gas system has HEPA filters on its exhaust line which satisfies the guidelines of Regulatory Guide 1.140. The iodine releases via the main condenser air ejector removal system are assumed to be released without any treatment prior to their releases.
- 7. Steam generator blowdown flash tank exhaust is <u>not</u> vented directly to the atmosphere.

3.2.2 INPUT CODING SHEETS

Figure 3-1 shows the input coding sheets used for the sample problem.

3.3 SAMPLE PROBLEM - INPUT AND OUTPUT

Figure 3-2 shows printouts of the input and output for a sample problem using the PWR-GALE Code.

3.4 LISTING OF PWR-GALE CODE

3.4.1 NUCLEAR DATA LIBRARY

Calculation of the releases of radioactive materials in liquid effluents using the GALE Code requires a library of nuclear data available from the Division of ADP Support, USNRC (301) 492-7713. For convenience, the tape consists of five files, written in card image form. The contents of the five files are:

- 1. File 1: A FORTRAN listing of the liquid effluent code.
- 2. File 2: Nuclear data library for corrosion and activation products for use with the liquid effluent code.

		FORTE	RAN CODING FORM	A			
CODER			DATE	ADDRESS		PHONE	
PROBLEM	TITLE PWR-GALE CODE			PROGRAM NO.	CHG. NO.	SHEET	0F
STATEMENT NUMBER		O = ZERO Ø = ALPHA O	I = ONE I = ALPHA I	2 = TWO ₹ = ALPHA	. Z		DENTIFICATION
12131415 6	7 8 9 0 2 3 4 5 6 7 8 9 20 2 2	2 <mark> 23 24 25 26 </mark> 27 28 29 30 3: 32 33 34 35	513613713813914014:1421431441	5 <u> 46 47 48 49 50 5 52 53 54 55 56 </u>	57 58 59 60 6: 62 63 64 65	66 67 68 69 70 7: 72 73	174175176177178179
AIRIDI	1 N. A. M. E N.A.M.E. LOL	EL IRIEIAICITIOIR II(II			<u> </u>	, T, Y, P, E, =	ı ı ı ı ı PıWi
A R D	2 POWITH THERM	LL PONHER PIER	<u> (ıMıEıĞıAıWıAıTı</u>	TiSi)i i i i i i i i i i i i i i i i i i			1.
AIRIDI	31 PICIVIOLL I I MIAISIST 1	DIFL IPIRITIMIALRIYI I CIOLI	<u> </u>	ULSTAINIDI (LIBISI)		(
A,R,D,	4 LETIDIWIN I PIRILIMIAI	RIYI ISIYISITIEIMI ILIEITID	O.W.N. RAITIEL L	(G P M)	<u> </u>		
LA _L R _L D _L	5 CBFL R I LETIDO	NINI CATTITION NIDEMIT	IN EIR ALL II ZIEIR	IFILIO, WI (IGIPIMI)	<u> </u>	4	
A IR IDI	6 INIOIGIEINI I INIUIMIBLEIF	RL LOIFI ISTTELALMI IGLELA	N E RATORS LI	<u> </u>	· - 		
A R D	7, +T, 0, S, T, F, L, 1, T, 0, T, A, L, 1	ISITIELALME EFEL OLWE ICIM	ILL ION LEB	S ₁ / ₁ H ₁ R ₁), , , , , , , , , , , , , , , , , , ,	<u>. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</u>		
, A, R, D,	8 WILII III MIAISISI C	Fr LiliQiUiliDi iliNi iE	A C H I S T B A M	GENERALTIOR I	Ti Hi Oi Ui Si Ai Ni Di i	LBS) (
ı Aı Rı Dı	9 BLWDWN IBLOWD) . W . N T . H . O . U . S L . B . / . H	LRI (L) L	BiLiOiWiDiOiWiNi iTiRiEi	ALTIMEE NITE ILINI	P.U.T. 101.11.	.O.R.2
A, R, D, 1	O REGENTT I CONDE	N. S. A. T. E. D.E.M. I. N. E.R. A	<u>ı Lı Iı Z. Eı Ri ir ir iç iç i</u>	EINIEIRIAITLIIOINI ITILI	MIELI(DAIYISI)I	(
IAIRIDI 1	I F F C D M I I I C IO INIDIEI	IISIAITIEI IDIEIMITINIEIRIA	LII ZI EI RI IFILIOI	NI FIRIAICITII OINI I	<u> </u>	11111	<u> </u>
A R D 1	2 1 1 1 1 1 1 1 S.H.I.M. 1	BILLEFE DI PRALTE EL FI		, , , , , , , , , , , , , , , , , , ,			
A R D 1	3		<u> </u>	<u> </u>	<u> </u>		
ALRIDI 1	4, 1 1, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TITION (L L L L) D	ALYISI IPIRIOICIEI	Si Si i (i i j i i) i i D i A i	YıSı ıFıRıAıCıTı ı	D ₁ I ₁ S ₁ C ₁ H ₁ (<u> </u>
AIRIDI 1	5, , , , , , , , E,Q,U,I,P,N	ILE NITI IDIRIALI NISI IIN	N P U T I I (I I I	<u>). GIPIDL (</u>	<u> </u>	A	<u> </u>
AIRIDI 1	6		, , , , ,),D,F,O,	<u></u>	<u> </u>		
AIRIDI 1	7, , , , , , , , , , C,O,L,L,E,	Ci Ti Ii Oi Ni i (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1). A. Y. S. P. R. O. G. E.	S S ((D A	YISL IF RIA CITI	D. I. S. C. H. 1)
ALREDI 1	8	WIAISITEE I IN PUT	<u> </u>	1 1 1)1 G1P1D1 1 1	(1 1 1 1) 1 PIC:	A: , , , , ,	
AIRIDI 1	9, , , , , , , , D, F, I, ¬(,	1 1 1 1 1 1 DLF, CLS, =1(1	1 1 1 1) D F 1 O 1	<u> </u>			
ALRIDI 2	O, ,	CiTiTiOiNi (ALYLS: PROCE	SISI (IIIII) II DIAI	YıŞı ıFıRıAıCıTı ı	Di I i Si Ci Hi i ()
A R D 2	II I I I I I I I D I I R I T I Y I	WIAISITEE LENPEUT		<u></u>		A	<u> </u>
AIRIDI 2	2 $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $)	<u>, , , , , , , , D ,F ,O ,</u>	<u></u>			
A R D 2	3 1 1 1 1 1 1 1 1 C101L1L1EL	Ci Ti Ii Oi Ni i(i i i i i i) i i D)	SISI_(Y S _ F R ALCITL I	Di Ii Si Ci Hi i(<u>)</u>
			<u> </u>	<u> </u>			
1-1-1-1		<u> </u>	<u> </u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>		<u> </u>
·	<u> </u>	<u> </u>	<u> </u>	<u></u>	. 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1
12,3,4,5,6	7, 5, 9, 0, , 2, 3, 4, 5, 6, 7, 5, 9,20,2, 2	2 23 24 25 26 27 28 29 30 3 32 33 34 3		45i46i4?i48i49i50i5 i52i53i54i55i56i		66,67,68,69,70,7,77,73	

FORTRAN CODING FOR	V			
CODER DATE	ADDRESS		PHONE	
PROBLEM TITLE PWR-GALE CODE	PROGRAM NO.	CHG. NO.	SHEET	OF
STATEMENT 0 : ZERO 1 : ONE NUMBER 0 - ALBUA 0 7 - ALBUA 1	2 : T W O		.1	IDENTIFICATION
P ALPHA U	₹ : ALPHA 4514644714844915015115215315415515615	- Z 7 ₁ 58 <u> 59 60 6 </u>	3,60,70,71,72	73 74 75 76 77 78 79 80
C ₁ A ₁ R ₁ D ₁ 2 4 1 1 1 1 1 1 1 1 1 B ₁ L ₁ O ₁ W ₁ D ₁ O ₁ W ₁ D ₁ O ₁ W ₁ D ₁ 1 F ₁ R ₁ A ₁ C ₁ T ₁ I ₁ O ₁ N ₁ · P·R ₁ O ₁ C ₁ E ₁ S ₁ S ₁ E ₁ D ₁	1-1-1-1	Upolpaleole i leste ple ple ple ple c	3631/01/11/2	()
[C,A,R,D, [2],5, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	1			<u> </u>
C.A.R.D. 2.6. 1 1 1 1 1 1 1 1 1		IS I FIR A CITI IDI I S	· C · H · · (
$C_1A_1R_1D_1$ 2 7_1 1 1 1 1 1 1 1 1 1		131 II KINICIII IOIA	10111	(, , , , , ,)
$C_1A_1R_1D_1$ 2_1B_1 1_1 1_1 1_2 1_3 1_4	'			
C:A:R:D: 29: 1 1 1 1 1 C:O:L:L:E:C:T:I:O:N: 1(1 1 1 1 1) D:A:Y:S: :P:R:O:C:E:E		IST IE PLATE IT I DITES	ICIHL I	1 1 1 1 1 1
CIAIRIDI 3 OLI LI LI LI LIISI ITIHIFIRIFI ICIONNO TI TINI ILO ILO ILO ILO ILO ILO ILO ILO ILO IL		T a O W N (Fil (O)W(?)		018121 1 1 10
C_A_R_D_ 3 1, T_A_U11 1 1 HIO1LID_U1P 1T I ME E . F O B . X E . N O N . (. D_A_Y S .)		 		(, , , , , , , ,)
C,A,R,D, 3 2, ,T,A, U, 2, , , ,H,O,L,D,U,P, ,T,I,M,E, ,F,Q,R, ,K,R,Y, P, T,O,N, (,D,A,Y)	· ·			(, , , , , , ,)
C, A, R, D, 3 3, T, A, U, 3, , , , F, I, L, L, , T, I, M, E, , Q, F, , D, E, C, A, Y, , T, A, N, &, S, , F, O, R,		IL PAPIEIRI I (IDIAIYISI)	1 1 1 1	(11111)
C;A;R;D; 3 4; ; ; ; ; ; ; G;A;S; ;W;A;S;T;E; ;S;Y;S;T;E;M, ;H;E;P;A;?;(; ;); ; ;			1 1 1 1	
CIAIRIDI 3 51 1 1 1 1 1 1 FIUIEILI AHIAINIDILI GUBILIDIGI 1 1 1 ICIHIAIRICIOLAI	Li?(,) , H,E,P,A,?,(,	1)1 1 1 1 1 1 1		
CIAIRIDI 3 61	,	<u>, , , , , , , , , , , , , , , , , , , </u>	<u> </u>	
CIAIRIDI 3 7 ICIOINIVIOILI I ICIOINITIAITINIMIFINITI IVIOILIUIMIEI I (IMITILI II ON	'	· '	<u>, ' </u>	(, , , , , , , ,)
CIAIRIDI 3 81 I I I I I I CIOINITIMITI IAITIM I IO II FIA NIUR I ICIHIAIRICIOIA	L, ?, (, ,), H,E,P,A,?,(,		CLF ML)	الأسسسا بل
C, A, R, D, 3 9 1 1 1 1 1 1 C INITIMITI - I HI TI GI HI I VI OI LI I PI LI PI	1 2 (1 1) HE PA ? (·) · · NIUIMIBIEIRI/IY	:E1A;Ri	1.1.(1)
C. A. R. D. 4 0	L, ?, (, ,), H,E,P,A,?,(,	<u>),R.A.T.E., .(C.F.M</u>	<u>.) </u>	(
CIAIRIDI 4 1 FIVINI I I I FIRIAICITI II OIN II IO IDII INEE I RIEILI EI ALSI ED I I FIRIOI	MI BILIOIN DO WIN ITI	ALNIKI VLEINITI I		(, , , , , , , ,)
CIAIRIDI 42 IFIFIJI I I I PIEIRICI EINITI I OIFI I ILO DI IN E I REMIO VIEIDI I FIR	OM ALREDIECTO	IRI IRIEILIEIAISIEI I		()
CIAIRIDI 4 31 PIFILIAIUINI I IDIEITIFIRIGIFINITI I WIAISITE PIFI I I I I I I I I I I I I I I I I I				(, , , , , ,)
	<u> </u>	 		
				_1_1_1_1_1_1_1
		 		
<u></u>	1.		11111	_1
<u></u>				
<u> </u>			1111	
. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	<u>45 46 47 48 49 50 5 52 53 54 55 56 5</u>	7,58,59,60,61,62,63,64,65,66,67,60	3 ,69,7 0,7: ₁ -2	73 74 75 76 77 78 79 80

```
TYPE = PWR
              NAME OF REACTOR SAMPLE PWR REV 1
     1 NAME
CARD
              THERMAL POWER LEVEL (MEGAWATTS)
                                                                         3400.
     2 POWTH
CARD
               MASS OF PRIMARY COOLANT (THOUSAND LBS)
                                                                         550.
CARD
     3 PCVOL
                                                                        75.
     4 LETDWN PRIMARY SYSTEM LETDOWN RATE (GPM)
CARD
               LETDOWN CATION DEMINERALIZER FLOW (GPM)
                                                                        7.5
     5 CBFLR
CARD
CARD
     6 NOGEN
               NUMBER OF STEAM GENERATORS
               TOTAL STEAM FLOW (MILLION LBS/HR)
                                                                        15.
CARD
     7 TOSTFL
               MASS OF LIQUID IN EACH STEAM GENERATOR (THOUSAND LBS)
                                                                         112.5
CARD
     8 WLI
               BLOWDOWN-THOUS LB/HR 75.0 BLOWDOWN TREATMENT-INPUT 0,1, OR 2 0
CARD 9 BLWDWN
               CONDENSATE DEMINERALIZER REGENERATION TIME (DAYS)
CARD 10 REGENT
                                                                        0.65
               CONDENSATE DEMINERALIZER FLOW FRACTION
CARD 11 FFCDM
                                        1440.
                                                 GPD
CARD 12
               SHIM BLEED RATE
                                              1.0E05
               DFI= 5.0E03DFCS= 2.0E03DF0 =
CARD 13
               COLLECTION 22.6 DAYS PROCESS 0.93 DAYS FRACT DISCH
CARD 14
               EQUIPMENT DRAINS INPUT
                                         330.0
                                                GPD AT 0.97 PCA
CARD 15
               DFI= 5.0E03DFCS= 2.0E03DF0 = 1.0E05
CARD 16
               COLLECTION 22.6 DAYS PROCESS 0.93 DAYS FRACT DISCH
CARD 17
                                               GPD AT .093 PCA
               CLEAN WASTE INPUT
                                         980.
CARD 18
               DFI= 5.0E02DFCS= 1.0E03DF0 = 1.0E04
CARD 19
               COLLECTION 5.7 DAYS PROCESS 0.13 DAYS FRACT DISCH
                                                                        0.1
CARD 20
                                          2100. GPD AT 0.01 PCA
               DIRTY WASTES
CARD 21
               DFI= 5.0E02DFCS= 1.0E03DF0 = 1.0E04
CARD 22
               COLLECTION 3.8 DAYS PROCESS 0.19 DAYS FRACT DISCH
                                                                        1.0
CARD 23
                                                                         1.
CARD 24
               BLOWDOWN
                          FRACTION PROCESSED
               DFI= 1.00E03DFCS= 1.00E02DF0 = 1.00E03
CARD 25
                                 DAYS PROCESS 0.0 DAYS FRACT DISCH 0.0
               COLLECTION 0.0
CARD 26
                                                                        3400.
               REGENERANT FLOW RATE (GPD)
CARD 27
               DFI= 5.0E02DFCS= 1.0E03DF0 = 1.0E04
CARD 28
                                 DAYS PROCESS 0.37 DAYS FRACT DISCH
CARD 29
                COLLECTION 4.7
                IS THERE CONTINUOUS STRIPPING OF FULL LETDOWN FLOW? 0,1,0R 2
                                                                              0
CARD 30
               HOLDUP TIME FOR XENON (DAYS)
CARD 31 TAU1
               HOLDUP TIME FOR KRYPTON (DAYS)
                                                                        60.
CARD 32 TAU2
               FILL TIME OF DECAY TANKS FOR THE GAS STRIPPER (DAYS)
                                                                        30.
CARD 33 TAU3
CARD 34
               GAS WASTE SYSTEM HEPA?99.
CARD 35
               FUEL HANDLG BLDG
                                   CHARCOAL?90. HEPA?99.
               AUXILIARY BLDG
                                    CHARCOAL?90. HEPA?99.
CARD 36
                                                                        2.45
CARD 37 CONVOL CONTAINMENT VOLUME (MILLION FT3)
                CNTMT ATM. CLEANUP CHARCOAL?O.O HEPA?O.O RATE(1000CFM)
CARD 38
                CNTMT-HIGH VOL PURGE CHARCOAL?90. HEPA?99. NUMBER/YEAR
CARD 39
                                                                            0.0
               CNTMT LOW VOL PURGE CHARCOAL?90. HEPA?99. RATE (CFM)
                                                                        1000.
CARD 40
CARD 41 FVN FRACTION IODINE RELEASED FROM BLOWDOWN TANK VENT CARD 42 FEJ PERCENT OF IODINE REMOVED FROM AIR EJECTOR RELEASE
               FRACTION IODINE RELEASED FROM BLOWDOWN TANK VENT
                                                                       0.0
                                                                        0.0
                                                                        1.
CARD 43 PFLAUN DETERGENT WASTE PF
```

SAMPLE PWR REV 1	PWR
THERMAL POWER LEVEL (MEGAWATTS)	3400.0000
PLANT CAPACITY FACTOR	0.8000
MASS OF PRIMARY COULANT (THOUSAND LAS)	550.0000
PRIMARY SYSTEM LOTDOWN RATE (GPM)	75.0000
LETDOWN CATION DEMINERALIZER FLOW (BMM)	7.5000
NUMBER OF STEAM GENERATORS	4.0000
TOTAL STEAM ELOW (MILLION LAS/HR)	15.0000
MASS OF LIQUID IN EACH STEAM GENERATUR (THOUSAND LBS)	112.5000
MASS OF WATER IN STEAM GENERATORS (THOUSAND LOS)	45ñ.0000
HLUWDOWN RATE (THOUSAND LAS/HR)	75.0000
PHIMARY TO SECONDARY LEAK RATE (LBS/VAY)	75.0000
CUMPLENSATE DEMINERALIZER REGENERATION TIME (DAYS)	R.4000
FISSION PRODUCT CARRY-OVER FRACTION	.0050
HALOGEN CARRY-OVER FRACTION	.0100
CUNDENSATE DEMINGRALIZER FLOW FRACTION	.6500

LIBUID WASTE INPUTS

	STREAM	FLOW RATE	FRACTION OF PCA	FRACTION DISCMARGED	TIME	DECAY TIME	DEC	ONTAMINATI	ON FACTORS
		(GAL/DAY)			(DAYS)	(DAYS)	1	CS	OTHERS
	SHIM BLEED RATE	1.44E+03	1.0000	.1000	22,6000	.9300	5.0ñE+03	2.00E+03	1.00E+05
	EQUIPMENT DRAINS	3.30E+04	.9700	1000	22.6000	.9300	5.0nE+03	2.00E+03	1.00E+05
	CLEAN WASTE INPUT	9.80E+04	.0930	.1000	9.7000	.1300	5.0nE+02	1.00E+03	1.00E+04
	DIRTY WASTES	2.10F+0₽	.0100	1.0000	4.8000	.1900	5.00E+02	1.00E+03	1.00E+04
	BLOWDOWN	2.16E+09		0.000	0.000	0.000	1.0nE+03	1.00E+02	1.00E+03
μ	UNTREATED BLOWDOWN	0.		1.000	0.000	0.000	1.00E+00	1.00E+00	1.00E+00
$\dot{\infty}$	REGENERANT SOLS	3.40E+0#		•100	4.700	•370	5.0nE+02	1.00E+0	1.00E+04

GASEOUS WASTE INPUTS THERE IS NOT CONTINOUS STRIPPING OF FULL LETDWN FLOW HULDUP TIME FOR MENON (DAYS) 60.0000 HULDUP TIME FOR MRYPTON (DAYS) 60.0000 FILL TIME OF DECAY TANKS FOR THE GAS STRIPPER (DAYS) 30.0000 GAS WASTE SYSTEM PARTICULATE WELEUSE FRACTION .0100 TODINE RELEASE FRACTION AUXILIARY BLUG .1000 PARTICULATE RELEASE FRACTION .0100 CONTAINMENT VOLUME (MILLION 13) 2.4500 FREQUENCY OF CATHT BLOG HIGH VOL PURGE (TIMES/YR) 2.0000 CNTHT-HIGH VUL PURGETODINE RELEASE FRACTION .1000 PARTICULATE RELEASE FRACTION .0100 CNIMI LOW VOL PURGE RATE (CFM) CNIMI LOW VOL PURGE IODINE RELEASE FRACTION 100n.0000 .1000 PARTICULATE RELEASE FRACTION STEAM LEAK TO TURBINE BLDG (LBS/HR) .0100 1700.0000 FRACTION TODINE RELEASED FROM BLUNDOWN TANK VENT 0.0000 PERCENT OF INDINE REMOVED FROM AIR EVECTOR RELEASE 1.0000

FIGURE 3-2
PRINTOUT OF INPUT AND OUTPUT FOR THE SAMPLE PROBLEM

LIYUID EFFLUENTS

SAMPLE MWR REV 1

ANNUAL RELEASES TO DISCHARGE CANAL COOLANT CONCENTRATIONS------ ADJUSTED DETERGENT TOTAL NUCLIDE HALF-LIFE PRIMARY SECUNDARY BOHUN HS HISC. WASTES SECUNDARY TURB BLD6 TOTAL LWS TOTAL WASTES (CI/YR) (DAYS) (MICRO CI/ML) (MICRO CI/ML) (CURIED) (CURIES) (CURIES) (CURIES) (CURIES) (CI/YR) (CI/YR) CORROSION AND ACTIVATION PRUDUCTS 1.42E-06 6.25F-01 NA 24 4.70E404 .00000 .00003 .00000 .00005 .00009 .00114 0.00000 .00110 P 32 1.43E+01 0.00000 0. 0.00000 0.00000 0.00000 0.00000 0.00000 .00018 .00015 CH 51 2.78E+01 3.10E-03 1.22E-07 .00000 .00001 .00001 .00470 .000ñ0 .00025 .00002 .00500 MN 54 3.03E+02 1.60E-03 6.08E-08 .00000 .00380 .00001 .00000 .00000 .00014 .00390 .00001 FE 55 9.50F+02 4.59E-08 1.20E-03 .00000 .00000 .00000 .00720 .00000 .00001 -00010 -00730 FE 59 4.50E+01 1.12E-08 3.00E-04 .00000 .00000 .00000 .00000 .00000 .00002 .00220 .00220 7,13F+01 .00000 CO 58 4.60E=03 1.78E-07 .00790 .00002 .00000 .00001 .00003 .00038 .00A30 CO 60 1.92E+03 5.30E-04 2.061-0A • 00000 .00000 .01400 .00000 .00000 .00000 .00005 .01400 NI 63 3.36E+04 0.00040 .00170 0. 0.00000 0.00000 0.00000 0.00000 0.00000 .00170 1.97E-08 2.45E+02 5.10E +04 ZN 65 .00000 .00000 .00000 .00000 .00000 .00004 0.00000 .00004 9.96E-01 8.22L-08 W187 2.50E-04 .00000 .00000 .00000 .00000 .00001 .00008 0.00000 .00008 7.90E-08 NP239 2.35E+00 2.20E-03 .00000 .00000 .00000 .00000 .00001 .00011 0.00000 .00011 FISSION PRODUCTS 5.34E-09 5.40E+01 SR 89 1.40E404 .00000 .00000 .00000 .00000 .00000 .00001 .00009 .00010 1.20E405 4.59E-10 SR 90 1.03F+04 .00000 .00000 .00000 .00000 .00000 .00000 .00001 .00001 SR 91 4.03E-01 9.60E-04 2.67E-08 .00000 .00000 .00000 .00000 .00000 .00002 0.00000 .00002 Y 91M 3.47E-02 4.60E404 3.16E-09 .00000 .00000 .00000 .00000 .00000 .00001 0.00000 .00001 Y 91 5. #AE+01 5.20E409 1.97E-10 .00000 .00000 .00000 .00000 .00000 .00000 .00008 .00009 4.25E-01 1.14E-07 .00000 .00000 Y 93 4.20E-03 .00000 .00000 .00001 .00007 0.00000 .00007 ZR 95 6.50E+01 3.90E -04 1.50E-08 .00000 .00000 .00000 .00000 .00000 .00003 .00110 .00110 ω NB 95 3.5nE+01 2.80E-04 1.03E-08 .00000 .00000 .00002 .00190 .00190 .00000 .00000 .00000 6 MO 99 2.35E-07 2.79E+00 6.40E403 .00000 .00002 _00000 .00001 .00035 .00006 .000n3 .00041 TC 99M 2.5nE-01 1.06E-07 4.70E-03 -00000 .00002 .00000 .00030 .00001 .00002 0.00000 .00030 3.96E+01 .00000 RU103 7.50E403 2.90E-07 .00004 .00062 .00029 .00091 .00000 .00001 .00005 3.96E-02 .00900 .0000@ .00000 .00001 .00061 .00061 RH103M .00005 0.00000 0. 0. RU106 3.47E+02 9.00E-04 3.46E-06 .00004 .00037 .00000 .00017 .00059 .00766 .00990 .01700 RH106 3.47E-04 0. .00004 .00037 .00000 .00017 .00059 .00766 0.00000 .00770 0. A6110M 4.96E-08 2.57E+02 1.30E-03 .00000 .00001 .00000 .00000 .80011 .00120 .00130 .00001 .00000 AG110 2.92E-04 .000ñ0 0.00000 0. 0. .00000 .00000 .00000 .00001 .00001 58124 0.00E+01 0.00000 .00043 0.00000 0.00000 0.000no 0.00000 0.00000 .00043 7.30E-09 3.40E+01 .00000 TE129M 1.90E-04 .00000 .00000 .000000 .00000 .00002 0.00000 .00002 2.17E-07 4.79E-02 2.40E404 TE129 .00000 .00000 .00000 .00000 .00000 .00002 0.00000 .00002 TE13IM 1.25E+00 1.50E-03 5.09E-08 .00000 .00006 .00006 .00000 .00000 .00000 .00000 0.00000 1.36E-06 .04429 J131 8.05E+00 4.50E=04 .00017 .00309 .000ñ1 .00013 .00340 .00160 .04600 3.25E+00 TE 132 1.70E403 6.20E-08 .00000 .00000 .00000 .00000 .00001 .00010 0.00000 .00010 9.58E-02 2.77E-06 1132 2.10E401 .00000 .00019 .00000 .00005 .00024 .00313 0.00000 .00310 3.75L-06 1133 8.75E-01 1.40E404 .00290 .00000 .00003 .00031 .00325 .04226 0.00000 .04200 1134 3.67E-02 3.40E=01 2.27E-06 .00000 .00001 0.00000 .00000 .00021 0.00000 .00002 15000. CS134 7.49E+02 7.10E-03 2.84E-07 .00050 .00000 .00081 .01060 .01100 .00029 .00001 .02200 2.79E-01 5.47E-06 1135 2.60E401 .00000 .00133 .00000 .00029 .00163 .02122 0.00000 .02100 1.30E+01 CS136 8.70E-04 3.45E-08 .00003 .00003 .00000 .00000 .00007 .00089 .00037 .00130 1.10E+04 3.79E-07 .00039 .01413 CS137 9.40E-03 .000P8 .00000 200002 .00109 .01600 .03000 BA137M 1.77E-03 .00043 .00002 .01322 0.00000 -01300 .00037 _00000 .00102 0. 4_87E-07 **BA140** 1.2RE+01 1.30E-04 .00000 .00005 .00000 .00002 .00008 .00098 .00091 .00190 LA140 1.68E+00 8 16L-07 2.50E-04 .00000 .00007 .00000 .00004 .00012 .00155 0.00000 .00160 3.24E+01 5./1E-09 .00000 CE 141 1.50E-04 .00000 .00000 .00000 .00000 .00001 .00023 .00024 1.38E+00 .00000 .00011 .00011 CE 143 2. AOE 403 9.43E-08 .00000 .00000 .00000 .00001 0.00000 1.37E+01 .00000 PR143 .00000 .00000 .00000 0.00000 .00001 0. .00000 .00001 3,90E403 2.94E+02 1.50E-07 CE144 .00000 .00002 .00000 .00001 .00003 .00033 .00390 -00420 PR144 1.20E-02 .00000 .00002 .00000 .00001 .00003 .00033 0,00000 .00033 2.14E401 6.26E-07 ALL OTHERS .00000 0.00000 .00001 .00000 .00000 .00000 .00000 .00001 TOTAL

(EXCEPT TRITIUM)

1.48E+00

2.52E-05

.00216

.00972

.00061

.00141

.01331

.17331

.08975

_26000

SAMPLE PWR REV 1	PWR
THERMAL POWER LEVEL (MEGALATTS)	3400,00000
PLANT CAPACITY FACTOR	0.80
MASS OF PRIMARY COULANT (THOUSAND LES)	550.00000
PRIMARY SYSTEM LETUCHAN RATE (GPM)	75.00000
LETHOUN CATION DEMINERALIZED FLOW (GFM)	7,50000
NUMBED OF STEAM GENERATORS	4,00000
TOTAL STEAM TLUM (MILLION LAS/HR)	15.00000
MASS OF LIQUAD IN EACH STEAM GENERATUR (THOUSAND LOS)	112,50000
BLOWDOWN MATE (THOUSAND ERSIMR)	75.00000
CUBDENSATE DEMINERALIZER REGENERATION TIME (DAYS)	8.40000
CONDENSATE DEMINERALIZER FLOW FRACTION	.65000

LIGHTO WASTE INPUTS

		FRACTION	FRACTION	COLLECTION	UFCAY			
STHEAM	FLOW HATE	UF PCA	DISCHARGED	TIME	TIME	DECONTAM	INATION !	ACTORS
	(GAL/DAY)			(UAYS)	(DAYS)	Ì	CS	OTHERS
SHIM BLEED WATE	1.445.+04	1.0000	.1000	55.6000	.9300	5.0ñE+03	2.00E+08	1.00E+05
EQUIPMENT DRAIMS	3.30F+U4	.9700	.1000	22.6000	. 4300	5.002+03	2.00E+0#	1.00E+05
CLEAN WASTE IMPUT	1 9.80£+04	.0930	.1000	▶.7000	.1300	5.0ñE+n2	1.00F+0	1.00E+04
DIRTY WASTES	2.10E+03	.0100	1.0000	4.8000	.1900	5.0nE+02	1.00E+0	1.00E+04
BLOWDOWN	S.16F+05		0.000	0.000	0.000	1.00E+03	1.00E+04	1.00E+03
UNTREATED BLOWDOW	1 6.		1 • 0 0 0	0.000	0.000	1 + 0 nE + 0 0	1.00E+09	1.00E+00
REGENERANT SOLS	3.40E+04		.100	4.700	.370	5.0nE+02	1.00E+08	1.00E+04

GASEOUS WASTE INPUTS

THERE IS NOT CONTINUOUS STRIPPING OF FULL LETOWN FLOW FLUW RATE THROUGH GAS STRIPPER (GPM) 1.22917 HULDUP TIME FOR XEHON (DAYS) 60,00000 HULDUP TIME FOR KRYPTOU (DAYS) 60.00000 FILL TIME OF DECAY TANKS FOR THE GAS STRIPPER (DAYS) 30,00000 PRIMARY COOLANT LEAK TO AUXILIARY BLUG (LB/UAY) 160,00000 GAS WASTE SYSTEM PARTICULATE HELEASE FRACTION .01000 FULL HANDLE BLDG INDINE HELEASE FRACTION .10000 PARTICULATE RELEASE FRACTION .01000 AUXILIARY HLUG 1901NF RELEASE FRACTION .10000 PARTICULATE RELEASE FRACTION .01000 CONTATIONENT VOLUME (MILLION + T3) 2.45000 PHEODENCY OF PHIMARY COOLANT DEGASSING (TIMES/YR) 2,00000 75.00000 PRIMARY TO SECONDARY LEAK RATE (LB/UBY) THERE IS NOT A KIDNEY FILTER .35000 FRACTION TODARE BYPASSING CONDENSATE DEMINERALIZER TODING PARTIFION FACTOR (GAS/LIQUID) IN STEAM GENERATOR .01000 FPEQUENCY OF CNIMT BLOG HIGH VOL PURPE(TIMES/YR) 2.00000 CHIAT-HIGH VUL PURGETODINE PELEASE FRACTION .10000 PARTICULATE MELENSE FRACTION .01000 CHINT LOW VOL PURGE HATE (CFH) 1000.00000 CHINT LOW VOL PURGE TOD THE RELEASE FRACTION .10000 PARTICULATE RELEASE FRACTION .01000 STEAM LEAK TO TURBINE BLUG (LES/MR) 1700,00000 PRACTION TOWING RELEASED FROM BLUWDUMN TANK VENT 0.00000 PERCENT OF JUDINE REJOVED FROM ALR EVECTOR RELEASE 1.00000

GASEOUS RELEASE RATE - CURIES PER YEAR

	PRIMARY	SECONDARY	Bi	UILDING VENT	ILATION	•			
	(MICHULIAN) (MICHULAN) (MICHULAN)		FILL MANULG	REACTOR AUXILIARY		TURBINE	BLOWDOWN Vent offgas	AIR EJECTOR Exhaust	TOTAL
14131	4.500E-02	1.3978-06	5. 7F-04	3.7E-03	1.4E-02	0.	0.	0 •	1.8E-02
14133	1.400E-01	3.177E-06	1.05-03	7.9E-03	4.5E-02	1.9€-0	٠, ٥	0 •	5.5E-02

TUTAL H-3 RELEASED VIA GASEOUS PATHWAY = 1100 CI/YR

C-14 RELEASED VIA GASEOUS PATHWAY = 7.3 Cl/YR

AR-41 RELEASED VIA CUNTAINMENT VENT = 34 CI/YR

ယ	
L	

	PRIMARY COOLAUT PRIMARY	SECONDAHA	GAS ST	RIPPING	BUILDIN	IG VEŅTILATIO		-	4 % - F 15 4 7 0 0	
		COOLANT (MICROCI/OM)		CONTINUOUS	REACTOR	AUXILIARY	TURBINE	BLOWDOWN VENT OFFGAS	AIR EJECTOR Exhaust	TOTAL
KR-85M	1.600E-01		o.	0 +	4.8E+01	3.0E+00	0.	0,	2.0E+00	5,3E+01
KR-AS	4.300E-01	8 4- 3006-8	2.1F.+02	8.35+02	9.4E+02	9.0E+00	0.	٠.	4.0E+00	2,02:03
KR-A7	1.500L-01	7.000E-08	0.	0.	1.4E+01	3.0E+00	•.	٥,	1.0E+00	1.0F+0i
KH-BU	2.800E-01	5.9V0E-08	0.	0 4	5.66+01	6.0E+00	4.	•.	3.0E+00	6,5K-Qi
XE-131M	7.3006-01	1.5UnE-07	1.1E+01	2.4E+01	1.5E+03	Ĩ.5E+01	•.	٠.	7.0E+00	1,65+03
XE-133M	7.0006-02	1.500E-08	0.	0.	1.0E+02	1.0E+00	٠,	n ,	0 •	1.0E+02
XE-133	2,6001+00	5.4U0E-07	0.	0.	4.7E+03	5.5E+01	0.	0.	2.6E+01	4.88403
XE-135M	1.300E-01	2.740E-48	0.	0.	3.0E+00	3.0E+00	0.	••	1.0E+00	7.0E+00
XE-135	A.500E-01	1.8U0E-07	0.	0.	4.6E+02	1.8E+01	0.	••	9.0E+08	4.9E+08
XE-137	3.470t-02	7.1VnE-09	0.	0.	0.	ñ.		•,	0 •	0,
XE-138	1.2006-01	2.500E=08	0.	0.	2.0E+00	3.0E+00	0.	۸,	1.0E+09	4.02.00
TOTAL 6	IOBLE GASES									9,1E+03

0.0 APPEARING IN THE TABLE INDICATES RELEASE IS LESS THAN 1.0 CITYR FOR NOBLE GAS. 0.0001 CITYR FOR I

- 3. File 3: Nuclear data library for fuel materials and their transmutation products for use with the liquid effluent code.
- 4. File 4: Nuclear data library for fission products for use with the liquid effluent code.
- 5. File 5: A FORTRAN listing of the gaseous effluent code.

The tape is written in the following format:

$$DCB = (RECFM = FB, LRECL = 80, BLKSIZE = 3200)$$

Use of the tape requires two data cards in addition to those described in Chapter 1 containing the plant parameters. For a low enrichment uranium-235 oxide-fueled light water reactor, these cards should always contain the following data:

Card	<u>Column</u>	Input Data
1	1-72	Title
1	75	The value 2
2	1-10	The value 0.632
2	11-20	The value 0.333
2	21-30	The value 2.0
2	31-40	The value 1.0E-25
2	41 - 46	The date (month, day, year) of the calculation
2	48	The value 1
2	50	The value 0
2	52	The value 0

A description of the information contained in the nuclear data library can be found in the report ORNL-4628, "ORIGEN - The ORNL Isotope Generation and Depletion Code," dated May 1973.

3.4.2 FORTRAN PROGRAM LISTING

Figure 3-3 and 3-4 provides the program listings for the PWR-GALE Code gaseous and liquid determinations.

FIGURE 3-3

```
PROGRAM LISTING FOR GASEOUS DETERMINATION
                                                                            000260
*DECK PGALEGS
       GALE CODE FOR CALCULATING GASEOUS EFFLUENTS FROM PWRS.
                                                                  MODIFIED
C
      AUG. 1979 TO IMPLEMENT APPENDIX I TO 10 CFR 50. REACTOR
C
      WATER CONCENTRATIONS CALCULATED USING METHODS OF DRAFT STANDARD
                                                                            000300
C
      ANS 237 "RADIOACTIVE MATERIALS IN PRINCIPAL FEUID STREAMS OF
                                                                            000310
C
      LIGHT WATER COOLED NUCLEAR POWER PLANTS" DRAFT DATED MAY 20, 1974000320
C
С
      THE FOLLOWING FIRST STATEMENT IS SPECIFIC FOR THE CDC USERS.
C
      FOR THE IBM USERS, DELETE THIS STATEMENT.
С
      PROGRAM PGALEGS (INPUT, OUTPUT, TAPE5=INPUT, TAPE6=OUTPUT)
      REAL NUCLIU(13)
      REAL PPART (18)
      DIMENSION ACONT (13), CCCP (13), CBSP (13), ASHIMC (13), ASHIMS (13)
      DIMENSION CHPP (13)
      DIMENSION ASHIM(13), CUNCP(13), CONCS(13), DECON(13), FHBL(13)
      DIMENSION DECOH(13) , NAME (8) , EVT (13) , TBL (13) , CPL (13) , AXBL (13)
      DIMENSION BVOG (13) . TO[ (13) . X2(13) . X3(13) . X4(13) . X5(13)
      DIMENSION CTPRO(13), XP1(13), XP2(11), WORD(14) + WARD(5), WURD(4)
      DIMENSION PCBL(18) .PAXBL(18) ,PCBP(18) ,PAXHP(14) ,PGWS(18) ,PTOTP(18)
      DIMENSION PGWL (18) , PCPCP (18) , PCBSP (18) , PRCONT (18)
      DIMENSION PEHBL (18) , PEHBP (18)
      DIMENSION KNAX(2), RNAXS(2), RNFH(2), RNFHS(2), RNT(2), RNTS(2), RNS(2)
      DATA NICLID/" KR-85M"," KR-85"," KR-87"," KR-28"," XE-131M",
     1" XE-133M"," XE-133"," XE-135"," XE-135"," XE-135"," XE-137",
     2" XE=138"," I=131"," L=133"/
      DATA PPART/" CR-51"," MN-54"," C0-57"," CU-58"," C0-60"," FE-59",
     1" SR-89"," SR-90"," ZR-95"," NB-95"," RU-103"," RU-106"," SB-125",
     2" CS-134"," CS-136"," CS-137"," BA-140"," CE-141"/
С
      XP1 AND XP2 ARE THE PRIMARY COOLANT AND SECONDARY COOLANT
С
      CONCENTRATIONS. RESPLUTIVELY (MICROCI/GM).
С
      DATA XP1/1.6E-1,4.3E-1,1.5E-1,2.8E-1,7.3E-1,7.0E-2,2.6E+041.3E-1.8
     1.5E-1,3.4E-2,1.2E-1,4,5E-2,1.4E-1/
      DATA AP2/3.4E-8,8.9E-4,3.0E-8,5.9E-8,1.5E-7,1.5E-8,5.4E-7,2.7E-8.1
     1.8E-7.7.1E-9.2.5E-8/
C
      DECAY CONSTANTS FOR THE CURRESPONDING NUCLID (1/SEC).
C
C
      DATA DECON/4.38E-5,2.03E-7,1.52E-4,6.88E-5,6.00E-7,3.55E-6,1.52E-6
     1,7.41E-4,2.09E-5.2.96E-3,8.14E-4,9.97E-7,9.17E-6/
      NORMALIZED IODINE ANNUAL KELEASE (CI/YR/MICROSI/GM).
C
C
      DATA RNS/0.32,0.32/
      DATA RNAX/0.68,0.68/
      DATA RNAXS/2.5.2.5/
      DATA RNFH/0.038,0.038/
      DATA RNFHS/0.093.0.094/
      DATA RNT/3.8E3,3.8E3/
      DATA RNTS/4.2E2.4.2E2/
      PARTICULATE ANNUAL RELEASE RATE (CI/YR)
C
С
      DATA PCRP/9.2E_3,5.3E43,8.2E_4,2.5E-2,2.6E-3,4.7E-3,1.3E-2,5.2E-3,
     10.0E+0,1.8E-3,1.6E-3,0.0E+0,0.0E+0,2.5E-3,3.2L-3,5.5E-3,0.0E+0,1.3
     28-3/
      DATA PAXBP/3.2E-4,7.85-5,0.0E+0,1.9E-3,5.1E-4,5.0E-5,7.5E-4,2.9E-4
     1,1.0E-3,3.0E-5,2.3E-5,6.0E-6,3.9E-6,5.4E-4,4.9E-5,7.2E-4,4.0E-4,2.
      DATA PFHBP/1.8E-4,3.05-4,0.0E+0,2.1E-2,8.4E-3,0.0E+0,2.1E-3,8.0E-4
```

3-16

```
1,3.6E-6,2.4E-3,3.8E-5,6.9E-5,5.7E-5,1.7E-3,0.VE+0,2.7E-3,0.0E+0,4.
     24E-7/
      DATA PGWS/1.4E-5.2.1E-6,0.0E.0,8.7E-6,1.4E-5,1.8E-6,4.4E-5,1.7E-5,
     14.8E-6,3.7E-6,3.2E-6,4.7E-6,0.0E+0,3.3E-5,5.3L-6,7.7E-5,2.3E-5,2.2
     2E-6/
C
C
      BUILT-IN PARAMETERS
C
      OPFRA=0.80
      AUXLR=160.
      EM=2.0
      GENL=75.
      CLFNG=0.03
      CLFI=8.0E-6
      PURTIM=16.
      TBLK=1700.
C
                                                                                 001880
      AFPTEG=0.0
      READ (5.1000) NAME . TYPE
      WRITE (6,1440)
      WRITE (6, 1000) NAME, TYPE
      HEAD (5,1010) WORD POWTH
      wRITE(6,1010)WORD,PO#1H
      WRITE (6,1020)
      READ (5,1010) WORD, PRIVUL
      WRITE(6,1010)WORD, PRIVOL
      READ (5.1010) WORD , DEMIEL
      WRITE (6,1010) WORD, DEMIFL
      READ (5.1010) WORD, CHFLR
      WRITE (6.1010) WORD, CBFLR
      RÉAD (5.1010) WORD.GEN
      WRITE (6,1010) WORD, GEN
      READ (5.1010) WURD, TOSTEL
      WRITE (6,1010) WORD, TOSTFL
      READ (5, 1010) WORD, WLI
      WRITE (6,1010) WORD, WLI
                                                                                 004600
      WLI=GEN#WLI
      READ (5,1040) TBD, KFNRT
      WRITE (6,1050) TBD
      IF (KFNRT.EQ.0) FNRTSC=0.99
      IF (KFNRT.EQ.1) FNRTSC30.9
      IF (KFNRT.EQ.2) FNRTSC=1.0
      READ (5,1010) WORD . REGENT
      WRITE (6,1010) WORD, REGENT
                                                                                 004740
C
      READ DATA FOR LIQUID INFORMATION
                                                                                 004760
C
      READ (5, 1010) WORD , FFCDM
      WRITE (6,1010) WORD, FFCDM
      READ (5,1060) WARD, SBLUR
                                                                                 004820
      CWA=1.0
      READ (5.1070) DFICW, DFCSCW, DFCW
      READ (5,1080) TC, TSTORC & CWFD
       WRITE (6, 1090)
      WRITE (6.1100)
      WRITE(6,1110)WARD, SBLUR, CWA, CWFD, TC, TSTORC, DFICW, DFCSCW, DFCW
      READ (5,1120) WARD, EDFLR, EDA
      READ (5.1070) DFIED, DFCSED, DFED
      READ (5,1080) TE,TS,EDFU
      WRITE (6,1110) WARD, EDFLR, EDA, EDFD, TE, TS, DFIED, UFCSED, DFED
      READ (5.1120) WARD DWFLY DWA
      READ (5.1070) DF IDW , DFCSDW , DFDW
```

```
READ (5.108Q) TD. TSTORU DWFF
      WRITE(6.1110)WARD.DWFLR.DWA.DWFD.TD.TSTORP.DF.DW.DFCSDW.DFDW
      READ (5.1120) WARD . DWFL2 . BWR
      HEAD (5,1070) DFID2, DFC $D2, PFD2
      READ (5, 1080) T2, TSTOR2, DWF2
      WRITE (6,1110) WARD, DWFL2, DW2, DWF2, T2, TSTOR2, DF1D2, DFCSD2, DFD2
      READ (5.1130) BDTFR
      READ (5.1070) DFICM, DFC CM, DFCM
      READ (5.1080) TCM, TSTORE, CMED
      READ (5.1130) RGWFR
      READ (5,1070) DFIRG. DFC$RG, DFRG
      READ (5,1080) TRG, TSTORR, RGFD
       IF (TBD_EQ.0.0) GO TO 30
                                                                                005070
      BDFR=TBD+1.0E3+BDTFR/0.3476
      WRITE(6,1140)BDFR, CMFU, TCU, TSTORB, DFICM, DFCSCM, DFCM
                                                                                005090-
      BUFR=TBD+1.UE3+ABS(1.4BDTTR)/0.3476
      WRITE (6,1150) BDFR
      IF (FFCDM.EQ.O.O) GO TO 50
      IF (REGENT.EQ.0.0) GO TO 40
      WRITE(6,1160) RGWFR, RGED, TRG, TSTURR, DFIRG, PFC5KG, DFRG
      GO TO 50
      RGWFR=n.0
  40
      WRITE(6.1160)RGWFR.RGLD.THG.TSTORR.DFIRG.DFCSHG.DFRG
                                                                                005190
C
      READ DATA FOR GAS INFURMATION
C
                                                                                005210
C
      WKITE (6,1170)
  50
      READ (5,1180) KGTRWT
      IF (KGTRWT.EQ.0) GO TO 70
      GTRW=(DEMIFL-SBLDR/1440.)/DEMIFL
                                                                                005250
      IF (KGTRWT.EU.2) GO TO 60
      WRITE (6,1190)
      GO TO 80
     GTRW=0.25*GTRW
      WKITE (6,1200)
      GU TO An
      GTR#=0.0
  70
      wRITE (6,1210)
      SRH=GTRW#DEM1FL+(SBLDH+EDFLR)/1440.
  80
      WRITE (6,1220) SRB
      READ (5.1010) WORD, TAUL
      WRITE (6.1010) WORD, TAUL
      READ (5,1010) WORD, TAU2
      WRITE (6,1010) WORD, TAUS
      READ (5, 1010) WORD, TAU3
      WRITE (6,1010) WORD, TAU
      WRITE (6,1230)
      GWPRF=1.0
      AXIRF=1.0
      AXPRF=1.0
      CHIRF=1.0
       CHPRF#1.0
      CLIRF=1.0
      CLPRF=1.0
      FHIRF=1.0
      FHPRF=1.0
      CAIRF=1.0
      CAPRF=1.0
      READ (5,1250) WURD, GWHRE
      IF (GWHRE.GT.0.0) GWPRF = 1.0-GWHRE/100.
      WRITE (6,1260) WURD, GWPHF
      READ (5.1270) WARD . FHCHKE . FUHRE
      IF (FHCHRE.GT.0.0) FHIRT=1.0-FHCHRE/100. 3-18
```

```
IF (FHHRE.GT.0.0) FHPRF = 1.0 TFHHRE/100.
      WRITE (6,1280) WARD, FHIRF, FHPRF
      READ (5,1270) WARD, AXCHRE, AXHRE
      IF (AXCHRE.GT.0.0) AXIR = 1.0-AXCHRE/100.
      IF (AXHRE.GT.0.0) AXPRF 1.0-AXHKE/100.
      WRITE (6,1280) WARD, AXIKE, AAPRE
      READ (5.1010) WORD, CONVUL
      WRITE(6,1010)WORD,CONVOL
      WRITE (6,1290)
      READ (5,1370) WARD, CACHRE, CAHRE, CFM
      IF (CACHRE.GT.0.0) CAIRE=1.0-CACHRE/100.
      IF (CAHRE.GT.0.0) CAPRF = 1.0 - CAHRE/100.
      IF (CFM_EQ.0.0) GO TO YO
                                                                                005710
      KID=1
      WRITE (6,1300) CFM, PURTAM
      60 TO 100
  9 b
      KID=0
      WRITE(6,1310)
      IF (FFCDM.GT.0.0) GO TU 110
 100
      WRITE (6,1320)
      GO TO 120
      FIBCD=1.0-FFCDM
 110
      WRITE(6,1330)FIBCD
 120
      IF (TBD.E0.0.0) GO TO 130
                                                                                Un5840
      CUN=0.01
      WRITE (6,1340) CON
      GO TO 140
 130
      CON=1.0
      WRITE(6,1340)CON
  140 READ (5.) 350) WARD, CHCHKE, CUHRE, ENP
      IF (CHCHRE.GT.0.0) CHIRE=1.0-CHCHRE/100.
      IF (CHHRE.GT.0.0) CHPRF= .0-CHHRE/100.
      EN=2.0+ENP
      WHITE (6,1360) EN
      WRITE(6,1280)WARD, CHIRF, CHPRF
      READ (5.1370) WARD . CLCHKE , CLHRE , PNOV1
      IF (CLCHRE.GT.0.0) CLIRT=1.0-CLCHRE/100.
      IF (CLHRE.GT.0.0) CLPRF51.0-CLHKE/100.
      IF (PNOV1.LT.1.0) GO TU 150
      WRITE(6,1380)WARD, PNOV1, WARD, CLIRF, CLPRF
      GO TO 160
      WRITE (6,1390)
 150
      WRITE (6,1400) TBLK
 160
      READ (5.1010) WORD, FVN
      WRITE(6,1010)WORD, FVN
      READ (5,1010) WORD, FEJP
     FEJP=1.0-FEJP/100.
     WRITE (6,1010) WORD, FEUP
      READ (5, 1010) WORD, PFLAUN
      IF (PFLAUN.LE.O.O) WRITE (6:1430)
                                                                                006210
                                                                                006250
C
      CUNVERSION OF UNITS
                                                                                006230
                                                                                006240
      TOSTFL=TOSTFL*1000000
                                                                                006260
      WLI=WLI*1000.
                                                                                006270
      CONVOL=CUNVOL #1000000 $
                                                                                006280
      CFM=CFM#1000.
                                                                                006290
      TBD=TBD+1E3
                                                                                006300
      PHIVOL=PHIVOL#1E3
                                                                                006310
      DEMIFL=DEMIFL*500.53
                                                                                006320
      SELDR=SRLUR#.3476
                                                                                006330
      EUFLR=EDFLR+.3476
```

```
0n6340
      DWFLR=DWFLR+.3476
DWFL2=DWFL2*.3476
                                                                             006350
                                                                             0n6360
      CBFLR=CBFLR+500.53
C
      H3COPW IS THE PWR TRITIUM PRIMARY COOLANT CONCENTRATION IN UCI/GM 006380
C
C
                                                                             006390
      H3C0PW=1.0
      H3PRPW=0.4*POWTH
      TPLRPW=SBLDR+CWA+CWFD+EDFLR+EDA+EDFD+DWFLH+DWH+DWFD+DWFL2+DW2+DWF2006400
                                                                             006410
      H3RLPW=TPLRPW#H3COPW#3.97T
      IF (H3RLPW.GT.0.9*H3PRPW) HBRLPW=0.9*H3PRPW
                                                                             006430
      H3RLG=H3PRPW-H3RLPW
                                                                             006440
      DIV=10_**(INT(ALOG10(H3RL@))-1)
                                                                             006450
      IDIV=PIV
                                                                             006460
      IH3RLG=INT(H3RLG/DIV+0.5) #IDIV
                                                                             006470
      IF (TAU3.EU.0.) TAU3=.01
                                                                             006480
      SR8=SRB#500.53
                                                                             006490
      PE=365 /TAU3
                                                                             006500
      T1=3.1557E7/EN#OPFRA
                                                                             006510
      T3=3.1557E+U7/PE
                                                                             006520
      T4=TAU1 #86400.
                                                                             006530
      T5=TAU2*86400.
      DO 190 I=1.13
      DECOH(I) = DECON(I) +360V.
 190
      DO 200 I=1.13
      CONCP(I) = xPl(I)
 200
      IF (POWTH.LT.3000..OR.POWTH.GT.3800.) GO TO 210
      IF (PRIVOL.LT.5.0E5.OR, PRIVOL.GT.6.0E5) GU TO 410
      IF (DEMIFL.LT.3.2E4.OR.DEMIFL. UT.4.2E4) GO TO 210
      IF (SBLDR.LT.250..OR.SULDR.GT.1000.) GO TO 210
      IF (CBFLR.GT.7500.) GO TO 210
      IF (KGTRWT.GI.0) GO TO 210
      GO TO 240
      AFPTEG=1.0
 210
      RNG2=(SBLDR+DEM1FL+ GTRW)/PRIVOL
                                                                              006660
      RHALZ=(DEMIFL*0.99+0.41*SBLDR)/PRIVOL
      RKZG=161.76*POWTH/PRIVOL
      DO 230 I=1,13
      IF(I.GT.11) GO TO 220
      CONCP(I) = CUNCP(I) * RK2 4 ( . 0009 + DECOH(I) ) / (RNG2 + DECOH(I))
      60 TO 230
  220 CONCP(I) = CONCP(I) *RK29*(0.067+DECOH(I))/(KHAL2+DECOH(I))
      CONTINUE
 230
 240
      IF (TBD EQ.0.0) GO TO 380
C
      PWTYPE=1.0 IS FOR PWRS WITH U-TUBE STEAM GENERATORS
Ç
C
                                                                              006780
      PWTYPE=1.0
      DO 250 I=1,11
      CONCS(T) = XP2(I)
 250
      CONCS (12) =1.8E-6
      CONCS (13) = 4.8E-6
      IF (AFPTEG.EQ.1.0) GO TO 300
      IF (WLI .LT.4.0E5.OR.WLI.GT.5.0E5) GO TU 300
      IF (TOSTFL.LT.1.3E7.OR.TOSTFL.GT.1.7E7) GO TO 300
      IF (TBP LT.5.0E4.0R.TBV.GT.1.0E5) 60 TO 300
      IF (FECDM.GT.0.01) GO TO 300
      60 TO 340
C
      PWTYPE=2.0 IS FOR PWRS WITH ONCE-THROUGH STEAM GENERATORS
C
Ç
      PATYPE=2.0
 280
      DO 290 I=1,11
```

```
290 CONCS([)=XP2(I)
      CUNCS (12) =5.2E-8
       CONCS (13) = 1.6E-7
       IF (AFPTEG.EQ.1.0) GO TO 300
       IF (TOSTFL.LT.1.3E7.OR.TOSTFL.GT.1.7E7) GO TO 400
       IF (FFCDM.LT.0.55.OR.FFCDM.GT.0.75) GO TO 300
      GO TO 340
  300 CONTINUE
      IF (FFCDM.GT.0.01.AND.FFCDM.LT.1.0) FFCDM=0.2
      RHAL3=(TBD*FNRTSC+.9*GON*TOSTEL*FFCDM)/WLI
      00 \ 330 \ I=1.13
      IF(I.GT.11) GO TO 310
      CONCS(I) = CONCS(I) *1.5E7/TUSTFL*(CONCP(I)/XP1(\frac{1}{2}))
                                                                                007140
      60 TO 330
      IF (PWTYPE.EQ.2.0) GO TO 320
      CONCS(I) = CONCS(I) * (4. $\frac{1}{2}E$/\(\text{wLI}\) * (0.17+DECOH(I)) / (RHAL3+DECOH(I)) *
                                                                                007190
     1(CONCP(I)/XP1(I))
      60 TO 330
      CONCS(I) = CONCS(I) * (1. VE5/WLI) * (27.0+DECOH(I)) / (RHAL3+DECOH(I)) *
320
     1 (CONCP(I)/XP1(I))
      CONTINUE
 330
      PNOV=PNOV1/CONVOL+60.
 340
                                                                                007240
C
                                                                                007250
      THIS PART OF PROGRAM IS FUR NOBLE GASES
C
С
      J=0
      DO 370 I=1:13
                                                                                0077A0
      X2(I) = (DECON(I) +PNOV/4600.) #T1
      IF(X2(1).6T.30.) X2(1)=30.
                                                                                007300
      X3(I) = DECON(I) + T3
      1F(X3(I).GT.30.) X3(I)=30.
                                                                                U07330
      X4(I) = DECUN(I) * T4
      IF(X4(I).GT.30.) X4(I)=30.
                                                                                007360
      X5(I) = DECON(I) + T5
                                                                                007370
      XDK=X5(I)
      IF (X5(I).GT.30.) XDK=30.
      IF(1.67.11) GO TO 350
      IF (I.GT.4) XDK=X4(I)
      CTPRO(I) = (CUNCP(I) *PRIVOL*CLFNG) / (DECOH(I) *PNUV) *1.892E-5
                                                                                007470
                                                                                007480
      ACONT(I) = CTPRO(I) * (1.4EXP(-X2(I)))
      ASHIM(I) = (CUNCP(I) *SRE) /DECOH(I) *4.54E-4*(1. -EXP(-X3(I)))
                                                                                007490
      AXBL(I)=CUNCP(I) *AUXLM*.1657*OPFRA 007500 CBCP(I)= EN * PNOV * (CTPRO(I)*T1/3600.+CTPRU(I)*(EXP(-X2(I))-1.)007510
                                                                                007520
     1/(DECOH(I)+PNOV))
                                                                                007530
      CBSP(I) = EN#ACONT(I)
                                                                                007540
      CBL(I)=CBCP(I)+CBSP(I)
      ASHIMC(I) = PE * ASHIM(I) *EXP(-XDK) *OPFRA
      ASHIMS(I)=EM*CONCP(I) PRIVOL*4.54E_4*EXP(-XDK)
      EJT(I)=CONCS(I) *TOSTFL*3.977*OPFRA
                                                                                007570
                                                                                007580
      TBL(I)=CONCS(I) #TBLK#3.977#OPFRA
      FHBL(I)=0.0
                                                                                007590
      BVOG(I) = 0.0
                                                                                007600
      TEST=1.0
      IF (CBL(I).LT.TEST)CBL(I)=0.0
                                                                                007610
                                                                                007620
      IF (ASHIMS(I).LT.TEST) ASHIMS(I)=0.0
                                                                                007630
      IF (ASHIMC(I).LT.TEST) ASHIMC(I)=0.0
                                                                                007640
      IF (EUT(I).LT.TEST)EUT(I)=0.0
                                                                                007650
      IF (TBL(I).LT.TEST) TBL(I) = 0.0
      IF (AXBL(I).LT.TEST) AXBL(I)=0.0
                                                                                007660
      GU TO 370
                                                                                007680
C
      THIS PART OF PROGRAM IS FUR JUDINE
                                                                                007690
C
```

```
007700
     CTPRO(I) = (CONCP(I) *PRIVOL*CLFI)/(DECOH(I) *PNOV) *1.892E-5
     ACONT(I) = CTPRO(I) * (1.4EXP(-X2(I)))
                                                                               007720
     AXBL(I) = (RNAX(J) +RNAX (J)) *CONCP(I) *AXIRF
     FHBL (I) = (RNFH(J) +RNFH$(J)) *CONCP(I) *FHIRF
                                                                               007740
     ASHIMC(I)=0.0
     ASHIMS(I)=0.0
                                                                               007750
     EBCP(I) = EN # PNOV * (CTPRO(I) *T1/3600.+CTPRU(I) *(EXP(-X2(I))-1.)007760
    1/(DECOH(I)+PNOV)) #CLIMF
     CUPP(I) = ENP + ACONT(I) + GHIRA
     CBSP(I)=RNS(J) +CONCP(I) +CUIRF
     CBL(I) = CBCP(I) + CBSP(IL+CBRP(I)
     EJT(I)=1.7E3*CONCS(I) CON*FEJP
     TBL(I) = (RNT(J) + RNTS(J)) *CONCS(I) *CON
                                                                               007830 .
     HVOG(I) = CONCS(I) +TBD+LVN+3.977+OPFRA
     IF (KID_EQ.0) GO TO 360
     DLAK=(CFM*60.*CACHRE*0.01*0.7/CONVOL)+DECUH(I)
                                                                               007860
     EXX2=DLAK*PURTIM
     IF (EXX2.GT.30.) EXX2=10.
                                                                               007880
     EXPF=EXP(-EAX2)
                                                                               007890
     EXPC=1 = EXPF
     ELSS=CHIRF*CONCP(I)*PKIVOL*CLFI*1.892E-5/PLAK*EXPC
     CHL(I)=CHPP(I) *EXPF+ELSS*ENP+CBCP(I)*(1.-PURTIM/(8760.*OPFRA/EN))+
    12*CHIKF*0.16*CONCP(I) *PURTIM/(24.*32.5) *EXPC/(DLAK*PURTIM)
    2+(CBSP(I)=2.*CHIRF*0.16*CUNCP(I)*PURTIM/(24.442.5))
360 TEST=0 no01
                                                                               007930
     If (CBL(I).LT.TEST)CBL(I)=0.0
                                                                               0n7940
     IF (EJT(I).LT.TEST)EJT(I)=0.0
                                                                               007950
     IF (BVOG(I) .LT.TEST) BVOG(I) =0.0
                                                                               007960
     IF (TBL(I).LT.TEST) TBL4I) = 0.0
                                                                               007970
     IF (AXBL (I) .LT.TEST) AXQL (I) =0.0
     IF (FH8L(I).LT.TEST)FH8L(I)=0.0
    CONTINUE
370
                                                                               008020
     MSIG=1
     NSIG=17
                                                                               008040
     CALL SIGFZ (CBL. MSIG. NS G)
                                                                               008050
     CALL SIGFZ (ASHIMS, MSIG, NSIG)
                                                                               008060
     CALL SIGF2 (ASHIMC, MSIG, NSIG)
                                                                               008070
     CALL SIGF2 (EJT, MSIG, NSIG)
                                                                               008080
     CALL SIGF2 (BVOG, MSIG, NSIG)
                                                                               008090
     CALL SIGF2(TBL, MSIG, NSIG)
                                                                               008100
     CALL SIGF2 (AXBL, MSIG, NSIG)
     CALL SIGF2 (FHBL, MSIG, NSIG)
     DO 380 I=1,13
     TOT (I) = CBL (I) + EJT (I) + \frac{1}{2}BL (\frac{1}{2}) + AXBL (I) + FHBL (\frac{1}{2}) + BYOG (I) + ASHIMC (I) + ASHI
    1MS(I)
    CONTINUE
380
                                                                               008140
     CALL SIGF2(TOT.MSIG.N$IG)
     WRITE (6.1440)
     WRITE (6.1450) NAME
     WRITE (6,1460)
     WHITE (6, 1560)
     WRITE (6,1480)
     DO 385 I=12,13
     WRITE (6.1495) NUCLIDYI), CONCP(I), CONCS(I), HBL(I),
    1CBL(I),AXBL(I),TBL(I)+RVOG(I),EUT(I),TOT(1)
385 CONTINUE
     WHITE (6,1480)
     wR1TE(6,1510) IH3RLG
     WRITE (6.1440)
     WRITE (6.1450) NAME
     WRITE (5.1460)
```

```
WRITE (6,1470)
      WHITE (6,1480)
      GASTOT=0.0
      UO 390 I=1.11
      WRITE(6,1490) NUCLID(I), CONCP(I), CONCS(I), ASHIMS(I), ASHIMC(I),
     1CHL(I).AXHL(I),TBL(I),BVOG(I),EJT(I),TOT(1)
      GASTOT=GASTUT+TOT(I)
      CONTINUE
      DIV=10. ** (INT (ALOG10 (GASTQT))-1)
                                                                              008360
                                                                              008370
      GASTOT=AINT (GASTOT/DIX+0.5) #DIV
      WRITE(6.1500) GASTOT
      WRITE (6,1480)
      WRITE (6,1520)
      WRITE (6, 1440)
      WRITE (6,1450) NAME
      WRITE (6, 1530)
      WRITE (6,1540)
      WRITE (6,1480)
                                                                              008560
      UH=8760. #OPFRA/EN
C
      THIS PART OF PROGRAM IS FUR THE PARTICULATES
С
С
      DU 430 I=1,18
      PRCONT(I) = PCBP(I) / (8700.40PFRA)
      IF (PNOV.GT.U.O) GO TO 410
                                                                              008600
      PCBCP(I)=0.0
      PCBSP(J) = EII & PRCONT(I) COH & CHPRF
      60 TO 420
 410 PCBCP(I) = (EN# (QH*PRCONT(I) -PRCONT(I) /PNOV*(1. TEXP(-PNOV*QH))))
     1 + CLPRF
      PCBSP(I) = (EN*(PRCONT(1)/PNOV*(1.0-EXP(-PNUV*(0)))) *CHPRF
 420 PCBL (1) = PCBCP (1) + PCB3P (1)
      PAXBL(I)=PAXBP(I)*AXPMF
      PFHBL(I)=PFHBP(I)*FHPMF
      PUWL (I) = PUWS (I) *GWPRF
      IF (KID EU.U) GO TO 430
      PDLAK=CFM*60.*CAHRE*0.01*0.7/CONVOL
                                                                              008710
      PLXX2=PDLAK*PURTIM
      IF (PEXX2.6T.30.) PEXX2=30.
                                                                              068730
      PEXPF=EXP(-PEXX2)
                                                                              008740
      PEXPC=1.-PEXPF
      PELSS=PRCONT(I)/PDLAK*PEXPC*CHPRF
      PCBL(I) = PCBSP(I) *PEXPE+PELSS*EN+PCBCP(I) *(1.-YURTIM/(8760.*OPFRA/E008760
                                                                               008770
     1N))
 430 CONTINUE
                                                                              008790
      M51G=2
      NSIG=18
                                                                              008810
      CALL SIGF2 (PCBL, MSIG, NSIG)
      00 440 I=1:18
      PTOTP(I) = PCBL(I) + PAXBL(I) + PGWL(I) + PFHBL(I)
      CONTINUE
                                                                              008850
      CALL SIGF2 (PTOTP, MSIG: NSIG)
      DO 450 I=1,18
      WRITE(6,1550)PPART(I) *PGWL(I) *PCBL(I) *PAXBL(I) *PFHBL(I) *PTOTP(I)
      CONTINUE
 450
      WRITE (6.1480)
      STOP
С
                       FORMAT
                                         FORMATS
                                                            FORMATS
    FORMATS
С
1000
      FORMAT (32X, 8A4, 12X, A4)
      FURMAT (16X+"BLOWDOWN IS PROCESSED THROUGH CONVENSATE DEMIN")
1005
```

```
FURMAT(16X,"BLOWDOWN IS NUT PROCESSED THROUGH COND. DEMIN.") FURMAT(16X, 13A4, A2, F10, 5)
1007
1010
      FURMAT (16x, "PLANT CAPACITY FACTOR", 174, "0.80")
1020
      FORMAT (16x, "PERCENT FUEL WITH CLADDING DEFECT", T74, F7.5)
1030
      FORMAT (36x, F8, 4, 35x, I)
1040
      FORMAT (16X, "BLOWDOWN HATE (THOUSAND LBS/HK)" + 44X, F9.5)
1050
      FORMAT (15X,4A4,A2,8X,58.0)
1060
      FORMAT (20X+F8.0.2(5X+F8.0))
1070
      FORMAT (27X, F6.2, 14X, F9.2, 18X, F6.2)
1080
      FORMAT ( / , " LIQUID WASTE ANPUTS")
1090
                  (30X, "FRACTION FRACTION
                                              COLLECTION DECAY "/8X "STREAM
      FORMAT
1100
                                                TIME
                                                          TIME",5X," DECONTAM
                        OF PCA DISCHARGED
            FLOW RATE
     2INATION FACTORS"/20X;"(GAL/DAY)";23X;"(DAYS)
                                                           (DAYS)",7X.
     3"I",8%,"CS",8%,"OTHER$")
     FURMAT (2X, 4A4, A2, 1PE9, 2, 1X, 4 (0PF8, 4, 2X), 3 (1PE9, 2, 1X))
1110
      FORMAT (15X,4A4,A2,8X,E8.0,7X,F6.4)
1120
      FURMAT (70X, F10.5)
1130
     FURMAT (2X, "BLOWDOWN", 10X, 1PE9.2, 11X, F8.3, 2X, 2 (F8.3, 2X),
1140
     13(1PE9.2,1X))
     FORMAT (2X . "UNTREATED PLOWPOWN" , 1PE9 . 2 . 11X . "
                                                         1.000
1150
               1.00E+00 1.00E+00 1.00E+00")
                                      ",1PE9.2,14X,0PF5.3,2X,2(F8.3,2X).
1160 FORMAT (2X+"MEGENERANT SOLG
     13(1PE9.2,1X))
     FURMAT (/ " GASEOUS WASTE INPUTS")
1170
1180
      FURMAT (79X+I1)
      FORMAT (16% "THERE IS CONTINUOUS STRIPPING OF FULL LETDOWN FLOW")
FORMAT (16%, "THERE IS CONTINUOUS LOW VOL PURGE OF VOL. CONTROL TK")
1190
1200
     FORMAT (164 ,"THERE IS NOT CONTINUOUS STRIPPING OF FULL LETDWN FLOW"
1210
     FORMAT (16X, "FLOW RATE THROUGH GAS STRIPPER (6MM) " . 19X, F9.5)
1220
1230 FORMAT (16X, "PRIMARY CUOLANT LEAK TO AUXILIARY BLDG (LB/DAY) ". T72.
     1"160.0nn00")
      FURMAT (16X,4A4,6X,F3.V)
1250
     FURMAT (16x, 4A4, 4x, "PARTICULATE RELEASE FRACTIVN", 6x, F10.5)
1260
      FURMAT (16X,5A4,10X,F3, ,6X,F3.0)
1270
     FURMAT (16X,5A4, "IODINE RELEASE FRACTION", 11X, 10.5/36X, "PARTICULAT
1280
     1E RELEASE FRACTION", 64, F10.5)
     FURMAT (16X , "FREQUENCY OF PRIMARY COOLANT DEGADSING (TIMES/YR)" . T74
     1,"2.00000"/16X,"PHIMAKY TO SECONDARY LEAK RATE (LB/DAY)", T72,
     2" 75.00000")
     FORMAT (16x, "THERE IS & KIDNEY FILTER"/20X, "CONTAINMENT ATMOSPHERE
     1 CLEANUP RATE (THOUSAND CFM) ". T71, F10, 5/20% "PURGE TIME OF CONTAINM
     2ENT (HOURS)", T71, F10.3)
     FURMAT (16X,"THERE IS NOT & KIDNEY FILTER")
1310
     FORMAT (16X,"THERE IS NOT & CONDENSATE DEMINERALIZER")
1320
     FORMAT (16x, "FRACTION LODINE BYPASSING CONPENSATE DEMINERALIZER",
1330
     17X, T72, F9.5)
     FORMAT (16X, "IODINE PARTITION FACTOR (GAS/LIQUID) IN STEAM GENERATO
1340
     1R ",E7.5)
     FURMAT (16x,544,10x,F3,0,6x,F3,0,19x,F3,0)
1350
     FORMAT (16X, "FREQUENCY OF ENTMT BLDG HIGH YOL PURGE (TIMES/YR)",
1360
     1T73,F8.5)
     FORMAT (16x,5A4,10x,F3,0,6X,F3.0,14x,F8.2)
1370
1380 FORMAT (16x,544, "RATE (CFM)", 24x, F11, 5/16x, 544, "IODINE RELEASE FRACT
     110N", 11x, F10.5/36x, "PARTICULATE RELEASE FRACTION", 6x, F10.5)
     FURMAT (16X , "THERE IS NOT A CNTMT BLDG LOW VOLUME PURGE")
1390
      FURMAT (16x, "STEAM LEAN TO TURBINE BLDG (LBS/HK)", 19x, F10.5)
1400
      FORMAT ("0", 15X, "THERE IS NOT AN ON-SITE LAUNDRY")
1430
      FORMAT (1H1)
1440
1450
      FURMAT (16x,8A4)
      FORMAT (1H0+67X, "GASEOUS RELEASE RATE - CURIES PER YEAR")
1460
      FURMAT (1H0+11X, "PRIMARY", 4X, "SECONDARY", 7X, "GAS STRIPPING", 11X,
1470
     INBUILDING VENTILATIONN/12x . "CUOLANT" . 5x . "COOLANT" . 5x . 21 ("-") .
```

```
AIR EJECTOR TUTAL"/10X," (MICROCI/GM) (M
     24X.30 (11-11).5X.11BLOWDU#N
     31CROCI/GM) SHUTDOWN CUNTINUOUS
                                                                    TURBINE
                                          REACTUR AUXILIARY
         VENT OFFGAS EXHAUST")
1480 FORMAT (1H0,130("-"))
     FORMAT("0 ", A8, 2(2X, 17E10.3), 8(3X, 1PE8.1.1X))
1490
     FORMAT ("0 ", A8, 2(2X, 1 HE10.3), 12X, 7(3X+1PE4.1, 1X))
1495
      FORMAT (1HO," TOTAL NUBLE GASES", 101X 1PE . 1)
1500
      FORMAT (1H0,30X,"TOTAL H-3 RELEASED VIA GASEOUS PATHWAY = ",14," CI
1510
     1/YR"//31X,"C-14 RELEASED XIA GASEOUS PATHWAY 7 7.3 CI/YR"//31X.
     2"AR-41 RELEASED VIA CHNTAINMENT VENT = 36 CI/YR")
     FORMAT (1H0. "0.0 APPEARING IN THE TABLE INVICATES RELEASE IS LESS
     1THAN 1.0 CI/YR FOR NOULE GAS, 0.0001 CI/YR FOK I")
     FORMAT (1HO, 54X, "AIRBONNE PARTICULATE RELEASE HATE-CURIES PER YEAR"
     11)
     FORMAT (1H0.36X, "WASTE GAS", 16X, "BUILDING VENTILATION"/2X, "NUCLIDE"
1540
     1,28X,"SYSTEM",14X,"REACTOR AUXILIARY FUEL HANDLG",7X,"TOTAL")
     FORMAT (1H0, A8, 28X, 1PE8, 1, 11X, 1PE8, 1, 4X, 1PE8, 1, 4X, 1PE8, 1, 10X, 1PE8, 1
     1)
     FORMAT (1H0.11X, "PRIMARY", 4X, "SECONDARY", 25X, "BUILDING VENTILATION"
1560
     1/12X,"COOLANT",5X,"COULANT",15X,44("-"),6X,"BLOWDOWN AIR EJECTUR
         TOTAL"/10X,"(MICROCI/GM) (MICROCI/GM)",12X,"FUEL HANDLG
                                  VENT OFFGAS EXHAUSTIL)
           AUXILIARY TURBINE
     3R
                                                                            008930
      END
                                                                            008940
*DECK SIGF2
                                                                            008950
      SUBROUTINE SIGF2 (RLPT: MSIG, NSIG)
                                                                           008960
      DIMENSION RLPT (NSIG)
                                                                            008970
      IF (MSIG.EQ.2) GO TO 30
                                                                           008980
      00 S0 I=1 402IG
                                                                           008990
      IF (RLPT(1).EQ.0.0) GU TO 20
      IF (I.GT.11) GO TO 10
      THIS PART OF SUBROUTINE IS FOR NOBLE GASES
                                                                            009010
C
                                                                            009020
      DIV=10. ** (INT (ALOG10 (KLPT (I)))-1)
                                                                            009030
      IF (RLPT(I).LT.10.) DIV=1.00
                                                                            009040
      RLPT(I) = AINT(RLPT(I)/VIV+0.5) *DIV
                                                                            009050
      GU TO 20
                                                                            009060
      THIS PART OF SUBROUTINE IS FOR IODINE
C
                                                                            009070
   10 CONTINUE
                                                                            009080
      ISUB=2
                                                                            009090
      IF (RLPT(I).GT.1.0) ISUU=1
                                                                            009100
      DIV=10.**(INT(ALOG10(KLPT(I)))-ISUB)
                                                                            009110
      RLPT(I) = AINT (RLPT(I)/UIV+0.5) *DIV
                                                                            009120
   20 CONTINUE
                                                                            009130
   30 CONTINUE
      THIS PART OF SUBROUTINE IS FOR PARTICULATES
                                                                            009140
                                                                            009150
      DO 50 I=1.NSIG
      IF (RLPT(I).EQ.0.) GO TO 50
                                                                            009160
                                                                            009170
      DIV=10. ** (INT (ALOG10 (KLPT (I)))-2)
                                                                            009180
      RLPT(I) = AINT(RLPT(I)/UIV+0.5) *DIV
                                                                            009190
   50 CONTINUE
                                                                            009200
      RETURN
                                                                            009210
      END
```

FIGURE 3-4 PROGRAM LISTING FOR LIQUID DETERMINATION

		PROGRAM LISTING FOR LIQUID DETERMINATION	000260
	#DECK	GALE CODE FOR CALCULATING LIQUID EFFLUENTS FROM PWRS. MUDIFIED AUG. 1979 TO IMPLEMENT APPENDIX I TO 10 CFR PART 50. REACTOR WATER CONCENTRATIONS CALCULATED USING METHODS OF DRAFT STANDARD ANS 237 "RAUIOACTIVE MATERIALS IN PRINCIPAL FLUID STREAMS OF LIGHT WATER COOLED NUCLEAR POWER PLANTS" DRAFT DATED MAY 20. 1974 MODIFIED EDITION OF ORIGEN PROGRAM TO COMPUTE EFFLUENTS FROM BWR AND PWR RADWASTE SYSTEMS	000300 000310
	C C C	STATEMENTS *PROGRAM PGALELQ* AND *LEVEL 2* ARE FOR CDC USERS. FOR IBM USERS DELETE THESE STATEMENTS.	VIVOSTO
		PROGRAM PGALELQ (INPUT, OUTPUT, TAPES=INPUT, TAPE6=OUTPUT,	
	1	TAPER) REALLETDWN; NOGEN REALLETDWA COMMON/MATRIX/A(2500); LOC(2500); NONO(800); KD(\$00) LEVEL 2; A; LUC; NONO; KD COMMON/CONST/MMN; ERR; MZERU COMMON/EG/XTEMP(800); ANEW(10; 800); B(800); D(800)	000380 000390 000420 000380
	3	COMMON/FLUXN/REGENT,DAS(800),ILITE,IACT,ITOT COMMON/OUT/NUCL(800) COMMON/CONC/PCONC(800),SCUN(800),RINV(800) COMMON/COUL/REACTR,POW1,SPLDR,BLWDWN,FPEF,HEF,EDFLR,DFIED,DFCSED, DFED,DFIDW,DFCSDW,DFDW,EPA,DWA,CWA,DFCM,DFICM,DFCSCM, DFCW,DFICW,DFCSCW,BDTFR,LDFD,DWFD,CWFD,CMFD,TS,TE,TD,TC,TCM, TSTORC,TSTORD,TSTORB,DWFL2,DW2,DWF2,T2,TSTOR2,DFID2,DFCSP2,DFD2, PFLAUN,DWFLR	
	•	COMMON/APCOUL/RGWER, DEIRG, DECSRG, DERG, TRG, TSTURR, RGED COMMON/BDTES/RENRT COMMON/CONP/PWCONC(800), SCUTV(800), SCOT(800)	000660 000670
	С	DIMENSION WURD15(4), WURD18(5), WORD56(14), WORD\$(2), REACTR(7)	000870
	C C	READ NUCLEAR DATA AND CONSTRUCT TRANSITION MATRIX	000890
		CALL NUDATA (NLIBE)	000910
	C 20	D0 20 I=2+1TOT NON0(I)=NUN0(I)+NON0(I-1) KD(I)=KD(I)+NON0(I-1)	000920 000930 000930
	C	BUILT-IN PARAMETERS	
	c c	PF=0.80 TBLK=1700.	
C	30	MMN=0 MZERO=21 DO 30 J=1.800 PCONC(J)=0.0 SCON(J)=0.0 RINV(J)=0.0 CONTINUE	001170 001190 001200
	C C	HEAD DESCRIPTION OF REACTUR AND PADWASTE TREALMENT PLANT	001250 001260 001270
•		PHINT 9026 HEAD 9010, REACTR. TYPE PRINT 9010, HEACTR, TYPE REAU 9011, WURD56, POW1 PRINT 9011, WORD56, POW1 3-26	001290 001300 001310 001320 001330

```
002070
      HEAD 9037 + KGWFR
                                                                              002080
      READ 9014, DF IRG, DFCSRU, DFKG
                                                                              002090
      READ 9015.TKG.TSTORR. MGFD
      IF (BLWDWN.EQ.0.0) GO TO 75
                                                                              002110
      BUFR=BLWDWN+1E3+RDTFR/0.3476
      PRINT 9034, BDFR, CMFD, TCM, TSTORB, DFICH, DFC5CM, MFCM
                                                                              002120
                                                                            002130
      BUFR=BLWDWN#1.0E3#ABS(1.-BDTFR)/0.3476
                                                                              002140
      PRINT 9035, BDFR
      IF (FFCDM.EQ.O.O) GO TU 90
  75 IF (REGENT.EU.0.0) GO TO 80
      PRINT 9038, RGWFR, RGFD, TRG, TSTORR, DFIRG, DFCSRG, DFRG
                                                                              002180
      GO TO 91
     RGWFR=0.0
      PRINT 9038, RGWFR, RGFD TRG, TSTORR, DFIRG, DFCSRG, DFRG
                                                                              002210
   90 IF (KENRT.EU.2) GO TO 100
                                                                              002240
      FNRTSO=1.0-1.0/(DFCM+PFCB)
                                                                              002250
      FNRTSI=1.0-1.0/(DFICM*DFCB)
                                                                              002260
      FNRTSC=1.0-1.0/(DFCSCM*DFCBCS)
      GO TO 110
 100 FNRTS0=1.0
                                                                              Un2290
      FNRTSI=1.0
                                                                              002300
      FNRTSC=1.0
                                                                              002320
Ç
C
      READ DATA FOR GAS INFURMATION
                                                                              002340
C
410
      PRINT 9046
                                                                              002360
      READ 9021 . KGTRWT
      IF (KGTRWT.EQ.0) PRINT 9053
                                                                              Un2370
      IF (KGTRWT.LQ.1) PRINT 9052
                                                                              002380
                                                                              002390
      IF (KGTRWT.EQ.2) PRINT 9075
                                                                              002400
      READ 9012+WURD56, TAU1
                                                                              Uñ2410
      PRINT 9012, WORD56, TAU
                                                                              002420
      READ 9012.WORD56.TAU2
                                                                              002430
      PRINT 9012, WORDS6, TAUZ
                                                                              002440
      READ 9012, WORD56, TAU3
                                                                              002450
      PRINT 9012, WORDS6. TAU
      GWPRF=1.0
      AXIRF=1.0
      AXPRF=1.0
      CHIRF=1.0
      CHPRF=1.0
      CLIRF = 1.0
      CLPRF=1.0
      FHIRF=1.0
      FHPRF=1.0
      CAIRF=1.0
      CAPRF=1.0
      HEAD 9065, WORD 15, GWHRE
      IF (GWHRE. UT. 0.0) GWPRF=1.0-GWHRE/100.
      PRINT 9066, WORD15, GWPKF
      READ 9067, WORDIS, FHCHKE, FOHRE
      IF (FHCHPE.GT.0.0) FHIRF=1.0-FHCHRE/100.
      IF (FHHRE.GT.0.0) FHPRt=1.0-FHHRE/100.
      READ 9067, WURD18, AXCHME, AXHRE
      IF (AXCHRE.GT.0.0) AXIMF=1.0-AXCHRE/100.
      IF (AXHRE.GT.0.0) AXPRE=1.0-AXHRE/100.
      PRINT 9068, WORD18, AXIME, AXPRE
                                                                              002600
      READ 9722, WORDS6, CONVUL
                                                                              002610
      PRINT 9022, WORD56, CONNOL
      READ 9069 . WURDIB . CACHME . CAHRE . CFM
      IF (CACHRE.GT.0.0) CAIMF=1.0-CACHRE/100.
      IF (CAHRE.GT.0.0) CAPRE=1.0-CAHRE/100.
                                        3-28
```

```
READ 9071.WORD18.CHCHRE.CHHRE
IF (CHCHRE.GT.0.0) CHIKF=1.0-CHCHRE/100.
      IF (CHHRE.GT.0.0) CHPRt=1.0-CHHRE/100.
      EN=2.0
                                                                                002680
      PRINT 9072 EN
      PRINT 9068, WORD18, CHIKF, CUPRF
      READ 9069, WORDIS, CLCHKE, CLHRE, PNOV)
       IF (CLEHRE.GT.0.0) CLIRF=1.0-CLCHRE/100.
       IF (CLHRE.GT.0.0) CLPRE=1.0-CLHRE/100.
       IF (PNOV1.LT.1.0) GO TH 120
      PRINT 9070, WORD18, PNOV1, WORD18, CLIRF, CLPRF
      60 TO 130
      PRINT 9073
 120
      PRINT 9064.TBLK
 130
                                                                                002800
      READ 9020.WORD56.FVN
                                                                                002810
      PRINT 9020 + WORD56 , FVN
                                                                                002820
      READ 9020 WORDS6 FEJ
      FEJ=1.0-FEJ/100.
                                                                                002830
     | PRINT 9020, WORD56.FEJ
                                                                                002900
      READ 9020, WURD56, PFLAUN
                                                                                002910
      IF (PFLAUN-LE.O.O) PRINT 9048
                                                                                002920
      PRINT 9026
                                                                                 002930
C
                                                                                002940
C
      CONVERSION OF UNITS
                                                                                 002950
C
                                                                                 002960
      EDFLR=EDFLR#48.8
                                                                                 002970
      DWFLR=DWFLR#48.8
                                                                                002980
      DWFL2=DWFL2*48.8
                                                                                 004080
C
      CALCULATE PRIMARY COOLANT CONCENTRATIONS
C
                                                                                 004100
C
      AFPTES=0.0
                                                                                 004120
      DO 140 I=1, ITOT
 140
      PCONC(I)=PWCONC(I)
                                                                                 004150
      POWA=Pow1
                                                                                 004160
      PCVOA=PCVOL#1E3
                                                                                 004170
      LETDWA=LETDWN#500.53
                                                                                 004180
      SBLDA=SBLDR#.3476
                                                                                 004190
      CBFLA=CBFLR*500.53
      CHECK TO SEE IF PRIMARY PLANT PARAMETERS ARE WITHIN SPECIFIED
                                                                                 004200
C
                                                                                 004210
C
      RANGES
      IF (POWA.LT.3000..OR.PHWA. T.3800.) GO TO 150
      IF (PCYOA.LT.5.0E5.0R.PCVOA.GT.6.0E5) GO TU 150
      IF (LETDWA.LT.3.2E4.OR, LETDWA.GT.4.2E4) GO TO 150 IF (SBLDA.LT.250..OR. SHLDA.GT.1000.) GO TO 150
      IF (CBFLA.GT.7500.) GO TO 150
      GO TO 190
C
      CALCULATE PRIMARY COULANT ADJUSTMENT FACTURS
C
C
 150
      AFPTES=1.0
      RHAL2=(LETDWA+0.99+0.41450LDA)/PCVOA
      RCSRB2=(LETDWA+0.5+0.0+(SULDA+CBFLA+0.9))/PCVUA
                                                                                 004310
      RCFP2=(LETUWA*0.98+0.424(SBLDA+CBFLA*4.9))/PCVOA
      HK2=161.76*POWA/PCVOA
      DO 180 J=1.ITUT
      IF (PCQNC (J) . EQ. 0.0) GU TO 180
                                                                                 004360
      NZ=NUCL (J)/10000
                                                                                 004370
      DL=DIS(J) #3000.
      IF (NZ.EQ.53.OR.NZ.EQ.45) 90 TO 160
      IF (NZ.EQ. 37. OR. NZ.EQ. >5) 60 TO 170
```

```
PCONC(J)=PCONC(J)*RK2*(0.066+UL)/(RCFP2+UL)
      GU TO 180
  160 PCONC(J) = PCONC(J) *RK2*(0.067+DL)/(RHAL2+DL)
      60 TO 180
      PCONC(J) = PCONC(J) *RK2*(0.037+DL)/(RCSRB2+DL)
 170
      CONTINUE
 180
      $BLDR=SBLDR+48.8
 190
                                                                            004470
      PCV0L=PCV0L+1000.+0.7/62.6
C
C
      CALCULATE SECONDARY CUOLANT CONCENTRATIONS
C
                                                                            004490
      SCVOA=SCVOL#1E3
                                                                            004500
      BLWDWA=BLWDWN*1E3
                                                                            004510
      STMFA=STMFR#1E6
                                                                            004520
      FFCDA=FFCDM
C
      CHECK TO SEE IF SECONDARY PLANT PARAMETERS ARE WITHIN SPECIFIED
                                                                            004530
С
                                                                            004540
C
      RANGES
C
      IF (BLWDWN.EQ.0.0) GO TO 230
C
      PWTYPE=1.0 IS FOR PWRS WITH U-TUBE STEAM GENERATORS
C
С
      PWTYPE=1.0
      DO 200 I=1.ITOT
      SCON(I) = SCUTV(I)
 200
      IF (AFPTES.EQ.1.0) 60 TO 250
      IF (SCYOA.LT.4.0E5.OR.SCYUA.GT.5.0E5) GO TU 250
      IF (STMFA.LT.1.3E7.OR.STMF8.GT.1.7E7) GO TU 250
      IF (BLWDWA.LT.5.0E4.OR.BLWDWA.GT.1.0E5) GO TO 450
      IF (FFCDA.GT.0.01) GO TO 250
      IF (FNRTSC.LT.0.8999) 90 TU 370
      GO TO 390
C
      PWTYPE=2.0 IS FOR PWRS WITH ONCE-THROUGH STEAM GENERATORS
С
C
      PWTYPE=2.0
 230
      BO 240 I=1, ITOT
      SCON(I) = SCOT(I)
 240
      IF (AFPTES.EQ.1.0) GO TO 250
      IF (STMFA.LT.1.3E7.OR.STMFA.GT.1.7E7) GO TU 250
      IF (FFCDA.LT.0.55.OR.FLCDA.GT.0.75) GO TO 250
      GU TO 390
C
      CALCULATE SECONDARY CUOLANT ADJUSTMENT FACTORS
С
  250 IF (FFCDA.GT.0.01.AND.FFCDA.LT.1.0) FFCDA=0.2
      RHAL3=(BLWDWA*FNRTSI+V.9*HEF*STMFA*FFCDA)/SCVVA
      IF (FFCDA.GT.0.01.AND.FFCDA.LT.1.0) FFCDA=0.1
      RCSRB3=(HLWDWA*FNRTSC+0.5*FPEF*STMFA*FFCDA)/SCVOA
                                                                            004910
      HCFP3=(BLWDWA&FNRTSO+4.9*FPEF*STMFA&FFCDA)/SCYOA
                                                                            004920
      IF (PWTYPE.EQ.2.0) GO TO 330
                                                                            004940
      RK3=4.5E5/SCVOA
      DO 320 I=1,ITOT
      IF (SCUN(I) . EQ. 0.0) GO TO 820
                                                                            005120
      NZ=NUCL(I)/10000
                                                                            005130
      DL=UIS(I) #3600.
      IF (NZ.EQ.53.OR.NZ.EQ.45) 40 TO 300
      IF (NZ.EQ.37.OR.N7.EQ.55) GO TO 310
      SCON(I) = SCUN(I) *RK3*(U.17+DL)/(RCFP3+DL)*(PCPMC(I)/PWCONC(I))
      GO TO 320
      SCON(I) = SCON(I) *RK3*(V.17+DL)/(RHAL3+DL)*(PCOMC(I)/PWCONC(I))
 300
                                       3-30
```

```
GO TO 320- SCON(I) = SCON(I) + RK3+(V.15+DL)/(RCSRB3+DL)+(PCUNC(I)/PWCONC(I))
 310
      CONTINUE
 320
      60 TO 390
  330 RK3=1.0E5/SCVOA
      DO 360 I=1,ITOT
      IF (SCON(I).EQ.0.0) GO TO 360
                                                                             005260
      NZ=NUCL(I)/10000
                                                                              005270
      DL=DIS(I) #3600.
      IF (NZ.EQ.53.OR.NZ.EQ.35) 60 TO 340
      IF (NZ.EQ.55.OR.NZ.EQ.37) GO TO 350
      SCON(I) = SCON(I) *RK3*(]4.0+DL)/(RCFP3+DL) *(PCOMC(I)/PWCONC(I))
      60 TO 360
      SCON(I) = SCON(I) *RK3*(27.0+DL)/(RHAL3+DL) *(PCQHC(I)/P*CONC(I))
      GO TO 360
      SCON(I) = SCON(I) *RK3*(7.5+PL)/(RCSRB3+DL)*(PCQHC(I)/PWCONC(I))
 350
      CONTINUE
      GO TO 390
      RCSRB3=(BLWDWA*FNRTSC+0.5+FPEF*STMFA*FFCDA)/SUVOA
 370
                                                                              005380
      RK3=4.5E5/SCVOA
      DO 380 I=1, ITOT
      IF (SCON(I) . EQ. 0.0) GO TO 380
                                                                              0 n 5 4 1 0
      NZ=NUCL(I)/10000
      IF (NZ.NE.37.AND.NZ.NE,55) GO TO 380
                                                                              005430
      DL=DIS(I) #3600.
      RSC=0.15
      SCON(I) = SCON(I) *RK3*(RSC+PL)/(RCSRB3+DL) *(PCQNC(I)/PWCONC(I))
                                                                              005460
      CONTINUE
 380
      BLWDWN=BLWDWN#1E3/500+53
 390
                                                                              005490
      SCV0L=SCV0L#1000./62.4
                                                                              005500
      STMFR=STMFR#2000.
      DO 400 I=1.ITOT
      IF (PCONC(I) . EQ. 0.0) GU TO 400
                                                                              005530
      PCONC(I) = PCONC(I) / (DI \ge (I) *1.6283E13)
                                                                              005540
      SCON(I) = SCON(I) / (DIS(\frac{1}{2}) *1.6283E13)
      CONTINUE
 400
                                                                              005560
C
      COMPUTE REMOVAL CONSTANT FOR CONDENSATE DEMINERALIZER
C
C
      IF (FFCDM.GT.0.01.AND.FFCDM.LT.1.0) FFCDM=0.1
      CIXRC=(0.9*BLWDWN*RFNRT/DRCM+0.9*STMFR*FPEF*FLCDM)/(SCVUL*7.48*60.
                                                                              005620
     1)
      CIXRCS=(0.5*BLWDWN*RFMRT/PFCSCM+0.5*STMFR*FPEE*FFCDM)/(SCVOL*7.46*005630
      IF (FFCDM.GT.0.01.AND.FFCDM.LT.1.0) FFCDM=0.2
      CIXRIB=(0.9*BLWDWN*RFWRT/DFICM+0.9*STMFR*HEF*FCDM)/(SCVOL*7.48*60005650
                                                                              005660
     1.)
      DO 410 I=1.ITOT
                                                                              005680
      NZ=NUCL(I)/10000
      PR=CIXRC
      IF (NZ.EQ.37.OR.NZ.EQ.55) RR=C1XRCS
      IF (NZ.E0.53.OR.NZ.EQ.35) PR=CIXRIB
      XZHJ=SCON(I) *PR*SCVOL*0.02832
                                                                              005730
      B(I) = XZHJ
      CONTINUE
 410
Ç
      CALCULATE RADIOISOTOPE INVENTORIES ON CONPENSATE RESINS
C
C
                                                                              005790
      CALL SOLVE
      DO 420 I=1.ITOT
      KINV(I)=XTEMP(I)
                                                                              005820
      CALL EFFTAB
      STOP
```

```
006490
                                                             FORMATS
                                                                              006500
                                 FORMATS
      FURMATS
                                                                              006510
                                                                              006620
 9010 FORMAT (32X, 7A4, 16X, A4)
                                                                              006630
 9011 FORMAT (16X+13A4+A3+F9+4)
                                                                              006640
 9012 FORMAT (16X,14A4,F8.4)
 9013 FORMAT (15X, 4A4, A2, 8X, 18.0, 1X, A4, A2, F6.4)
 9014 FORMAT (20X) F8.0,2(5X, F8.0))
                                                                              006660
 9015 FORMAT (27X, F6.2, 14X, F9.2, 18X, F6.2)
                                                                              006670
 9016 FORMAT ("0", 30X, "FRACTION FRACTION COLLECTION ELOW RATE OF PGA PISCHARGED TIME
                                                          DECAY 1/8X, 11STREAM 006680
                                                           TIME", 10X) "DECONTA006690
     2MINATION FACTORS"/20X2" (GAL/DAY) "23X," (DAYS)
                                                                              006700
                                                           (DAYS) ", 7X,
                                                                              006710
     3"1",8X,"CS",6X,"OTHER$")
 9017 FORMAT(2X,4A4,A2,1PE9,2,1X,4(OPF8,4,2X),3(1PE9,2,1X))
                                                                              006730
 9020 FORMAT (16X, 14A4, F8.4)
                                                                              006740
 9021 FORMAT (79X, I1)
                                                                              006750
 9022 FORMAT (16X, 14A4, F8.4)
                                                                              006870
 9026 FORMAT(1H1)
 9027 FURMAT (16X, "PLANT CAPACITY FACTOR", T75, "0.8000")
 9029 FORMAT (16X, "MASS OF WATER IN STEAM GENERATORS (THOUSAND LBS) ", T73, 006900
                                                                               006910
     1F8.4)
 9030 FURMAT (16X. "FISSION PRODUCT CARRY-OVER FRACTION", T75, F6.4/16X.
                                                                              006920
                                                                               006930
     1"HALOGEN CARRY-OVER FRACTION" . T75 . F6 . 4)
 9034 FORMAT (2X, "BLOWDOWN", 10X, 1PE9.2, 14X, 0PF5.3, 2X, 2 (F8.3, 2X),
                                                                               006960
     13(1PE9.2,1X))
 9035 FORMAT (2X, "UNTREATED PLOWPOWN", 1PE9.2, 11X, "
                                                        1.000
                                                                   0.000
               1.00E+00 1.0VE+09 1.00E+00")
     10.000
                                                                              007000
 9037 FURMAT (72X, F8.2)
 9038 FORMAT (2X, "REGENERANT OLS ", 1PE9.2, 14X, 0PF$.3, 2X, 2(F8.3, 2X),
                                                                              007010
                                                                               007020
     13(1PE9.2.1X))
 9039 FURMAT (316, E21, 14)
 9040 FORMAT (16, E21.14)
 9041 FORMAT (16X, "PRIMARY TO SECONDARY LEAK RATE (LOS/DAY)", T73:
     1" 75.0000")
                (/, "O LIQUID WASTE INPUTS")
                                                                              007060
 9045 FURMAT
                                                                              007070
 9046 FORMAT
                (/, "O GASEOUS WASTE INPUTS")
 9048 FORMAT("0",15%,"THERE IS NOT AN ON-SITE LAUNDKY")
                                                                              007080
 9051 FURMAT(16X, "BLOWDOWN RATE (THOUSAND LBS/HR)"+45X, F8.4)
                                                                              007090
 9052 FORMAT (16x, "THERE IS GONTINUOUS STRIPPING OF FULL LETDOWN FLOW")
                                                                              007100
 9053 FORMAT (16X, "THERE IS NOT CONTINOUS STRIRPING OF FULL LETOWN FLOW" 007110
                                                                               Un7120
     1)
                                                                               007140
 9055 FURMAT(36X, F8.4, 35X, I)
                                                                               007150
 9056 FORMAT(15X,4A4,A2,8X,£8.0)
 9064 FORMAT (16X, "STEAM LEAR TO TURBINE BLDG (LBS/HK)", 19X, F10.4)
 9065 FORMAT (16X, 4A4, 6X, F3.0)
 9066 FORMAT (16x,4A4,4X, "PARTICULATE RELEASE FRACTION",6X,F10.4)
 9067 FORMAT (16X,5A4,10X,F3,0,6X,F3.0)
 9068 FORMAT (16x 5A4, "IODINE RELEASE FRACTION", 11x 110.4/36x, "PARTICULAT
     1E RELEASE FRACTION 1,6%, F10.4)
 9069 FURMAT(16X,5A4,10X,F3,0,6X,F3.0,14X,F8.2)
 9070 FORMAT (16X,5A4, "RATE (GFN)", 25X, F10.4/16X, 5A4, "IODINE RELEASE FRACT
     110N", 11x, F10.4/36x, "PARTICULATE RELEASE FRACTION", 6x, F10.4)
 9071 FURMAT(16X,5A4,10X,F3,0,6X,F3,0,19X,F3.0)
 9072 FORMAT (16X, "FREQUENCY OF CNTMT BLDG HIGH VOL PURGE (TIMES/YR)".
                                                                              007330
     1T74,F7.4)
 9073 FORMAT (16X,"THERE IS NOT A CHIMT BLDG LOW VOL PURGE")
                                                                               007350
9075 FORMAT (16X,"THERE IS CONTINUOUS LOW VOL PURGE OF VOL. CONTROL TK") 007360
                                                                              007370
      END
                                                                              007380
*DECK EFFTAB
                                                                               007390
      SUBROUTINE EFFTAB
      DIMENSION ISOTP (3.100)
      DIMENSION REACTR (7) , NAME (3) , CHCONC (800) , DHCONC (800) , CHCONC (800)
```

```
DIMENSION TURBOR(800) DWCUNZ(800) DCCUNC(400) TOTHER(100) COMMON/FLUXN/REGENT, DAS(800), LLITE, IACT, ITOT
      COMMON/OUT/NUCL (800)
      CUMMON/COOL/REACTR.POW1.SHLDR.BLWDWN.FPEF.HEF.EUFLR.DFIED.DFCSED.
     1 DFED. DFIDW. DFCSDW. DFUW. EDA. DWA. CWA. DFCM. UFICM. DFCSCM.
     2 DFCW.DFICW.DFCSCW.BDIFR. CDFD.DWFD.CWFD.CMFD.IS.TE.TD.TC.TCM.
     3 TSTORC.TSTORD, TSTORBIDWFL2, DW2, DWF2, T2, T5TOR2, DFID2, DFCSP2, DFD2,
     4 PFLAUN, DWFLR
      COMMON/APCOOL/RGWFR, DTIRG; DFCSRG, DFRG, TRG, TSTURR, RGFD
                                                                                007630
                                                                                007640
      COMMON/BDTES/RFNRT
      COMMON/CONC/PCONC(8001,SCUN(800),RINV(800)
      COMMON/DET/LAUNDRY (25), WLAUND (25)
      H3COPW IS THE PWR TRITIUM PRIMARY COOLANT CONCENTRATION IN
                                                                                007790
Ç
                                                                                007800
C
      UCI/GN
C
      H3PRPW=0.4#POW1
                                                                                0ñ7810
      H3C0PW=1.0
      DO 30 J=1,ITOT
                                                                                007920
      CWCONC(J) = 0.0
                                                                                007930
      EDCONC(J) = 0.0
                                                                                007940
      0.0=(L)
                                                                                007950
      D.0=(1) SNOOM
                                                                                007960
      CMCONC(J) = 0.0
                                                                                007970
      NZ=NUCL (J) /10000
                                                                                007980
      IF (NZ.EQ.36.OR.NZ.EQ.54) 90 TO 30
                                                                                007990
      CWCONC (J) =PCONC (J) +CWA
                                                                                000800
      EDCONC (J) =PCONC (J) *EDA
                                                                                008010
      DWCONC (J) =PCONC (J) +DWA
                                                                                008020
      DWCON2 (J) =PCONC (J) *DWZ
                                                                                008050
      CMCONC(J) =SCON(J)
      DFCVCS=50.
                                                                                008070
      IF (NZ.EQ.1) DFCVCS=1.0
      IF (NZ.EQ.35.OR.NZ.EQ.53) PFCVCS=100.
      IF (NZ.EQ.37.OR.NZ.EQ.55) BFCVCS=2.
                                                                                008080
                                                                                008090
      CWCONC (J) = CWCONC (J) /DECVC6
                                                                                008100
      CONTINUE
 30
                                                                                008110
С
      CALCULATE RADIOACTIVITY AFTER COLLECTION AT A CONSTANT RATE
                                                                                008120
Ç
                                                                                008130
Ç
      CALL COLLECT (TC#86400, CWCONC, ITOT)
      CALL COLLECT (TE#86400, EDGONC, ITOT)
      CALL COLLECT (TD#R6400, DWCONC; ITOT)
      CALL COLLECT (T2*86400, DWCON2, ITOT)
      CALL COLLECT (TCM*8640Y., CMCONC, ITOT)
      IF (REGENT.LE.O.O) GO TO 50
      CALL STORAG (TRG#86400, RINV, ITOT)
                                                                                008210
 50
      PO 100 I=1,ITOT
                                                                                008220
      NZ=NUCL(I)/10000
      TURBDR(I)=1991.#5.#SCYN(I)
                                                                                008230
                                                                                008240
      IF (NZ.EQ.1) GQ TO 100
      IF (NZ.E0.35.OR.NZ.E0.53) $0 TO 60
                                                                                008250
      IF (NZ.EQ.37.OR.NZ.EQ.45) 40 TO 70
                                                                                008760
                                                                                008270
      CHEMICAL TREATMENT FOR OTHER CATIONS
                                                                                008280
C
                                                                                008290
С
                                                                                0n83n0
      CWCONC(I) = CWCONC(I) / DECW
                                                                                008310
      EDCONC(I) = EDCONC(I) / DTED
                                                                                008320
      BWCONC(I)=DWCONC(I)/DLDW
                                                                                008330
      DWCONG(I) = DWCON2(I) /DLD2
                                                                                0ñ8340
      CMCONC(I) = CMCONC(I) * (1.0-DDTFR*(1.0-CMFD/UFCM))
С
      TO TREAT PWR TURRINE PUILPING FLOOR DRAINS THROUGH DIRTY WASTE
                                                                                0 n 8 3 5 0
С
```

```
SYSTEM, DELETE C FOR LOMMENT ON CARDS BELUW, UNTIL NEXT MESSAGE
                                                                                0n8360
C
C
                                                                                008370
            (I)=RINV (I)/DLRG
      RINV
                                                                                008380
       TURBDR(I)=1991.#5.#SCUN(I)#FPEF
                                                                                008390
       TURBOR(I)=1991.#5.#SCUN(I)#FPEF/DFDW
C
                                                                                008400
      60 TO 100
                                                                                008410
С
                                                                                008420
      CHEMICAL TREATMENT FOR ANIONS
C
                                                                                008430
C
                                                                                008440
      CWCONC(I) = CWCONC(I) / DEIGW
 60
                                                                                008450
      EDCONC(I) = EDCONC(I) YDE IED
                                                                                008460
      DWCONC(I) = DWCONC(I) / DLIPW
      DWCONS(I) = DWCONS(I) / DE IBS
                                                                                008470
      CMCONC(I) = CMCONC(I) * (\bar{1}.0 + BDTFR*(1.0 - CMFD/PFICM))
                                                                                008480
                                                                                008490
            (I)=RINV (I)/DEIRG
      TURBOR(I) = 1991. *5. *SCUN(I) *HEF
                                                                                008500
       TURBOR(I)=1991.*5.*SCUN(I)*HEF/DFIDW
                                                                                0n8510
C
                                                                                0n8520
      GO TO INO
                                                                                008530
C
                                                                                008540
      CHEMICAL TREATMENT FOR RB AND CS
С
                                                                                008550
С
                                                                                0<u>0</u>8560
      CWCONC(I) = CWCONC(I) / DFCSCW
 70
                                                                                008570
      EUCONC(I) = EDCUNC(I) /DECSED
                                                                                008580
      DWCONC(I) = DWCONC(I) / DECSDW
      DWCON2(I) = DWCON2(I) / DECSU2
                                                                                008590
      CHCONC(I) = CHCONC(I) * ($\bar{\bar{\psi}}.0-\bdot{\psi}DTFR*(1.0-CMFD/\psiCS\mathbf{LM}))
                                                                                008600
                                                                                008610
      RINV (I)=RINV (I)/DECSRG
                                                                                008620
      TURBDR(I) = 1991. *5. *SCUN(I) *FPEF
                                                                                008630
      TURBOR(I)=1991.*5.*SCUN(I) *FPEF/DFCSDW
¢
                                                                                008640
      CONTINUE
 100
                                                                                008650
Ç
      COMPUTE RADIOACTIVE DECAY DURING PROCESSING AND SAMPLING
                                                                                008660
С
                                                                                008670
C
      CALL STORAG (TSTORC *86400 . , CWCUNC, ITOT)
      CALL STORAG (TS#86400 . LEDCUNC, ITUT)
      CALL STORAG(TSTORD*86400.,DWCONC,ITOT)
      CALL STORAG (TSTOR2*86400., DWCUN2, ITUT)
      CALL STORAG (TSTORB *86400., CMCUNC, ITOT)
      CALL STOPAG(TSTORR#86400. FRINV, ITOT)
      CALL STORAG(21600., TUHBDH.ITOT)
                                                                                008750
      DO
            130 I=1,ITOT
                                                                                008770
      ABLOW=0.0
                                                                                008780
      IF (REGENT.LT.0.001) GH TO 110
      ABLOW=RINV(I)+292.4+RUFD/MEGENT
      ABLOW=ABLOW+BLWDWN+1991. * EMCONC(I) * (1.0-RFNRT)
 110
      CMCONC(I) = ABLOW
 130
                                                                                008860
      GWFR=SBLDR*CWFD*0.02832
                                                                                008870
      EUFLR=EDFLR*EDFD*0.02932
                                                                                008880
      DWFR=DWFLR*DWFD*0.02832
      DWFR2=DWFL2*DWF2*0.02932
                                                                                008890
      TPLRPW=CWFR*CWA+EDFLR#EDA+DWFR*DWA+DWFR2*DW2
                                                                                008900
      H3RLPW=TPLRMW+H3COPW
                                                                                008910
      IF(H3RLPW.GT.0.9*H3PRPW) Ü3RLPW≈0.9*H3PRPW
                                                                                068930
      RH3RLP=H3RLPW/10.
                                                                                008940
      INTRIM=RH3KLP
                                                                                008950
      IH3RLP=INTRIM#10
      TOTAL=0.0
      Il=ILITE+IACT+1
                                                                                009050
      DO 140 I=1.ITOT
      NZ=NUCL (I)/10000
       IF (NZ.EQ.36.OR.NZ.EQ.54) 60 TO 140
                                                                                U09080
      DISI=DIS(I) #1.6283E13
                                           3-34
```

```
CWCONC(I) =DISI* (CWCONL(I) *CWFR+EDCONC(I) *LDELK)
                                                                              U09090
     DWCONC(I) = (DWCONC(I) +DWFR+DWCUNZ(I) +DWFR2) +DISI
                                                                              009100
                                                                              009110
     CMCONC(I) = CMCUNC(I) *D1SI
                                                                              009120
     TURBOR(I) = TURBOR(I) *DISI
     IF (NUCL (1) .EQ. 10030) 90 TO 140
     TOTAL =TOTAL +\overline{C}WCONC(\overline{L})+DWCONC(I)+CMCONC(L)+TURBOR(I)
                                                                              009140
                                                                              009150
 140 CONTINUE
     A01=0.16
                                                                              009170
     AOR= (AOI+TOTAL)/TOTAL
     SCNORM=0.0
                                                                              009190
     SAPRIM=0.0
                                                                              009200
     SSEC=0.0
                                                                              009210
     SCWAST=0.0
                                                                              009220
     SDWAST=0.0
                                                                              009230
     SABLOW=0.0
                                                                              009240
     STB=0.0
                                                                              009250
     STOTAL =0.0
                                                                              009280
     PAPRIM=n.0
                                                                              009290
     PSEC=0.0
                                                                              009300
     PCWAST=0.0
                                                                              009310
     PDWAST=0.0
                                                                              009320
     PABLOW=0.0
                                                                              009330
     PTB=0.0
                                                                              009340
     PTOTAL =0.0
                                                                              009370
     PNORM=\bar{0}.0
                                                                              009380
     TLAUNP=0.0
                                                                              009390
     CTOTAL=0.0
                                                                              009400
     PRINT 9001.
                     REACTR
     PRINT 9002
                                                                              009430
     PRINT 9010
                                                                              009440
     KOUNTR=1
     DU 180 I=1.ITOT
     IF (I.Eq. II) PRINT 901
     NZ=NUCL(I)/10000
     IF (NZ.EQ.36.OR.NZ.EQ.54) 90 TO 180
     IF(NZ.EQ.1) GO TO 180
     DISI=DIS(I) #1.6283E+13
     APRIM=PCONC(I) +DISI
     ASEC=Scon(I) *DISI
     CWASTE=CWCUNC(I)
     DWASTE = DWCONC (I)
     ABLOW=CMCONC(I)
     TH=TURBDR(I)
                                                                              009600
     TUTAL=CWASTE+DWASTE+APLOW+TB
                                                                              009610
     TOTALN=TOTAL # AOR
     NUCLI=NUCL(I)
                                                                              009630
     XLAUND=0.0
     IF (I.GT.155.AND.I.LT.190) GO TO 152
     IF (I.EQ.225) GO TO 152
     00 150 L=1,25
     IF (LAUNDRY(L) .EQ.NUCLI) XLAUND=WLAUND(L) *PFLAUN
150 CONTINUE
 152 CONTINUE
    TOTALG=TOTALN+XLAUND
     IF (TOTALG.LT.0.00001) GO TO 160
                                                                              009710
     ISUB=2
                                                                              009720
     IF (TOTALG.GT.1.) ISUBF1
                                                                              009730
     DIV=10. **(INT(ALOG10(TOTALG)) TISUB)
     TOTALG=AINT (TOTALG/DIV+0.5) +DIV
                                                                              009740
     IF (NUCL (I) . EQ. 10030; TOTALN=TOTAL
160
     IF (NZ . EQ . 1) GO TO 162
     SAPRIM=SAPRIM+APRIM
                                                                              009810
     SSEC=SSEC+ASEC
```

```
0,09820
     SABLOW=SABLOW+ABLOW
                                                                             009830
     SCWAST=SCWAST+CWASTE
                                                                             009840
     SDWAST=SDWAST+DWASTE
                                                                             009850
     STB=STB+TB
                                                                             009860
     STOTAL=STOTAL+TOTAL
                                                                             009890
     SCNORM=SCNORM+TOTALN
                                                                             009900
     TLAUND=TLAUND+XLAUND
                                                                             009910
     CTOTAL=CTOTAL+TOTALG
 162 IF (TOTALG.LT.0.00001) 69 TO 180
     IF (MOD (KOUNTR.50) .NE. P) GO TO 170
                                                                             009940
     PRINT 9000,
                     REACTR
     PRINT 9002
     CALL NOAH (NUCL (I) , NAME)
170
     THALF=8.0225E-6/DISTI
     PRINT 9003, NAME, THALF : APRIM, ASEC, CWASTE, DWASTE, ABLOW,
    1TB, TOTAL, TOTALN, XLAUND, TOTALG
                                                                             0,0030
     KOUNTR=KOUNTR+1
     IF (NZ.EQ.1) GO TO 180
                                                                             010050
     PAPRIM=PAPRIM+APRIM
                                                                             010060
     PSEC=PSEC+ASEC
                                                                             010070
     PCWAST=PCWAST+CWASTE
                                                                             0100A0
     PDWAST=PDWAST+DWASTE
                                                                             010090
     PABLOW=PABLOW+ABLOW
                                                                             010100
     PTH=PTR+TH
                                                                             010110
     PTOTAL=PTUTAL+TOTAL
                                                                             010140
     PNORM=PNORM+TOTALN
                                                                             010150
     CONTINUE
180
                                                                             010160
     PAPRIM=SAPRIM=PAPRIM
                                                                             010170
     PSEC=SSEC-PSEC
                                                                             010180
     PCWAST=SCWAST-PCWAST
                                                                             010190
     PDWAST=SDWAST-PDWAST
                                                                             010200
     PABLOW=SAULOW-PABLOW
                                                                             010210
     PTB=STR-PTB
                                                                             010220
     PTOTAL = STOTAL - PTOTAL
                                                                             010250
     PNORM=SCNURM-PNORM
                                                                             010260
     I SUBC=>
                                                                             010270
     IF (CTOTAL.GT.1.) ISUBG=1
     DIV=10.**(INT(ALOG10(CTOTAL)) TISUBC)
                                                                             010280
                                                                             010290
     CTOTAL=AINT (CTOTAL/DIV+0.5) *DIV
     IF (PNORM.LT.0.00001) 90 TU 190
                                                                             010310
       DIV=10.**(INT(ALOG1V(PNQRM))-2)
                                                                             010320
     PNORMT=AINT (PNORM/DIV+0.5) +DIV
     GO TO 200
     PNORMT=PNORM
190
                    PAPRIM, PSEC, PCWAST, PDWAST, PABLOW, PTB, PTOTAL, PNORM,
     PRINT 9004,
200
                                                                             010380
                    SAPRIM, SEC, SCWAST, SDWAST, SABLOW, STB, STOTAL, SCNORM,
                                                                             010390
     PRINT 9005.
                                                                             010400
                    TLAUND, STOTAL
                                                                             010410
     PRINT 9012:
                    IH3RLP
     PRINT 9013
                                                                             010420
     RETURN
9000 FORMAT (1H1.20X,7A4." LIQUID EFFLUENTS (CONTINUED)")
                                                                             010480
                                                                             010490
9001 FURMAT (1H1,20X,7A4," LIQUID EFFLUENTS")
9002 FORMAT (1H0,55%, "ANNUAL RELEASES TO DISCHARGE CANAL"/20%, "COOLANT CUTO500
                                             DETEKGEN<u>Î</u>
    10NCENTRATIONSH,57(H=H2.H ADJUSTED
                                                         TOTAL "/" NUCLIDOTO510
                                               BONON KS MISC. WASTES SECONO10520
                     PRIMARY
                                 SECONDARY
   . ZE HALF-LIFE
                                                  WASTES
                                                                   "/10X.
                                                                             010530
    BUARY TURB BLDG TOTAL LWS
                                     TOTAL
               "Z("(MICRO LI/ML)") , 1X, 4 ("(CURILS)
                                                       "),"(CURIES) ",
                                                                             010540
    4" (DAYS)
                                 (CI/YR)")
                                                                             010550
    5"
                     (CI/YR)
          (CI/YK)
9003 FURMAT(1X, A2, 13, A1, 2X, 1PE9, 2, 2(2X, E9, 2, 2X), 0P, 7(1X, F9, 5, 1X), F10, 5)
9004 FORMAT(1X,"ALL OTHERS", 9X, 1PE9.2.4X, EY. 2, 0P, 2X, 6(1X, F9.5, 1X), 3X,
    1 "0.00000", 1x, F10.5)
```

3-36

```
9005 FORMAT (" TOTAL "/+" (EXCEPT TRITIUM)
                                              11,17E9,4,4X,E9.2,0P12X,
     1.7(1x, 69.5, 1x), 610.5
 9010 FORMAT (" CORROSION AND ACTIVATION PRODUCTS")
                                                                            010740
                                                                            010750
 9011 FORMAT ("OFISSION PRODUCTS")
 9012 FORMAT (1H0,1X,"TRITIUM RELEASE",12X,13,"
                                                    CURIES PER YEAR")
                                                                            010760
 9013 FORMAT (1H0,1x, "NOTE" ,00000 INDICATES THAT THE VALUE IS LESS THAN
     11.0E-5.")
 9014 FORMAT (3X, 10(2X, A2, I3, A1)/3X, 10(2X, A2, I3, A1))
                                                                            010770
      END
                                                                            010780
*DECK BLKDAT
                                                                            010790
      BLOCK DATA BLKDAT
C
      PWCONG CONTAINS PRIMARY COOLANT CONCENTRATIONS FOR PWRS. SCUTV
C
      AND SCOT CONTAIN SECONDARY COOLANT CONCENTRATIONS FOR PLANTS
C
      WITH ULTUBE STEAM GENERATORS AND FOR PLANTS WITH ONCE-THROUGH
C
      STEAM GENERATORS, RESPECTIVELY.
Ç
C
      COMMON/CONP/PWCONC(800),SCUTV(800),SCUT(800)
      COMMON/DET/LAUNDRY (251, WLAUND (25)
      DATA PWCONC/36+0.4.7E42,67+0.3.1E-3.4+0.1.6E-3.5+0.1.2E-3.3+0.3.0E
     1-4,0.0,4.6E-3,2*0,5.3E-4,17*0,5.1E-4,102*0,2.7E-3,64*0,2.2E-3,68*0
     2,1.6E-2,1840,1.9E-1,440,1.4E-4,3+0,1.2E-5,5+0,9.6E-4,4.6E-4,5.2E-6
     3,9*0,4.2E-3,11*0,3.9E44,0.0,2.8E-4,15*0,6.4E-3,4.7E-3,16*0,7.5E-3,
     415+0,9.0E-2,0.0,20+0,1.3E-3,104+0,1.9E-4,2.4E-2,12+0,1.5E-3,7.7E-3
     5,4.5E-2.5*0,1.7E-3,2.1E-1,4*0,1.4E-1,5*0,3.4E-1,2*0,7.1E-8,2*0,2.6
     6E-1,8*0,8.7E-4,3*0,9.4E-3,13*0,1.3E-2,2.5E-2,5*0,1.5E-4,12*0,2.8E-
     73,3*0,3.9E-3,92*0/
      DATA SCUTV/36*0,1.5E-9,67*0,1.3E-7,4*0,6.5E-8,5*0,4.9E-8,3*0,1.2E-
     18.0.0.1.9E-7.2*0.2.2E48.17*0.2.1E-8.102*0.8.75-8.64*0.8.4E-8.68*U.
     27.5E-8,18*0,5.3E-7,4*0,5.7E-9,3*0,4.9E-10.5*0,2.8E-8,3.2E-9,2.1E-1
     30,9*0,1.2E-7,11*0,1.6E-8,0.0,1.1E-8,15*0,2.5E-7,1.1E-7,16*0,3.1E-7
     4,15*0,3.7E-6,0.0,20*0,5.3E-8,104*0,7.8E-9,2.2E-7,12*0,5.4E-8,2.9E-
     58,1.8E_6,5*0,6.6F_8,3,1E_6,4*0,4.8E_6,5*0,2.4E_6,2*0,3.3E_7,2*0,6.
     66E-6,8*0,4.0E-8,3*0,4,4E-7,13*0,5.2E-7,9,3E-7,5*0,6.1E-9,12*0,1.0E
     7-7,3#0,1.6E-7,92#0/
      DATA SCOT/36+0,1.0E47,67+0,6.9E-9,4+0,3.6E-9,5+0,2.7E-9,3+0,6.7E-1
     10,0.0.1.0E-8,2*0,1.2E49,17*0,1.1E-9,102*0,5.6E-9,64*0,4.9E-9,68*0,
     21.8E-0,18* ,6.0E-7,4*0,3.1E-10,3*0,2.7E-11,5*0,2.1E-9,9.7E-10,1.2E
     3-11,9*0,9.3E-9,11*0,847E-10,0.0,6.2E-10,15*0,1.4E-8,1.0E-8,16*0,1.
     47E-8,15+0,2.0E-7.0.0,40+0,2.9E-9,104+0,4.2E-10,5.1E-8,12+0,3.3E-9,
     51.5E-8.5.2E-8,5*0,3.8E-9,2.4E-7,4*0,1.6E-7,5*0,3.8E-7,2*0,3.0E-8,2
     6#0,3.0E_7,8#0,3.6E_9,4#0,3.9E-8,13#0,2.9E-8,5.6E-8,5#0,3.3E-10,12*
     70,6.2E-9,340,8.7E-9,9240/
      LAUNDRY ARE THE RADIOISOTOPES IN THE DETERGEN! WASTES.
Ç
      WLAUND ARE THE CORRESPONDING CONCENTRATIONS.
C
      DATA LAUNDRY/150320,240510,250540,260550,260590,270580,270600,2806
     130,380890,380900.390910,400950,410950,420990,441030,441060,471101,
     2511240.531310.551340.751360.551370.561400.581410.581440/
     DATA WLAUND/1.8E-4.4.7E-3,3.8E-3,7.2E-3,2.2E-3,7.9E-3,1.4E-2,1.7E-13,8.8E-5,1.3E-5,8.4E-5,1.1E-3,1.9E-3,6.0E-5,2.9E-4,8.9E-3,1.2E-3,4
     2.3E-4, 1.6E-3, 1.1E-2, 3,7E-4, 1.6E-2, 9.1E-4, 2.3E-4, 3.9E-3/
                                                                            011230
      END
                                                                            011240
*DECK SOLVE
                                                                            011250
      SUBROUTINE SOLVE
      COMMON/EU/XTEMP(800), XNEW(10,800), B(800), U(800)
      COMMON/FLUXN/REGENT, DIS(800), ILITE, IACT, I OT
                                                                            071350
      DO 10 I=1.ITOT
                                                                            011360
      D(I) = -DIS(I)
                                                                            011370
   10 XTEMP(I)=0.0
      DELT=REGENT#86400.
                                                                            011390
      CALL DECAY(1, DELT, ITO!)
```

```
CALL TERM (DELT, 1, ITOT)
                                                                               011410
      CALL EQUIL (1, ITOT)
                                                                               011420
      DO 30 I=1.ITOT
                                                                               011430
 30
      XTEMP(I) = XNEW(1,I)
                                                                               011440
      RETURN
                                                                               0]1450
      END
                                                                               011460
*DECK TERM
      SUBROUTINE TERM(T,M,ITOT)
                                                                               011480
Ç
      TERM ADDS ONE TERM TO EACH ELEMENT OF THE SOLUTION VECTOR
                                                                               011490
e
      CSUM(J) IS THE CURRENT APPROXIMATION TO XNEW(0.J)
                                                                               011500
C
      CIMO(J) IS THE VECTOR CONTAINING THE LAST TERM ADDED TO EACH
                                                                               011510
Ç
      ELEMENT OF CSUM(J)
                                                                               011520
C
      CIMN(J) IS THE VECTOR CONTAINING 1/TON TIMES THE NEW TERM TO BE
                                                                               011530
Ç
                                                                               011540
      ADDED TO CSUM(J)
C
      CIMN(J) IS GENERATED FROM CIMO(J) BY A RECURSION RELATION:
                                                                               011550
C
            CIMN(J) = SUM OVER L OF (AP(J;L) +CIMO(L))
                                                                               011560
C
      AP(I,J) IS THE REDUCEY TRANSITION MATRIX FOR THE LONG-LIVED
                                                                               011570
Ç
                                                                               0,1580
C
      NUCLIPES
                                                                               011590
Ç
                                                                               011600
      LOGICALLONG
      DIMENSION AP (2500) . CIMB (800) , CIMO (800) , CIMN (800) , CSUM (800)
      BIMENSION QUB (50) , LOCP (2500) , NONP (800)
                                                                               011690
      COMMON/SERIES/ XP(800), XP&R(800), LONG(800)
      COMMON/CONST/MMN, ERR, MZERU
      COMMON/EU/XTEMP(800), XNEW(10,800), B(800), P(800)
                                                                               011730
      COMMON/MATRIX/A (2500) . LOC (2500) . NONO (800) . KD (400)
                                                                               000540
      LEVEL 2,A,LOC,NONO,KD
      COMMON/TERMU/DD (100) + UXP (100) + QUEUE (50) + NAU (50) + NQUEUE (50) + NQ (800) 011750
                                                                               011760
                                                                               011770
      NN=0
      FIRST CONSTRUCT REDUCED TRANSITION MATRIX FOR LUNG-LIVED ISOTOPES 011780
С
                                                                               011790
      DO 220 L=1.ITOT
      IF (.NOT.LUNG(L)) GO TU 210
                                                                               011800
                                                                               011810
      NUM=NOND (L)
                                                                               011820
      IF (M.GT.MMN.OR.M.EQ.MZERO) NUM=KD(L)
                                                                               0]1830
      CIWR (F) =B(F)
      IF (NUM.LE.NUL) GO TO 410
                                                                               011840
                                                                               071850
      NS=NN+T
                                                                               011860
      N=NUL
                                                                               011870
      NL=NUM_NUL
                                                                               011880
      DO 200 N1=1,NL
                                                                               011890
      N=N+1
                                                                               011900
      7=F0C(N)
                                                                               0]1910
      D)=-D(J)
                                                                               011920
C
       THIS IS A TEST TO SEA IF ONE OF THE ASSYMPTOLIC SOLUTIONS APPLIESO 1930
С
                                                                               011940
C
                                                                               011950
      IF (.NOT.LONG(J)) GO TO 10
                                                                               011960
      I+NN=NN
                                                                               011970
      AP(NN) = A(N)
                                                                               011980
      LOCP (NN) =J
                                                                               011990
      60 TO 200
                                                                               012000
C
      GOING BACK UP THE CHAIN THE FIND A PARENT WHICH IS NOT IN
                                                                               012010
                                                                               012020
C
      EQUILIBRIUM
                                                                               012030
                                                                               012040
      NSAVE=
 10
                                                                               012050
      QUE = A (N) /DJ
                                                                               012060
      DRB=1.0
                                                                               012070
      CIMB(L) = CIMB(L) + QUE + B(J)
                                                                               012080
      40 (L) =0
                                        3-38
```

```
012090
       NQ (J) =L
      (L) nHON=XUN
                                                                               012100
 20
                                                                               012110
       IF (M.GT.MMN.OR.M.EQ.MLERO) NUX=KD(J)
      NUF = 0
                                                                               012120
                                                                               012130
                   NOE=NONO(デー1)
       IF (J.9T.1)
                                                                               012140
       NX=NUX_NUF
                                                                               0]2150
       IF (NX.LT.1) GO TO 19♥
                                                                               012160
       K=NUF
                                                                               072170
       DO 180 KK=1,NX
                                                                               0<u>1</u>21A0
       K=K +1
                                                                               012190
       J1=LOC(K)
                                                                               012200
      DJ=-D(J1)
                                                                               012210
       KP=J
                                                                               012220
       IF (J1.EQ.NQ(KP)) GO TO 150
 30
                                                                               012230
       KP=NQ(KP)
                                                                               012240
       IF (KP.NE.0) GO TO 30
                                                                               012250
       AKDJQ=QUE#A(K)/DJ
                                                                               012260
       IF (.NOT.LONG(JI)) GO TO 160
                                                                               012270
       TRM=1.0-XP(J1)
       IF (TRM.LT.1.0E-6) GO TO 120
                                                                               012280
                                                                               012290
      L=(IL)DH
                                                                               012300
       I = 1
      KP=J1
                                                                               012310
                                                                               012320
 40
      DD(I) = D(KP)
                                                                               012330
      DXP(I) = XP(KP)
                                                                               012340
      KP=NQ(KP)
                                                                               012350
       IF (KP.EQ.0) GO TO 50
                                                                               012360
      I = I + 1
       IF (I.LE.100) GO TO 40
                                                                               012370
       IF QUEUE OF SHORT-LIVED NUCLIDES EXCEEDS 100 ISOTOPES, TERMINATE
                                                                               012380
Ċ
                                                                               012390
       CHAIN AND WRITE MESSAGE
                                                                               012400
                      M.L.Jl.J.ANDJQ
      PRINT 9000,
 9000 FORMAT ("1700 LONG A QUEUE HAS BEEN FORMED IN TERM", 415, E12.5)
                                                                               012410
                                                                               012420
      GU TO 190
                                                                               012430
      HATM=0.E0
 50
                                                                               012440
      IM=I-1
                                                                               012450
      BO 110 I=2+IM
                                                                               012460
      DL=DD(I)
                                                                               012470
      XPL=DXP(I)
                                                                               012480
      HATE=0.E0
                                                                               012490
      I1=I-1
                                                                               012500
      D R VONDY FORM OF BATEMAN EQUATIONS -- ORNL-TM-361
С
                                                                               012510
      DO 100 KB=1,I1
                                                                               012520
      XPJ=DXP(KB)
      IF (XPL:XPJ.LT.ERR) GO TO 100
                                                                               012530
      DK=DD (KB)
                                                                               012540
                                                                               012550
      PROD=(DL/DK-1.0)
                                                                               012560
      DKR=PKOD
                                                                               012570
       IF ( ABS(PRUD).GT.1.E-4) GU TO 60
      USE THIS FORM FOR TWO NEARLY EQUAL HALF-LIVES
                                                                               012580
C
                                                                               012590
      PROD=T+DK+XPJ+(1.0-0.5+(DL-DJ)+T)
                                                                               012600
      GO TO 70
      RROD=(XPJ-XPL)/PROD
                                                                               012610
 60
                                                                               012620
      PRO1=XPJ/DKK
                                                                               012630
 70
      PI=1.0
      S1=2./(DK4T)
                                                                               012640
                                                                               012650
      DO 90 JK=1.I1
                                                                               012660
      IF (JK.EQ.KB) GO TO 90
                                                                               012670
      S=1.0-DK/UD(JK)
                                                                               012680
      IF ( ABS(S) .GT.1.E-4; 90 TU 80
      IF (ABS (DKR) . GT . 1 . OE - 4) PROD=PRO1
                                                                               0]2690
                                                                               012700
      S=S1
                                                                               012710
 80
      PI=PI#S
```

```
0]2720
      IF (ABS(PI).GT.1.E25) GO TO 100
                                                                               012730
 90
      CONTINUE
                                                                               012740
      BATE=BATE+PROD/PI
                                                                               0]2750
 100
      CONTINUE
      IF SUMMATION IS NEGATIVE, SET EQUAL TO ZEHO AND PRINT MESSAGE
                                                                               012760
      IF (BATE.LT.O.EO) PRINTYOO1, L, IM, BATE, BATM
                                                                                012770
 9001 FORMAT ("1BATE IS NEGATIVE IN TERM. THERE ARE MORE THAN TWO SHORT-LOT2780
     11VED NUCLIDES IN A GHAIN WITH NEARLY EQUAL DIAGONAL ELEMENTS"/
                                                                               012790
                                                                                012800
     2" L, IM, BATE, BATM = ", 415, 1P2E12.5)
                                                                               012810
      IF (BATE.LT.O.EO) BATE=0.EO
                                                                               012820
      BATM=BATM+BATE
                                                                               012830
      CONTINUE
 110
                                                                               012840
      DRA=AKDJQ+DJ+(TRM-BATM)/TKM
                                                                               072850
      GO TO 130
                                                                               U12860
      DRA=AKDJQ+AMAXÎ (DRB,0,0) +PJ
 120
      IF (NS.GT.NN) GO TO 150
                                                                               012870
 130
                                                                               012880
      DO 140 LJ=NS,NN
                                                                               012890
                            GP TO 140
      IF (LOCP (LJ) .NE.J1)
                                                                               012900
      AP(LJ) = AP(LJ) + DRA
                                                                               012910
      GO TO 180
                                                                                012920
      CONTINUE
 140
                                                                                012930
 150
      NN=NN+1
                                                                                012940
      AP (NN) =DRA
                                                                               012950
      LOCP (NN) =J1
                                                                               012960
      GU TO 180
      IF (AKPJQ.LE.1.0E-06) GO TO 180
                                                                               012970
 160
                                                                               012980
      IF (NSAVE.GE.50) GO TO 180
                                                                               012990
 170
      NSAVE=NSAVE+1
                                                                                013000
      HQUEUE (NSAVE) = J1
                                                                                013010
      QUEUE (NSAVE) = AKDJQ
                                                                                073020
      NQU (NSAVE) = ?
                                                                                013030
      QUB (NSAVE) = DRB-1./(DJTT)
                                                                                013040
 180
      CONTINUE
                                                                                013050
      IF (NSAVE.LE.O) GO TO 200
 190
                                                                                013060
      J=NQUEUE (NSAVE)
                                                                                013070
      QUE=QUEUE (NSAVE)
                                                                                013080
      NQ(J)=NQU(NSAVE)
                                                                                013090
      DRB=QUB (NSAVE)
                                                                                013100
      CIMB(L) = CIMB(L) + QUE + B(J) * AMAX1(DRB, 0.0)
                                                                                013110
      NSAVE=NSAVE-1
                                                                                013120
      GU TO 20
                                                                                013130
      CONTINUE
 200
                                                                                013140
      NUL=NONO(L)
 210
                                                                                013150
      NONP (L) =NN
                                                                                013160
 220
      CONTINUE
      FIND NORM OF MATRIX AND ESTIMATE ERROR AS DESCRIBED IN LAPIDUS
                                                                               013170
      AND LUUS, OPTIMAL CONTROL OF ENGINEERING PROCESSES BLAISDELL 1967 013180
C
      FIND THE MINIMUM OF THE MAXIMUM ROW SUM AND THE MAXIMUM COLUMN SUMO 13190
C
                                                                               013200
      ASUM = \bar{0} \cdot 0
                                                                                013210
      0.0=LMUZA
                                                                               0]3220
      NUL=1
                                                                                013230
      DO 250 I=1, ITOT
                                                                                0]3240
      IF (.NQT.LONG(I)) GO TH 250
                                                                               013250
      DI = -D(I) *T
                                                                               013260
      AJ=DI
                                                                                013270
      NUM=NONP(I)
                                                                               0132A0
      IF (NUL.GT.NUM) GO TO $40
                                                                               0]3290
      DO 230 N=NUL, NUM
                                                                               013300
 230
      (N) QA+LA=LA
                                                                               013310
      AI=DI+DI
 240
                                                                               013320
      IF (AI . GT . ASUM )
                         ASUM =AI
                         ASUMU-AJ
                                                                                013330
      IF (AJ.GT.ASUMJ)
```

```
0]3340
      NUL=NONP (I-)+1
 25<sub>b</sub>
      IF (ASUMJ.LT.ASUM) ASUM=ABUMJ
                                                                                 013350
      USE ASUM TO DECIDE HOW MANY TERMS ARE REQUIRED AND ESTIMATE ERROR 013360
C
                                                                                 013370
      NLARGE=3.5#ASUM +5.
                                                                                 013380
      XLARGE=NLARGE
      ERR1=EXP(ASUM )*(ASUM *2.71828/XLARGE)**NLARGE/SQRT(6.2832*XLARGE)013390
IF(ERR1.GT.1.E-3) PRINT 9002, ERR1.ASUM.NLARGE 013400
 9002 FORMAT ("OMAXIMUM ERROR GT 0.001. = "F10.6.", TMACE = "F10.4.
                                                                                 013410
                                                                                 013420
        " NLARGE = "16)
                                                                                 0]3430
      NEXT GENERATE MATRIX EXPONENTIAL SOLUTION
                                                                                 013440
      DO 260 I=1.ITQT
                                                                                 013450
      CSUM(I) = XTEMP(I)
                                                                                 013460
      CIMN(I) = XTEMP(I)
                                                                                 013470
 260
      CONTINUE
                                                                                 013480
      EKR3=0.001*ERR
                                                                                 013490
      DO 310 NT=1, NLARGE
                                                                                 0]3500
      DO 270 I=1.1TOT
                                                                                 013510
      CIMO(I) = CIMN(I)
                                                                                 013520
 270
      CONTINUE
                                                                                 013530
      TON=T/NT
                                                                                 013540
      NUL=1
                                                                                 013550
      DO 300 I=1.ITOT
                                                                                 013560
      IF (.NOT.LUNG(I)) GO TO 300
                                                                                 013570
      NUM=NONP(I)
      GIMNI=0.0
                                                                                 013580
                                                                                 013590
      IF (NT.EQ.1) CIMNI=CIMP(I)
                                                                                 013600
      IF (NUL.GT.NUM) GO TO 290
                                                                                 0]3610
      DO 280 N=NUL, NUM
                                                                                 013620
      J=LOCP(N)
                                                                                 013630
      CIMNI=CIMNI+AP(N) +CIMV(J)
 280
                                                                                 013640
      CIMNI=CIMNI+D(I) +CIMO(I)
 290
                                                                                 013650
      CIMNI=TON*CIMNI
                                                                                 013660
      IF (ABS (CIMNI) .LT.ERR3)CIMNI=0.E0
                                                                                 013670
      CIMN(I) = CIMNI
                                                                                 013680
      CSUM(I) = CSUM(I) + CIMNI
                                                                                 013690
      NUL=NONP(I)+1
 300
                                                                                 013700
      CONTINUE
 310
                                                                                 013710
      DO 320 I=1,ITOT
      IF (CSUM(I) .LT.ERR) CDUM(I) =0.0
                                                                                 013720
                                                                                 013730
      IF (LONG (I)) XNEW (M, I) = CSUM (I)
                                                                                 013740
 320
     CONTINUE
                                                                                 0]3750
      RETURN
                                                                                 013760
      END
                                                                                 013770
*DEGK DECAY
                                                                                 0]3780
      SUBROUTINE DECAY (M.T. TTOT)
      BECAY TREATS SHORT-LIVED ISOTOPES AT BEGINNING OF CHAINS USING
                                                                                 013790
                                                                                 013800
      BATEMAN EQUATIONS
Ç
                                                                                 013810
      LOGICALLONG
                                                                                 013860
      COMMON/SERIES/ XP(8001, XPAR(800), LONG(800)
      CUMMON/CONST/MMN, ERR, MZERU
      COMMON/EQ/XTEMP(800), XNEW(10,800), B(800), P(800)
                                                                                 013900
      CUMMON/MATRIX/A (2500) . LOC (2500) . NONO (800) . KD (400)
                                                                                 000560
      LEVEL 2.A.LOC.NONO.KD
      COMMON/TERMD/DD (100) , DXP (100) , QUEUE (50) , NAU (50) , NQUEUE (50) , NQ (800) 013910
      AXN = -ALOG(0.001)
                                                                                 013920
      DU 10 I=1, ITOT
                                                                                 013930
      XPAR(I) = 0.0
                                                                                 013940
      LONG(I) = . FALSE.
                                                                                 013950
      XPI=0.0
                                                                                 013960
      DT=D(I) AT
                                                                                 013970
      IF (DT.LT.-50.) GO TO 10
                                                                                 013980
      IF (ABS (DT) . LE.AXN) LUNG (I) = . TRUE .
                                                                                 013990
      XPI=EXP(DT)
```

```
014000
   10 XP(I)=XPI-
                                                                              014010
      NUL=1
                                                                              014020
      DO 160 L=1.ITUT
                                                                              014030
      XTEM=0.0
                                                                              014040
      BL=-D(L)
                                                                              014050
      NUM=NUNO(L)
      IF (M.GT.MMN.OR.M.EQ.MZERO)
                                    NUM=KD(L)
                                                                              014060
                                                                              014070
      IF (NUM'LT.NUL) GO TO 150
                                                                              014080
      DO 140 N=NUL, NUM
                                                                              014090
      J=LOC(N)
                                                                              014100
      (L) Q-=LQ
                                                                              014110
      IF(LONG(J)) GO TO 140
                                                                              014120
      USE THIS FORM FOR TWO NEARLY EQUAL HALF-LIVES
C
      IF (ABS (DL/DJ-1.0).LE.1.0E-5) XTEM=XTEM+XTEMP (J) *A (N) *XP (J) *T
                                                                              014130
                                                                              014140
      IF (ABS (DL/DJ-1.0).GT.1.0E=5)
                     XTEM=XTEM+XTEMP(J) #A(N) #(XP(J) +AP(L))/(DL-DH)
                                                                              014150
                                                                              014160
      QUE=A(N)/UJ
                                                                              014170
      NQ (L) = 0
                                                                              014180
      NQ (J) =L
                                                                              014190
      NSAVE=0
                                                                              014200
 20
      (L) ONON=XUN
                                                                              014210
      IF (M.GT.MMN.OR.M.EQ.MZERO)
                                    NUX=KD(J)
                                                                              014220
      NUF=1
                                                                              014230
                   NUF=NON0 (2-1)+1
      IF (J.GT.1)
                                                                              014240
      IF (NUF.GT.NUX) GO TO 130
                                                                              0]4250
      DO 120 K=NUF, NUX
                                                                              074260
      J1=LOC(K)
                                                                              014270
      IF (LONG (J1)) GO TO 120
                                                                              014280
      KP=J
                                                                              014290
      IF (J1.E0.NU(KP)) GO TO 120
 30
                                                                              V143n0
      KP=NQ(KP)
                                                                              014310
      IF (KP.NE.0) GO TO 30
                                                                              014320
      DJ=-D(J1)
                                                                              014330
      AKDJQ=A(K)/DJ#QUE
                                                                              014340
      IF (AKPJO.LE.1.0E-06) GO TO 120
                                                                              014350
      NQ(J1)=J
                                                                              014360
      I = 1
                                                                              014370
      KP=J1
                                                                              014380
      DU(I) = - D(KP)
 40
                                                                              014390
      DXP(I) = XP(KP)
                                                                              014400
      KP=NQ(KP)
                                                                              014410
      IF (KP.EQ.0) GO TO 50
                                                                              014420
      I = I + 1
                                                                              014430
      IF(I.LE.100) GO TO 40
                                                                              014440
                     M,L,J1,J,AKDJQ
      PRINT 9000.
                                                                              014450
 9000 FORMAT ("1", 415, E12.5)
                                                                              014460
      GU TO 130
                                                                              014470
      HATE=0.E0
 50
                                                                              014480
      I1=I-1
                                                                              014490
      XPL=XP(L)
                                                                              014500
      D R VONDY FORM OF BATEMAN EQUATIONS -- ORNL-TM-361
C
                                                                              014510
      DO 100 KB=1,I1
                                                                              014520
      XPJ=DXP(KB)
                                                                              074530
      IF (XPL:XPJ.LT.ERR) GO TO 100
                                                                              014540
      DV=DD(KB)
                                                                              014550
      PROD=(DL/UK-1.0)
                                                                              014560
      UKR=PROD
      IF ( ABS(PROD) .GT.1.E-4) GU TO 60
                                                                              014570
                                                                              074580
      PROD=T*DK*XPJ*(1.0-0.5*(DL-DJ)*T)
      GU TO 70
                                                                              014590
                                                                              014600
      PROD=(XPJ-XPL)/PROD
 60
                                                                              014610
      PRO1=XPJ/UKK
                                        3-42
```

```
014620
      PI=1.0 -
S1=2./(DK#T)
 70
                                                                                014630
                                                                                014640
       DO 90 JK=1+I1
                                                                                014650
       IF (JK.EQ.KH) GO TO 90
                                                                                014660
       S=1.0-DK/DD(JK)
                                                                                014670
       IF ( ABS(S).GT.1.E-47 90 TU 80
       USE THIS FORM FOR TWO NEARLY EQUAL HALF-LIVES
                                                                                014680
C
                                                                                014690
       IF (ABS (DKR) .GT.1.0E 44) PROD=PRO1
       s=s1
                                                                                014700
                                                                                014710
 80
       PI=PI#S
                                                                                014720
       IF (AB$ (PI) .GT.1.E25) GO TO 100
                                                                                014730
 90
       CONTINUE
                                                                                014740
      BATE=BATE+PROD/PI
                                                                                014750
      CONTINUE
 100
       IF (BATE.LT.0.E0) PRINTY001.L, I, BATE, XTEM, XTEMP (J1), AKDJQ
                                                                                014760
 9001 FORMAT (" L, I, BATE, XYEM, XTEMP (J1), AKDJQ = ",215,1P4E12.5)
                                                                                014770
                                                                                014780
       IF (BATE.LT.U.EO) BATE=0.EO
       XTEM=XTEM+XTEMP(J1) #AKDQQ BATE
                                                                                0]4790
                                                                                014800
       IF (NSAVE.GE.50) GO TO 120
                                                                                014810
      NSAVE=NSAVE+1
                                                                                014820
      NQUEUE (NSAVE) = J1
                                                                                014830
      QUEUE (NSAVE) = AKDJQ
                                                                                074840
      NQU (NSAVE) =J
                                                                                014850
      CONTINUE
 120
                                                                                014860
      IF (NSAVE.LE.O) GO TO 140
 130
                                                                                014870
       J=NQUEUE (NSAVE)
                                                                                014880
      QUE=QUEUE (NSAVE)
                                                                                074890
      NQ(J) = NQU(NSAVE)
                                                                                014900
      NSAVE=NSAVE-1
                                                                                014910
      GO TO 20
                                                                                014920
      CONTINUE
 140
                                                                                014930
       IF (LONG(L)) XPAR(L) = XTEM/XP(L)
                                                                                014940
      NUL = NQNO(L) + 1
      IF (.NQT.LUNG(L)) XNEW (M,L) = XTEM+XTEMP(L) #XP(L)
                                                                                014950
                                                                                014950
      CONTINUE
 160
                                                                                014970
      DO 170 I=1.ITOT
      IF(LONG(1)) XTEMP(I)=XTEMP(I)+XPAR(I)
                                                                                014980
                                                                                014990
      IF (.NQT.LONG(I)) XTEMP(I)=0.0
                                                                                015000
      CONTINUE
 170
                                                                                015010
      RETURN
                                                                                015020
      END
                                                                                015030
*DECK EQUIL
                                                                                015040
      SUBROUTINE EQUIL (M. ITHT)
                                                                                015050
С
      EQUIL PUTS SHORT-LIVED DAUGHTERS IN EQUILIBRIUM WITH PARENTS
                                                                                015060
CCC
       EQUIL USES GAUSS-SEIDEL ITERATION TO GENERATE STEADY STATE
                                                                                015070
                                                                                015080
      CONCENTRATIONS
                                                                                015090
                                                                                015100
      LOGICALLONG
      COMMON/EQ/XTEMP(800), XNEW(10,800), B(800), P(800)
      COMMON/MATRIX/A(2500), LOC(2500), NONO(800), KD($00)
                                                                                0]5140
                                                                                000580
      LEVEL 2.A.LUC, NONO, KD
      COMMON/CONST/MMN, ERR, MZERU
                                                                                0]5160
      COMMON/SERIES/ XP(8001, XF#R(800), LONG(800)
      QXN=0.001
                                                                                015170
      DO 10 T=1.ITOT
                                                                                015180
      XPAR(I)=0.0
                                                                                015190
      IF (.NQT.LUNG(I)) GO TU 10
                                                                                015200
      XTEMP(I) = XTEMP(I) * XP(<math>\frac{1}{2})
      XPAR(I) = AMAX1(XNEW(M,I) - XTEMP(I),0.0)
                                                                                015210
                                                                                015220
      CONTINUE
 10
                                                                                015230
      ITER=1
                                                                                015240
      N = 0
 20
```

```
015250
      BIG=0.0
      00 60 I=1.ITOT
                                                                               015260
                                                                               015270
      NUM=NONO(I)-N
                                                                               015280
      DI = -D(I)
      IF (LONG(I)) GO TO 50
                                                                               015290
                                                                               015300
      XNW=B(I)
      IF (M.GT.MMN.OR.M.EQ.MZERO)
                                     NUM=KD(I)-N
                                                                               015310
                                                                               015320
      IF (NUM EQ. 0) GO TO 31
                                                                               015330
      DO 30 K=1, NUM
                                                                               015340
      N=N+1
                                                                               015350
      J=LOC(N)
                                                                               015360
      DJ=-D(J)
                                                                               015370
      XJ=XPAR(J)
                                                                               015380
      IF (LONG(J)) XJ=XJ+XTEMP(J)/(1.0-DJ/DI)
                                                                               015390
      UX# (N) A+WMX=WMX
                                                                               015400
 30
      CONTINUE
                                                                               015410
   31 XNW=XNW/DI
      IF (XNW LT.1.0E-50) GU TO 40
                                                                               015420
                                                                               015430
      ARG=ABS((XNW-XPAR(I))/XNW)
                                                                               015440
      IF (ARG GT BIG) BIG=AMG
                                                                               015450
 40
      XPAR (I) = XNW
                                                                               015460
      N=NONO(I)
 50
                                                                               0 j 5470
      CONTINUE
 60
                                                                               015480
                           GO10 70
      IF (BIG LT . WXN )
                                                                               0]5490
      ITER=ITER+1
                                                                               015500
      IF (ITER.LT.100) GO TO 20
                                                                               015510
      PRINT 9000
                                                                               075520
      STOP
                                                                               015530
      DO GO I=1.ITOL
 70
      IF (.NOT.LUNG(I)) XNEW(M.I) = XNEW(M.I) + XPAR(I)
                                                                               015540
                                                                               015550
      CONTINUE
 80
                                                                               015560
      RETURN
 9000 FORMAT (" GAUSS SEIDEL ITERATION DID NOT CUNVERGE IN EQUIL")
                                                                               015570
                                                                               015580
      END
                                                                               015590
#DECK NUDATA
                                                                               015600
      SUBROUTINE NUDATA (NLIPE)
      NUDATA VERSION TO HANDLE THREE TYPES OF NUCLEAR DATA LIBRARIES
                                                                               015610
C
                                                                               015620
      HAS POINTER, NLIBE, = 1 FUR HTGR
C
                                                                               015630
                            = 2 FOR LIGHT WATER REACTUR
C
                                                                               015640
C
                            = 3 FUR LMFBR
                                                                               015650
                            = 4 FUR MSBR
C
                                                                               015670
      INTEGERELE (99), STA(2)
      DIMENSION COEFF (7,8001, NPROD (7,800), CAPT (6), YIELD (5,500)
      DIMENSION Y(5), NSORS(4), TYLD(5), NUCAL(6)
      DIMENSION SKIP (20), MSHS (20), NAME (3)
      DIMENSION TUCAP(800) . E135(100) . TITLE(20) . 4(800) . FG(800) .
     1ALPHAN (100) + SPONF (100) , ABUND (500) , KAP (800) , MMAX (800)
                                                                               0]5750
      COMMON/LABEL/ELE,STA
      COMMON/CONST/MMN, ERR, MZERU
      COMMON/EQ/XTEMP(800), XNEW(10,800), B(800), P(800)
      COMMON/FLUXN/REGENT, DAS (800), ILITE, IACT, ITOT
      COMMON/OUT/NUCL (800)
                                                                               015850
      COMMON/MATRIX/A (2500) | LOC (2500) | NONO (800) | KD (800)
                                                                               000600
      LEVEL 2.A, LOC, NONO, KD
      COMMON/CCOEFF/COEFF
      LEVEL 2. CUEFF
      EQUIVALENCE (XNEW(1.401), NPROD(1,1))
                                                                               015880
      EUUIVALENCE (AÏ, DLAM)
      DATA NUCAL/-20030,-10000,10,11,-10,-9/
                                                                               015890
      DATA MSRS/922330.922350.902320,922380.942390.722330.922350.942410.015900
                 922380,942340,942410,922350,942400,422380,942390,922330,075910
     1
                 922350,902320,922380,942390/
                                                                               015920
     2
```

```
015930
C
      PROGRAM TO COMPUTE A MATRIX (TRANSITION MATRIX) FROM NUCLEAR DATA 015940
                                                                               015950
C
                                                                               075960
                                (TITLE(I), I=1, 18), NLIBE
      READ 9011,
      IF (NLIBE.LT.O) PROGRAM WILL READ TAPE IN CASDAR FURMAT
                                                                               015970
С
                                                                               015980
                                                                               015990
      IF (NLIRE.GT.0)
                        GO TO 10
                                                                               016000
      IGWC=1
                                                                               016010
      NLIBE=_NLIBE
                                                                               016020
      PRINT 9000
 9000 FORMAT (1HO, "WILL READ TAPS GENERATED BY CASDAM")
                                                                               016030
                                                                               016040
      N1=4-NLIBE
 10
                      THERM. RES, FAST, ERR, NMO, NDAY, NYR, MPCTAB, INPT; IR
                                                                               016050
      READ Phol.
 20
                                                                               016060
      PRINT 9005,
                        NMO.NUAY.NYR
                                                                               016070
      PRINT 9006
                                                                               016080
      PRINT 9007
                                                                               016090
      PRINT 9008
                                                                               016100
      PRINT 9009
                                                                               016110
      PRINT 9010
                                                                               016120
      PRINT 9013
                                                                               016130
      PRINT 9014
                                                                               076140
      THERM = RATIO OF THERMAL ELUX TO TOTAL FLUX
                                                                               016150
Ç
                                                                               016160
      RES = RATIO OF RESONANCE FLUX TO TOTAL FLUX
C
                                                                               016170
      FAST = RATIO OF FAST FLUX TO TOTAL FLUX
C
                                                                               016180
С
      ERR = TRUNCATION ERROR LIBIT
С
                                                                               016190
                                                                               016200
С
      READ DATA FOR LIGHT ELEMENTS
                                                                               016210
С
                                                                               016220
      K=5# (NLIBE-1)
                                                                               0]6230
      DO 30 K1=1.5
                                                                               016240
      K2=K+K1
                                                                               0]6250
      NSORS (K1) = MSRS (K2)
 30
      PRINT 9018, THERM. RES. FAST, (NSORS (K), K=1,5) +NLIBE
                                                                               016260
      I = 0
                                                                               016270
                                                                               016290
      NUTAPE=0
                                                                               016290
      I = I + 1
 40
      READ (8,9034) NUCL (I) .DLAM, IU, FB1, FP, FP1, FT, FA, LSF, Q(I), FG(I), ABUND (0,6300
 50
     11),DUNY1,DUMY2
                                                                               056320
      IF (EOF (8) . NE . 0) GOTO260
                                                                               016330
      IF (IGWC.GT.O) GO TO ZO
                                                                               016340
      DO 60 N=1.NLIBE
      READ (8,9035) SIGTH, FNG1, FNA, FNP, RITH, FINA, FINE, SIGMEV, FN2N1, FFNA, 016350
 60
                                                                               016360
                    FFNP, IT
                                                                               016370
      GO TO 90
                                                                               016380
      DO 80 N=1.NLIBE
 70
      READ (8,9040) SIGTH, FNG1, FNA, FNP, RITH, FINA, FINP, SIGMEV, FN2N1, FFNA, 016390
 80
                                                                               016400
                    FFNP, IT
                                                                               016410
      IF(N1.EQ.0) GO TO 110
 90
                                                                               016420
      DO 100 N=1,N1
                                                                               016430
      KEAD (8,9036)
                     SKIP
 100
                                                                               016440
 110
      IF (IT.EQ.0) GQ TO 50
                                                                               016450
      M=0
 120
                                                                               016460
      CALL HALF (A1, IU)
                                                                               016470
      NUCLI=N(ICL(I)
                      GO TO 260
      IF (NUCLI.EW.O.)
                                                                               016480
                                                                               016490
      CALL NOAH (NUCLI, NAME)
      IF (MOD (I-1.50) .EQ. 01 PRINT 9012.
                                                (TIILE (N),N=1,18)
                                                                               016500
      IF (MOD (I-1.50) .EQ. 01 PRINT 9016
                                                                               016510
                                                                               016520
      SIGTH=THERM#SIGTH
                                                                               016530
      RITH=RES#RITH
                                                                               016540
      SIGMEV=FAST#SIGMEV
                                                                               016550
      SIGNA=SIGTHOFNA+RITHOTINA+SIGMEVOFFNA
```

```
076560
      SIGNP=SIGTH*FNP+RITH*!INP+SIGMEV*FFNP
                                                                                 0 1 6570
       FNG=1.0-FNA-FNP
                                                                                 076580
       IF (FNG.LT.1.0E-4) FNG=V.
                                                                                 016590
      FING=1.0-FINA-FINP
                                                                                 016600
       IF (FING.LT.1.0E-4) FING=0.
                                                                                 076610
       FN2N=1.0-FFNA-FFNP
                                                                                 016620
       IF (FN2N.LT.1.0E-4) FN2N=0.
                                                                                 016630
       SIGNG=SIGTH#FNG+RITH#5ING
                                                                                 016640
      SIGN2N=SIGMEV*FN2N
                                            DLAM, FB1, FP, FP1, FT, FA, SIGNG,
                                                                                 016650
 130
      PRINT 9033,
                       NAME .
                       FNG1.SAGN2N, FN2N1, SIGNA, SIGNP, Q(I), FG(I), ABUND(I)
                                                                                 016660
                                                                                 016670
C
      TEST RADIOACTIVITY
                                                                                 016680
C
                                                                                 016690
      IF (A1.LE.ERR)
                       GO TO 180
 140
                                                                                 016700
       ABETA=1.0
                                                                                 0]6710
C
                                                                                 016720
      TEST POSITRON EMISSION
С
                                                                                 016730
C
                                                                                 016740
      IF (FP 'LT. ERR) GO TO 150
                                                                                 016750
                                                                                 016760
      CUEFF (M. I) = FP # A1
                                                                                 016770
      NPROD (M, I) = NUCLI-10000
                                                                                 016780
      ABETA=ABETA-FP
                                                                                 016790
С
      TEST POSITRON EMISSION TO EXCITED STATE OF PRODUCT NUCLIDE
                                                                                 016800
C
                                                                                 076810
С
                                                                                 016820
      IF (FP1 .LT. ERR) GO TH 150
                                                                                 076830
      M=M+1
                                                                                 016840
      COEFF (M, I) = FP1 + COEFF (M-1, I)
                                                                                 016850
      NPROD(M,I) = NPROD(M-1,I)+1
                                                                                 016860
      COEFF (M-1,I) = COEFF (M-1,I) = COEFF (M,I)
                                                                                 016870
C
                                                                                 016880
      TEST ISOMERIC TRANSITION
С
                                                                                 076890
                                                                                 016900
      IF (FT LT.ERR) GO TO 160
 150
                                                                                 016910
      M=M+1
                                                                                 016920
      COEFF (M, I) =FT +A1
                                                                                 016930
      NPROD (M, I) = NUCLI
                                                                                 016940
      ABETA=ABETA-FT
                                                                                 016950
C
                                                                                 016960
      TEST ALPHA EMISSION
C
                                                                                 016970
C
                                                                                 016980
      IF (FA LT. ERR) GO TO 170
 160
                                                                                 016990
                                                                                 0]7000
      COEFF (M,I) =FA+A1
                                                                                 017010
      NPROD (M, I) = NUCL I-20040
                                                                                 017020
                                                                                 0,7030
      COEFF (M, I) = COEFF (M-1, 1)
                                                                                 017040
      NPROD(M.I) = 20040
                                                                                 017050
      ABETA=ARETA-FA
                                                                                 017060
C
                                                                                 017070
      TEST NEGATRON EMISSION
C
                                                                                 017080
C
                                                                                 017090
      IF (ABETA.LT.1.E-4) GO TO 180
 170
                                                                                 017100
      M=M+1
                                                                                 077110
      CUEFF (M.I) = ABETA #A1
                                                                                 017120
      NPROD (M.I) = NUCLI+10000
                                                                                 017130
C
      TEST NEGATRON EMISSION TO EXCITED STATE OF PRODUCT NUCLIDE
                                                                                 017140
C
                                                                                 077150
C
                                                                                 0 17160
      IF (FB1 .LT. ERR) GO TO 180
                                                                                 017170
      M=M+1
                                            3-46
```

```
0<u>1</u>7180
       CUEFF (M, I) = FB1 + COEFF (M-1,1)
                                                                                   U17190
       NPROD (M, I) = NPROD (M-1, 1) +1
                                                                                   017200
       COEFF (M-1+I) = COEFF (M-1+I) TCOEFF (M+I)
                                                                                   017210
       COMPUTE NEUTRON CAPTURE CROSS SECTIONS IN THREE REGIONS
                                                                                   017220
С
                                                                                   017230
                                                                                   017240
       KAP(I)=M
 180
                                                                                   017250
       DO 190 KI=1,6
                                                                                   017260
       CAPT(KI) =0.0
 190
                                                                                   017270
       GAPT(1)=SIGNA
                                                                                   017280
       CAPT(2)=SIGNP
                                                                                   017290
       CAPT (4) = SIGNG # FNG1
                                                                                   017300
       CAPT (3) = SIGNG-CAPT (4)
                                                                                   017310
       CAPT (0) = SIGN2N+FN2N1
                                                                                   017320
       CAPT (5) = SIGN2N-CAPT (6)
                                                                                   017330
 200
       TOCAP(I)=0.0
       TOTAL NEUTRON CROSS SECTION FOR NUCLIDE (I)
                                                                                   017340
                                                                                   017350
       DO 220 K=1.6
                                                                                   017360
       CAPKISCAPT(K)
                                                                                   017370
       IF (CAPKI.LT.ERR) GO TO 220
                                                                                   017380
       M=M+1
                                                                                   017390
       NPROD (M.I) = NUCLI + NUCAL(K)
                                                                                   017400
       COEFF (M.I) = CAPKI
                                                                                   017410
       TOCAP(I)=TOCAP(I)+CAPNI
                                                                                   017420
       IF (K.NE.1) GO TO 210
                                                                                   077430
       M=M+1
                                                                                   017440
       CUEFF (M,I) = COEFF (M-1,1)
                                                                                   017450
       NPROD (M.I) = 20040
                                                                                   017460
      IF (K.NE.2) GO TO 220
                                                                                   017470
       M=M+1
                                                                                   017480
       COEFF (M, I) = COEFF (M-1, 1)
                                                                                   017490
       NPROD (M.I) = 10010
                                                                                   017500
       CONTINUE
 220
       IF (MOD (NUCLI, 10) .EQ,0) 40 TO 250
                                                                                   017510
 230
                                                                                   017520
       DO 240 K=1.M
                                                                                   017530
 240
       NPROD(K,I)=NPROD(K,I)+1
                                                                                   017540
      MMAX(I) = M
 250
                                                                                   017550
                    PRINT 9039. M
       IF (M.GT.7)
                                                                                   017560
       DIS(I)=A1
      GO TO 40
ILITE = 1-1
                                                                                   017570
                                                                                   017580
 260
                                                                                   017590
       IACT=0
                                                                                   017600
C
                                                                                   017610
C
       READ DATA ON ACTINIDES
                                                                                   017620
C
      READ (8,9034) NUCL (I) .DLAM , IU , FB1 , FP , FP1 , FT , FA , ESF , Q (I) , FG (I) , DUMMY , 0 17630
 270
      1DUMY1, DUMY2
                                                                                   0<u>1</u>7650
       IF (EOF (8) . NE . 0) GOTO 450
                                                                                   U<u>ī</u>7660
       DO 280 N=1,NLIBE
       READ (8,9037) SIGNG, RING, FNG1, SIGF, RIF, SIGFF, SIGN2N, FN2N1, SIGN3N, ITO 77670
                                                                                   017680
 280
      CONTINUE
                                                                                   017690
       IF(N1.EQ.0) GQ TO 300
       DO 290 N=1.N1
                                                                                   017700
                                                                                   017710
 290
       READ (8,9036) SKIP
                                                                                   017720
       IF (IT .EU. 0) GO TO 270
 300
                                                                                   017730
       M=0
 310
                                                                                   017740
       NUCLI=NUCL(I)
       IF (NUCLI.EW.0)
                        GO TO 450
                                                                                   017750
                                                                                   017760
       BO 320 K=1,5
                                                                                   0 7770
       IF (NUCLI.EW.NSORS(K)) NSURS(K)=I
                                                                                   017780
       CONTINUE
 320
                                                                                   017790
       CALL HALF (A1.IU)
                                                                                   077800
       CALL NOAH (NUCLI, NAME)
```

```
017810
       SIGNG=THERM*SIGNG+RESTRING
                                                                                   0]7820
       SIGF =THERM#SIGF +RESTRIF +FAST#SIGFF
                                                                                   077830
       SIGN2N=SIGN2N#FAST
       SIGN3N=SIGN3N#FAST
                                                                                   017840
       IF (MOD (IACT, 50), EQ.0) PRENT 9012,
                                                   (TITLE (N), N=1,18)
                                                                                   07850
                                                                                   017860
       IF (MOD (IACT, 50) . EQ. 0) PRINT 9024
 330
                        NAME.
                                              DLAM, FB1, FP, FP1, FT, FA, FSF, SIGNG, 017870
       PRINT 9026.
                        FNG1.SIGF,BIGN2N,SIGN3N,Q(I),Fb(I)
                                                                                   017880
      1
                                                                                   017890
       IACT=IACT+1
 340
                                                                                   017900
                                                                                   077910
       TEST RADIOACTIVITY
Ç
                                                                                   077920
C
       IF (A1.LT.ERR) GO TO 200
                                                                                   077930
      ABETA=1.0
                                                                                   017940
                                                                                   017950
C
       TEST POSITRON EMISSION
       IF (FP LT. ERR) GO TO 350
                                                                                   017960
                                                                                   017970
       ABETA=ABETA-FP
                                                                                   017980
       M=M+1
                                                                                   017990
       COEFF (M, I) = FP + A1
       NPROD (M.I) = NUCLI-10000
                                                                                   018000
                                                                                   018010
       POSITRON EMISSION TO EXCITED STATE
C
                                                                                   018020
       IF (FP1 .LT. ERR) GO TO 350
                                                                                   078030
       M=M+1
                                                                                   018040
       COEFF (M, I) = FP1 + COEFF (M-1, I)
                                                                                   018050
       NPROD(M,I) = NPROD(M-1,I)+1
       COEFF (M-1,I) = COEFF(M-1,I) - COEFF(M,I)
                                                                                   078060
                                                                                   018070
       ISOMERIC TRANSITION
                                                                                   018080
      IF (FT _LT.ERR) GO TO 300
 350
                                                                                   U18090
      M=M+1
                                                                                   018100
       COEFF (M, I) =FT#A1
                                                                                   018110
      NPROD (M. I) = NUCLI
                                                                                   018120
       ABETA=ABETA-FT
                                                                                   018130
       ALPHA EMISSION
                                                                                   018140
       IF (FA LT. ERR) GO TO 3/0
 360
                                                                                   018150
       M=M+1
                                                                                   018160
       CUEFF (M, I) = FA + A1
                                                                                   018170
      NPROD (M. I) = NUCL I - 20040
                                                                                   018180
      M=M+1
      GOEFF (M. I) = COEFF (M-1, I)
                                                                                   018190
                                                                                   018200
      NPROD (M, I) = 20040
                                                                                   018210
       ABETA=ARETA-FA
                                                                                   018220
       HETA DECAY
                                                                                   018230
 370
      IF (ABETA.LT.1.E-4) GO TO 380
                                                                                   018240
       M=M+1
                                                                                   018250
       COEFF (M. I) = ABETA + A1
                                                                                   018260
       NPROD (M. I) = NUCLI+10000
                                                                                   018270
       IF (FB1 .LT. ERR) GO TO 380
                                                                                   018280
       M=M+1
       COEFF (M, I) = COEFF (M-1, 1) +FB1
                                                                                   018290
       CUEFF (M-1,1) = COEFF (M-1,1) 7COEFF (M,1)
                                                                                   018300
                                                                                   018310
       NPROD(M,I) = NPROD(M-1,\frac{1}{2}) + \frac{1}{2}
                                                                                   018320
C
                                                                                   018330
C
       NEUTRON CAPTURE CROSS SECTIONS
                                                                                   018340
Ç
                                                                                   018350
      KAP(I)=M
 380
                                                                                   018360
       DO 390 K=1.6
                                                                                   018370
      CAPT(K )=0.0
 390
       CAPT (2) = SIGNG # FNG1
                                                                                   018380
                                                                                   018390
       CAPT(1)=SIGNG-CAPT(2)
                                                                                   018400
       CAPT (4) = SIGN2N&FN2N1
                                                                                   018410
       CAPT (3) = SIGN 2N - CAPT (4)
                                                                                   018420
      FISS(IACT)=SIGF
 400
```

3-48

```
018430
       TOEAP(I)=0.0
                                                                                018440
       DO 410 K=1,4
                                                                                0]8450
       CAPKI=CAPT(K)
                                                                                018460
       IF (CAPKI.LT.ERR) GO TO 410
                                                                                018470
       M=M+1
                                                                                018480
       TOGAP(I)=TOCAP(I)+CAPKI
                                                                                018490
       COEFF (M.I) = CAPKI
                                                                                078500
       NPROD (M.I) =NUCLI+NUCAL (K+2)
                                                                                078510
 410
      CONTINUE
                                                                                078520
       TOCAP(I)=TOCAP(I)+FIS$(IAGT)
C
                                                                                018530
       N-3N CROSS SECTION
                                                                                0 18540
       Al7=SIGN3N
                                                                                018550
       IF (A17.LT.ERR) GO TO $ 0
                                                                                018560
      M=M+1
                                                                                018570
       COEFF (M
                +I)=A17
       NPROD(M +I) = NUCLI-20
                                                                                018580
                                                                                018590
       TUCAP(I)=TUCAP(I)+A17
                                                                                078600
       IF (MOP (NUCLI, 10) . EQ. 0) GO TO 440
 420
                                                                                018610
       DO 430 K=1.M
                                                                                018620
      NPROD(K,I)=NPROD(K,I)=1
 430
                                                                                018630
      MMAX(I)=M
 440
                                                                                U18640
       IF (M.GT.7) PRINT 9039, M
       SPUNF (IACT) =FSF#A1#6. 023E23
                                                                                018650
                                                                                018660
       ALPHAN (IACT) = FA + A1 + 6 . 023 E13 + Q(I) + +3 . 65
                                                                                018670
      DIS(I)=A1
                                                                                018680
       I = I + 1
                                                                                018690
      GO TO 270
                                                                                018700
      IL=0
 450
      DO 460 K=1.5
                                                                                018710
                                                                                018720
      TYLD (K) = 0.0
 460
                                                                                018730
C
C
      READ DATA FOR FISSION PRODUCTS
                                                                                018740
C
                                                                                018750
      READ (8,9034) NUCL (I) , DLAM, IU, FB1, FP, FP1, FT, FA, LSF, Q(I), FG(I), DUMMY, 0,8760
 470
     SYMUG. IYMUUI
                                                                                01.8780
      IF (EOF (8) .NE.0) GOTO 690
                                                                                U18790
      DO 480 N=1.NLIBE
      READ(8,9038) SIGNG, RING, FNG1, Y, IT
                                                                                018800
 480
                                                                                018810
      IF(N1.E0.0) GO TO 500
                                                                                018820
      DO 490 N=1,N1
                                                                                018830
 490
      READ(8,9036) SKIP
                                                                                018840
 500
      IF (IT .EQ. 0) GO TO 470
                                                                                018850
      M=0
 510
                                                                                018860
      CALL HALF (A1.IU)
                                                                                018870
      NUCLI=NUCL(I)
 520
                                                                                018880
      IF (NUCLI.EQ.O) GO TO $90
      CALL NOAH (NUCLI, NAME)
                                                                                018890
                                                 (TITLE (N), N=1,18)
                                PRINT 90124
                                                                                018900
      IF (MOD(IL,50).EQ. 0)
                                                                                018910
      SIGNG THERM SIGNG + RESTRING
                                                                                078920
      IF (NLIBE.EQ.3) GO TO 3 0
                                                                                018930
                           ,502.EQ.0)
                                        PRINT 9019
      IF (MOP ( IL
 530
                                            DLAM, FB1, FP, FP1, FT, SIGNG,
                                                                                018940
      PRINT 9021,
                       NAME.
                                                                                018950
            FNG1.Y,Q(I),FG(I)
     1
      GO TO 550
                                                                                018960
      IF (MOD(IL.50).EQ.0) PHINT 9020
                                                                                018970
                                            DLAM, FUL, FP, FP1, FT, SIGNG, FNG1,
                                                                                018980
      PRINT 9022.
                       NAME 1
                                                                                018990
                       Y(2),Y(4),Y(5),Q(I),FG(I)
     1
                                                                                019000
C
                                                                                019010
C
      TEST RADIUACTIVITY
                                                                                019020
C
                                                                                019030
 550
      IF (A1.LT.ERR)
                       GO TO 900
                                                                                019040
      ABETA=1.0
                                                                                019050
C
      POSITRON EMISSION
```

```
0]9060
      A3=FP
                                                                                  019070
       IF (A3.LT.ERR) GO TO $70
                                                                                  019080
       ABETA ABETA-A3
                                                                                  019090
       AP1=A3+FP1
                                                                                  019100
      AP=A3-AP1
                                                                                  019110
       IF (AP.LT.ERR) GO TO $60
                                                                                  019120
      M=M+1
                                                                                  019130
       COEFF (M, I) = AP#A1
      NPROD (M, I) = NUCLI-10000
                                                                                  019140
                                                                                  0]9150
      IF (API LT.ERR) GO TO 520
 560
                                                                                  019160
       M=M+1
                                                                                  019170
       CUEFF (M.I) = AP1 * A1
                                                                                  019180
       NPROD (M. I) = NUCL I - 9999
                                                                                  019190
       ISOMERIC TRANSITION
                                                                                  019200
      IF (FT .LT. ERR) GO TO 580
 570
                                                                                  019210
      M=M+1
                                                                                  019220
      COEFF (M. I) =FT #A1
                                                                                  019230
      NPROD (M, I) = NUCLI
                                                                                  019240
       ABETA-ABETA-FT
                                                                                  019250
      NEGATRON EMISSION
                                                                                  019260
      IF (ABETA.LT.1.0E-4) GU TC 600
 580
                                                                                  019270
      A2=FB1
                                                                                  019240
      AB1=ABETA#A2
                                                                                  079290
       AB=ABETA-AB1
                                                                                  019300
       IF (AB.LT.1.E-4) GO TO 590
                                                                                  019310
      M=M+1
                                                                                  019320
      CUEFF (M.I) = AB & A1
                                                                                  019330
      NPROD (M, I) = NUCLI+10000
                                                                                  019340
      IF (AB1.LT.1.E-6) GO TO 600
 590
                                                                                  019350
      M = M + 1
                                                                                  019360
      COEFF (M.I) = AB1 #A1
                                                                                  019370
      NPRUD(M_*I) = NUCLI + 1000 \stackrel{?}{\downarrow}
                                                                                  019380
C
      NEUTRON CAPTURE CROSS SECTIONS FOR FISSION PRUDUCTS USING THREE
                                                                                  019390
C
                                                                                  019400
      REGION APPROXIMATION
С
                                                                                  019410
                                                                                  019420
      KAP(I)=M
 600
                                                                                  019430
      DO 610 K=1,6
                                                                                  019440
      CAPT(K) = 0.0
                                                                                  019450
      CAPT(2) = SIGNG # FNG1
                                                                                  019460
      CAPT(1) = SIGNG-CAPT(2)
                                                                                  019470
      TOCAP(I)=0.0
                                                                                  019480
      DO 620 K=1.2
                                                                                  019490
      CAPKI=CAPT(K)
                                                                                  019500
       IF (CAPKI.LT.ERR) GO TO 620
                                                                                  019510
      M=M+1
                                                                                  019520
      TUCAP(I) = TUCAP(I) + CAPLI
                                                                                  019530
      COEFF (M. I) = CAPKI
                                                                                  019540
      NPROD (M, I) = NUCLI + NUGAL (K+2)
                                                                                  019550
      CONTINUE
 620
                                                                                  019560
      IF (MOD (NUCLI.10) .EQ. 0) GO TO 650
 630
                                                                                  079570
      DO 640 K=1.M
                                                                                  019580
      MPROD(K,I)=NPROD(K,I)+1
 640
                                                                                  019590
      IL=IL+1
 650
                                                                                  019600
      DO 660 J=1,5
                                                                                  019610
      YJ=Y(J) #0..010
                                                                                  079620
      LY+(L)(J)+YJ=(L)(J)+YJ
                                                                                  019630
      YIELD(J.IL)=YJ
 660
       IF (NLIBE.EQ.1.OR.NLIBE.EQ.4) GO TO 680
                                                                                  019640
                                                                                  019650
      IF (NLIRE.EU.3)
                        AIETD(1+1r)=An
 670
                                                                                  019660
      YIELD (3.IL) =YJ
                                                                                  019670
      M=(I)XAMM
 680
                                           3-50
```

```
019680
      IF (M.GT.7)- PRINT 903Y, M
                                                                               019690
      DIS(I)=A1
                                                                               019700
      I = I + 1
                                                                               019710
      GO TO 470
                                                                               019720
 690
      IFP=IL
                                                                               019730
      ALL DATA ON NUCLIDES MAS BEEN READ, BEGIN TO COMPUTE MATRIX COEFF 019740
C
                                                                               019750
C
                                                                               019760
      ITOT=I-1
                                                                               019770
C
      FIND PRODUCT NUCLIDES FOR REACTIONS OF LIGHT FLEMENTS
                                                                               019780
C
                                                                               019790
C
                                                                               019800
      NON=0
                                                                               019810
      DO 700 K=1,ITOT
                                                                               019820
      NONO(K)=0
 700
                                                                               019830
      IF (ILITE.LT.1) GO TO 760
                                                                               019840
      DO 750 I=1.ILITE
                                                                               019850
      NUCLI=NUCL(I)
                                                                               019860
      UO 720 J=1.ILITE
                                                                               079870
      KMAX=KAP(J)
                                                                               079880
      IF (KMAX.LT.1) GO TO 720
                                                                               019890
      DO 710 M=1,KMAX
                                                                               019900
      IF (NUCLI.NE.NPROD (M.J.) GU TO 710
                                                                               019910
      NONO(I) = NONO(I) + 1
                                                                               079920
      NON=NON+1
                                                                               019930
      IF (NON.GT.2500) PRIN! 9041,
                                          NON, NUCL(I)
                                                                               019940
      A (NON) = COEFF (M.J)
                                                                               019950
      JT=J
                                                                               019960
      LUC (NON) =JT
                                                                               019970
      CONTINUE
 710
                                                                               0199A0
      CONTINUE
 720
                                                                               019990
      KD(I) = NONO(I)
                                                                               020000
      00 740 J=1,ILITE
                                                                               020010
      K1 = KAP(J) + I
                                                                               020020
      KMAX=MMAX(J)
                                                                               020030
      IF (KMAx.LT.K1) GO TO 740
                                                                               020040
      UO 730 M=K1,KMAX
                                                                               020050
      IF (NUCLI.NE.NPROD (M.J.) GU TO 730
                                                                               020060
      NONO(I) = NONO(I) + 1
                                                                               020070
      NON=NON+1
      IF (NON.GT.2500) PRINT 9041.
                                          NON, NUCL (I)
                                                                               020080
                                                                               020090
      A (NON) = COEFF (M,J)
      JT=J
                                                                               020100
                                                                               020110
      LOC(NON) =JT
                                                                               020120
 730
      CONTINUE
                                                                               020130
      CONTINUE
 740
                                                                               020140
 750
      CONTINUE
                                                                               020150
C
      NON ZERO MATRIX ELEMENTS FOR THE ACTINIDES
                                                                               020160
С
                                                                               020170
C
                                                                               020180
      IF (IACT.LT.1)
 760
                      GO TO $20
                                                                               020190
      IU=ILITE+1
                                                                               020200
      Il=ILITE+IACT
                                                                               020210
      DO 810 I=I0,I1
                                                                               020220
      NUCLI=NUCL(I)
                                                                               020230
      DO 780 J=10,11
                                                                               020240
      MAX=KAP(J)
                                                                               020250
      IF (MAX.LT.1) GO TO 750
                                                                               020260
      DO 770 M=1,MAX
      IF (NUCLI.NE.NPROD (M.J.) 90 TO 770
                                                                               020270
      NONO(I) = NONO(I) + 1
                                                                               020280
                                                                               050500
      NUN=NON+1
                                                                               020300
      IF (NON GT. 2500) PRINT 9041.
                                          NON, NUCL (I)
```

```
020310
      A (NON) = COEFF (M.J)
                                                                                020320
       JT=J
                                                                                020330
      LOC(NON)=JT
                                                                                020340
 770
      CONTINUE
                                                                                020350
      CONTINUE
 780
                                                                                020360
       KD(I) = NONO(I)
                                                                                020370
       DO 800 J=10,11
                                                                                020380
      M1=KAR(J)+1
      (U) XAMM=SM
                                                                                020390
                                                                                020400
      IF (M2.LT.M1) GO TO 800
                                                                                020410
      DO 790 M=M1,M2
                                                                                020420
      IF (NUCLI.NE.NPROD (M.J.) GU TO 790
                                                                                020430
      NONO(I) = NONO(I) + 1
                                                                                020440
      NON=NON+1
                                                                                020450
      IF (NON . GT . 2500)
                        PRINT 9061.
                                           NON, NUCL(I)
                                                                                020460
       A (NON) = COEFF (M,J)
                                                                                020470
       U=TL
                                                                                020480
      LOC (NON) =JT
                                                                                020490
 790
      CONTINUE
                                                                                020500
 800
      CONTINUE
                                                                                020510
      CONTINUE
 810
                                                                                020520
                                                                                020530
Ç
      MATRIX ELEMENTS FOR FISSION PRODUCTS
                                                                                020540
C
      IF (IFP.LT.1) RETURN
 820
                                                                                020560
      IM=ILITE+IACT
                                                                                020570
      I0=IM+1
      IF (ITOT.LT.IO) RETURN
                                                                                020590
      DO 880 I=10,ITOT
                                                                                020600
      NUCLI=NUCL(I)
                                                                                020610
      12=MAX (10 +1-10)
                                                                                020620
      I3=MINO(ITUT, I+10)
                                                                                020630
      DO 840 J=12,13
                                                                                020640
      KMAX=KAP(J)
                                                                                020650
      IF (KMAX.LT.1) GO TO $40
                                                                                020660
      DO 830 M=1.KMAX
                                                                                020670
      IF (NUCLI.NE.NPROD (M,J)) G4 TO 830
                                                                                020680
      NONO(I) = NONO(I) + 1
                                                                                020690
      N0N=N0N+1
                                           NON, NUCL(I)
                                                                                020700
      IF (NON.GT.2500) PRINT 9061.
                                                                                020710
      A (NON) = CUEFF (M,J)
                                                                                020720
      JT=J
                                                                                020730
      LOC (NQN) =JT
                                                                                020740
 830
      CONTINUE
                                                                                020750
 840
      CONTINUE
                                                                                020760
      KD(I) = NONO(I)
                                                                                020770
      DO 860 J=12,13
                                                                                020780
      K1=KAP(J)+1
                                                                                020790
      KMAX=MMAX(J)
                                                                                020800
      IF (KMAX.LT.K1) GO TO 60
                                                                                020810
      DO 850 M=K1.KMAX
                                                                                020820
      IF (NUCLI.NE.NPROD (M.J.) G4 TO 850
                                                                                020830
      MONO(I) = NONO(I) + 1
                                                                                020840
      NON=NON+1
                                                                                020850
                                           NON, NUCL (I)
      IF (NON. GT. 2500) PRINT 9061.
                                                                                020860
      A (NON) = COEFF (M.J)
                                                                                020870
      JT=J
                                                                                020880
      LOC(NON)=JT
                                                                                020890
 850
      CONTINUE
                                                                                020900
      CONTINUE
 860
                                                                                020910
      IF (IACT.LT.1)
                       GO TO 880
                                                                                020920
      UU 870 K=1.5
```

```
020930
       IL=I-IM
                                                                                  020940
       IF (YIELD (K, IL) .LT.ERR) GU TO 870
                                                                                  020950
      NON=NON+1
                                                                                  020960
      IF (NON. GT. 2500) PRINT 9061,
                                            NoN, NUCL(I)
                                                                                  020970
      NONO(1) = NONO(1) + 1
                                                                                  020980
      KK=NSORS(K)
                                                                                  020990
      LOC(NQN)=KK
                                                                                  000150
      KF=KK-TLITE
                                                                                  021010
       A(NON)=YIELD(K,IL) #FISS(K))
                                                                                  021020
 870
      CONTINUE
                                                                                  021030
 880
      CONTINUE
                                                                                  021040
       IF (IFP'LE.0) GO TO 900
                                                                                  021050
       IF (NLIBE.NE.3) GO TO $90
                        TYLD(21, TYLD(4), TYLD(5)
                                                                                  021060
      PRINT 9027.
                                                                                  021070
      GO TO 900
                                                                                  051080
      PRINT 9030.
                         (TYLD\{I\}, 1=1,5)
 890
C
                                                                                  021090
       ALL MATRIX ELEMENTS ARE NOW COMPUTED
                                                                                  021100
C
                                                                                  021110
C
      BEGIN TRANSIENT SOLUTION
                                                                                  021150
C
                                                                                  021130
С
                                                                                  021140
C
       TEMPORARILY WRITE OUT MATRIX ELEMENTS
                                                                                  021150
C
                                                                                  021160
 900
      IF (IR LEW. 0) RETURN
                                                                                  021170
      PRINT 9029
                                                                                  021180
      N = 0
                                                                                  021190
      DO 910 I=1, ITOT
                                                                                  021200
      NUM=NONn(I)
                                                                                  051510
                      GO TO 910
      IF (NUM_LE.O)
                                                                                   021220
      M1=N+NUM
                                                                                  021230
      N=N+1
                                                                                  021240
      PRINT 9028.
                        I.DIS (I), TOCAP(I), (A(K), LUC(K), K=N, N1)
                                                                                  021250
      N=N1
                                                                                   021260
 910
      CONTINUE
                                                                                   021270
      RETURN
                                                                                   021280
      STOP
 920
                                                                                   021290
C
                                                FURMATS
                                                                                   021300
                                  FURMATS
С
      FURMATS
                    FORMATS
                                                                                  021310
                                                                                  021320
 9001 FORMAT (4F10.5,612)
 9005 FORMAT (1H1,43X,"NUCLEAR THANSMUTATION DATA
                                                          MEVISED ", 1211/", 12, "021370
     1/", I2, /, "ONUCL = NUCLIDE 7 10000 * ATOMIC NO + 10 * MASS NO + ISOMO21380
     ZERIC STATE (0 OR 1)", 10X,"DLAM = DECAY CONSTANT (1/SEC) .";/," FB, 021390
     3FP. FA. FT = FRACTIONAL DECAY BY BETA, POSITRUN (OR ELECTRON CAPTUO21400
     4RE), ALPHA, INTERNAL TRANSITION. FB = 1 - FP - FA - FT": /." FB1,021410 5 FP1, FNG1, FNZN1 = FBACTION UF BETA, POSITRON, N-GAMMA, N-2N TRAN021420 6SITIONS TO EXCITED STATE UF PRODUCT NUCLIPE". /. " SIGTH, SIGNG, SIG021430
     7F, SIGNA, SIGNP = THERMAL CROSS SECTIONS (BARNS) FOR ABSORPTION, NO.21440
     8-GAMMA. FISSION, N-ALPHA, N-PROTON.")
                                                                                  021450
     FORMAT(" SIGNG = SIGTH * (1 - FNA -FNP). SIGNA = SIGTH * FNA. 021460
1SIGNP = SIGTH * FNP. FNA, FNP = FRACTION THEMMAL N-ALPHA, N-PROT0021470
 9006 FORMAT("
     2N.", /, " RITH, RING, RIF, RINA, RINP = RESUNANCE INTEGRAL FOR ABSUR021480
      3PTION, N-GAMMA, FISSION, N-ALPHA, N-PROTON, ", 7," RING = RITH * (021490
     41 - FINA - FINP). RINA = RITH + FINA. RINP = KITH + FINP. FINA, FO21500
     SINP = FRACTION RESONANCE N-ALPHA, N-PROTON.", /, " SIGMEV, SIGFF, SIO71510
     6GN2N, SIGNAF, SIGNPF ₹ FAST CROSS SECTIONS (BARNS) FOR ABSORPTIOM 021520
     7FISSION, N-2N, N-ALPHA, N-PROTON."./,"
                                                     SIGNAN = SIGMEV # (1 - FF021530
     BNA - FFNP) . SIGNAF = SIGNEV + FFNA. SIGNPF = SIGMEV + FFNP.
     9A, FFBP = FRACTION FAST NTALPHA, N-P.")
                                                                                   021550
 9007 FURMAT (" Y23, Y25, Y04, Y28, Y49 = FISSION YIELD (PERCENT) FROM 23021560
      13-U, 235-U, 232-TH, 238-U, 239- PU, ", /, " W = DEAT PER DISINTEGRATIO: 1570
     20N. FG = FRACTION OF HEAT IN GAMMAS UF ENERGY GREATER THAN 0.2 MED21580
     3V. 11. 110 EFFECTIVE CHUSS SECTIONS FOR A VULUME AVERAGED THERMAL (LOZISAD
```

```
4T 0.876 EV) FLUX ARE AS FULLOWS."./." N-GAMMA - SIGNG * THERM021600 5 + RING * RES."./." FIDSION - SIGF * THERM + RIF * RES + SIGF021610
     6F * FAST.", 10X, "THERM = 1/V CURRECTION FOR THERMAL SPECTRUM AND TE021620
                                    _ SIGNEN + FAST.", 36x, "RES
     7MPERATURE . " . / . "
                                                                     = RATIO 021630
                          N-4N
     BOF RESONANCE FLUX PER LETHARGY UNIT TO THERMAL FLUX.")
                   N-ALPHA - SIGNA + THERM + RINA + RES + SIGNAF + FAST021650
 9008 FORMAT("
                              RATIO OF FAST (GT 1.0 MEV) TO THERMAL FLUX "021660
     1.",7X,"FAST = 1.45 #
             N-PROTON - SIGNP * THERM + RINP * RES * SIGNPF * FAST.")
                                            HALF LIVES DECAY SCHEMES, AND 021680
 9009 FORMAT (1H0.59X, "REFERENCES", /,"
     THERMAL POWER . . . . C M LEBERER, J M HULLANDER, AND I PERLMAN "TABO21690
     SLE OF ISOTOPES - SIXTH EDITION JOHN WILEY AND SONS, INC (1967)",021700
     3/." B S DZHELEPOV AND L K PEKER ""DECAY SCHEMES OF RADIOACTIVE NUCO21710
     4LEI" PERGAMMON PRESS (1981) " , / , " D T GOLDMAN AND JAMES R ROSSER "021720
     SUCHART OF THE NUCLIDES IN MINTH EDITION GENERAL ELECTRIC CO (JULY 021730
     61966) ". . . " E D ARNOLD ""PROGRAM SPECTRA"" APPENDIX A OF ORNL-3576 021740
     7(APRIL 1964)")
                   CROSS SECTIONS AND FLUX SPECTRAMATA BE PRINCE MINEUTO21760
 9010 FORMATIN
     1RON REACTION RATES IN THE MSRE SPECTRUM" ORNL-4119, PP 79-83 (JUL021770
     2Y 1967) ". /. " B E PRINGE ""NEUTRON ENERGY SPECTRA IN MSRE AND MSBR" 021780
     3" ORNL_4191, PP 50-58 (DEC 1967)", /, " M D GOLUBERG ET AL ""NEUTRONO21790
     4 CROSS SECTIONS" BNL+325. SECOND ED, SUPP NO 2 (MAY 1964 - AUG 19021800
     566) ALSO EARLIER EDITIONS", /, " H T KERR, UNPUBLISHED ERC COMPILATIO21810 AUN (FEB 1968)", /, " M K DREKE ""A COMPILATION UF RESONANCE INTEGRAL021820
     75"" NUCLEUNICS, VOL 24, NU 8, PP 108-111 (AUG 1966)",/," BNWL STAF021830
     8F ""INVESTIGATION OF N-2N CROSS SECTIONS"" BNWC-98, PP 44-98 (JUNE021840
                                                                              021850
     9 1965) 11)
                                                                              021860
 9011 FORMAT (18A4,13)
                                                                              021870
 9012 FORMAT (1H1,20X,18A4)
 9013 FORMAT (" H ALTER AND C E WEBER ""PRODUCTION OF H AND HE IN METALS 021880
     1 DURING REACTOR IRRADIATION J NUCL MATLS, VOL 16, PP 68-73 (1965) 021890
     2" / , " L L BENNETT HURECOMMENDED FISSION PRODUCT CHAINS FOR USE IN 021900
     BREACTOR EVALUATION STUDIES ... ORNL-TM-1658 (SERT 1966)")
                                                                               021910
                   FISSION PRODUCT YIELDS", /, " M E MEEK AND B F RIDER, ""021920
 9014 FORMAT("
     1SUMMARY OF FISSION PRUDUCT YIELDS FOR U-235, U-238, PU-239, AND PU021930
     2-241 AT THERMAL, FISSION SPECTRUM AND"/"
                                                       14 MEV NEUTRON ENERGIO21940
     3ES ... APED-5398-A(REV.), (051. 1968) ... S KATCOLF ... FISSION PRODUCT021950
     4YIELDS FROM NEUTRON INDUCED FISSION NUCLEONICS, VOL 18, NO 11,
                                                                              021960
     5(NOV 1960) "/" N D DUDEY "" REVIEW OF LOW-MASS ATOM PRODUCTION IN F021970
                                                                               1980حُ 0
     6AST REACTORS ... ANL-74 44 (APRIL 1968) ")
 9016 FORMAT (1H0.20X, "LIGHT ELEMENTS, MATERIALS OF CONSTRUCTION, AND ACTO22030
                                                      FP1
                                                             FΡ
                                                                              000640
     1 IVATTION PRODUCTS
                          " / . " O NUCL
                                            DLAM
                              SIGNG
                                        FNG1
                                                            FN2N1"
                                                                               0<u>0</u>0650
     2"FP1
                                                 SIGNEN
                      FA
                                        FG ABUNDANCE")
                                                                              000660
                     SIGNP
            SIGNA
9018 FORMAT (1H0,10X,"THERMS "F10.5,5X."REST "F10.5,5X,"FAST= "F10.5,
                                                                              022090
     1//,1x, "NEUTRON SOURCE; "5(11055X)55X, "NLIPE= "13)
                                                                              022100
     FORMAT (1H0+36X, "FISSIYN PRODUCTS" 1/, "O NUCL
                                                           DLAM
                                                                              000690
                                                  FNG1
                                                                              000700
                                FT
                                         SIGNG
                                                            Y23
        "F81
                         FP1
     1
                               458
                                                            FG")
                                                                              000710
                                          Y49
        11Y25
                    Y02
     FORMAT (1H0,36X,"FISSION PRODUCTS", /, "O NUCL
                                                           DLAM
                                                                    FBl
                                                                            " 000720
                 FP1
                                                               Y28"
                                  SIGNG
                                           FNG1
                                                     42$
                                                                              000730
        IIFP
                         FT
     1
                                  FG")
                                                                              000740
                Y49
                          Q
                                                                              000750
      FURMAT(1H ,A2,13,A1,1PE10.2,0P4F7.3,1PE10.2,0PF7.3,
                                                                              000760
        1P5510.2,0P2F7.3)
                                                                              000770
9022 FORMAT (1H ,A2, 13, A1, 14E10.2, 0P4F7.3, 14E10.2,
                                                                              000780
        OPF7,3,1P3E10.2,0P2L7.3)
 9024 FORMAT (1H0,32X, "ACTINIDES AND THEIR DAUGHTERS",//
                                                                              055550
     1"
                                    FP
                                                   FTI
                                                                              008000
         NUCL
                                            FP]
                   DLAM
                             FB1
                                        FNG21
                                                   SIGF"
     2"
                              SIGNG
                                                                              000810
            FΔ
                   FSF E+6
                                           FG")
                                                                              000820
             SIGNZN
                         SIGNAN
     3"
                                     Q
9026 FORMAT (1H ,A2,13,A1,17E10.2,0P5F7.3,6PF10.1,17E10.2,
                                                                              000830
 1 0PF7.3,1P3E10.2,0PF8.3,f6.2)
9027 FORMAT("OSUM OF YIELDS OF ALL FISSION PROPUCTS =",15x,1P3E9.2)
                                                                              000840
                                                                              055500
```

```
9028 FURMAT(15,2X,1PE10.3,3X,E10.3,5(2X,E10.3,3X,I>)/(30X,5(2X,E10.3,
                                                                             022300
                                                                             0 23310
            3x, 15)))
 9029 FORMAT ("INON-ZERO MATHIX ELEMENTS AND THEIR LUCATIONS"/
                                                                             022320
                               CAP(I)
                                                                             022330
                                                              (ل, A (1)
                                            A(I,J)
     1" I
                 DIS(I)
                                                        A(I,J)
                                                                         11) 022340
                                   A(I,J)
     2J
              A(I+J)
     FORMAT (63HOSUM OF YIELDS UF ALL FISSION PHODULTS
9030
              ,5(E9,2,1X))
                                                                             000860
     FURMAT(1H ,A2,13,A1,17E10.2,075F7.3,17E10.2,07F7.3,17E10.2,
9033
                                                                             000870
        OPF7.3,1P2E10.2,0P2t7.3(F8.3)
 9034 FURMAT (17, F9, 3, 11, 5F5, 3, 1RE9, 2, 0P2F5, 3, F7, 3, 2E6, 0)
                                                                             022420
                                                                             022430
 9035 FORMAT (7X, F9.2, 3F5.3, F9.2, 2F5.3, F9.2, 3F5.3, 5x, 11)
                                                                             022440
 9036 FORMAT (20A4)
                                                                             000890
9037 FORMAT (7X, 2F9, 2, F5, 3, 4F9, 2, F4, 1, F9, 2, I1)
                                                                             022460
 9038 FURMAT (7X, 2F9.2, F5.3, 3F9.2, 4X, II)
 9039 FORMAT("0 WARNING, MUUT OF RANGE IN NUDATA, =" 15)
                                                                             022470
 9040 FORMAT( 7x, F9.2, 3F8, 6, F6.2, 2F3.1, F9.2, 3F5.3, 5x, I1)
                                                                             022480.
 9041 FURMAT ("O NON HAS EXCEEDED 2500, EQUAL TO "219)
                                                                             022490
                                                                             022500
      END
                                                                             022510
#DECK CULLECT
      SUBROUTINE COLLECT (TMU, CWASTE, ITOT)
      COMMON/EU/XTEMP(800), XNEW(10,800), B(800), P(800)
                                                                             022550
      DIMENSION CWASTE (800)
                                                                             022560
      IF (TMB LT.1) RETURN
                                                                             022570
      DO 10 I=1, ITOT
                                                                             022580
      B(I)=CWASTE(I)
                                                                             022590
 10
      XTEMP(I)=0.0
                                                                             022600
      CALL DECAY(1,TMB,ITOT)
      CALL TERM(TMB,1,ITOT)
                                                                             022620
      CALL EQUIL (1, ITOT)
                                                                             022630
      00 S0 I=1,I]OT
                                                                             022640
      CWASTE(I) = XNEW(1,I)/TMB
 20
                                                                             022650
      RETURN
                                                                             022660
      END
                                                                             022670
*DECK STORAG
      SUBROUTINE STORAG (TMB: CWASTE, ITOT)
      CUMMON/EQ/XTEMP(800), XNEW(10, 800), B(800), P(800)
                                                                             022710
      DIMENSION CWASTE (ITOT)
                                                                             022720
      IF (TMB LT.1) RETURN
                                                                             022730
      DELT=TMB
                                                                             022740
      DO 10 I=1, ITOT
                                                                             022750
      以(I)=0.0
                                                                             022760
 10
      XTEMP(I)=CWASTE(I)
                                                                             022770
      CALL DECAY(1,DELT,ITOI)
      CALL TERM (TMB, 1, ITOT)
                                                                             022790
      CALL EQUIL (1.ITOT)
                                                                             055800
      00 20 I=1.1TOT
                                                                             022810
      CWASTE(I) = XNEW(1.1)
 20
                                                                             028820
      RETURN
                                                                             022830
      END
                                                                             022840
*DECK BLKDATI
                                                                             022850
      PROGRAM BLOCK DATA
                                                                             022860
      BLOCK DATA BLKDATI
                                                                             022870
      INTEGÉRELE (99), STA(2)
                                                                             022880
      COMMON/LABEL/ ELE.STA
      16","ALH, "SI", " PH, " S", "CL", "AR", " K", "CA", "SC", "TI", " V", "CR", "MN022900
     2","FE","CO","NI","CU","ZN","GA","GE","AS","SE","BR","KR","RB","RB","SR"022910
     3," YH, "ZR", "NB", "MOH, "TC", "RU", "RH", "PD", "AG"; "CD", "IN", "SN", "SB", 0,22920
     4"TE", " I", "XE", "CS", "BA", "LA", "CE", "PR", "ND", "PM", "SM", "EU", "GD", "022930
     5TB#, #PY#, "HOH, #ERH, #TMH, #YBH, #LUH, #HFH, #TAH, # WH, #REH, #USH, #IRH, #P022940
     6T", "AU", "HG", "TL", "PB", "BI", "PO", "AT", "RN", "FK", "RA", "AC", "TH", "PA022950
     7"," U","NP","PU","AM","CM","BK","CF","ES"/
                                                                             022960
                                                                             022970
      DATA STA/" "."M "/
```

```
022980
      END
                                                                             022990
*DECK HALF
                                                                             023000
      SUBROUTINE HALF (A.I)
      SUBROUTINE HALF CONVERTS DALF-LIFE TO DECAY CUNSTANT (1/SEC)
                                                                             023010
C
                                                                             023020
      DIMENSION C(9)
      DATA C/6.9315E-01,1.1552E-02,1.9254E-04,8.0229E-06,2.1965E-08,0.0.0.23030
              2.1965E-11,2.1965E-14,2.1965E-17/
                                                                             023040
      IF (A.GT.0.0) GO TO 10
                                                                             023050
                                                                             023060
      IF (I.EQ.6) GO TO 20
                                                                             023070
      A=9.99
                                                                             023080
      RETURN
                                                                             023090
      8=C(I)/A
 10
                                                                             023100
      RETURN
                                                                             023110
 20
      A=0.0
                                                                             023120
      RETURN
                                                                             023130
      END
                                                                             023140
*DECK NOAH
                                                                             023150
      SUBROUTINE NOAH (NUCLIENAME)
      SUBROUTINE NOAH CONVERTS SIX DIGIT IDENTIFIER TO ALPHAMERIC SYMBOL 0,23160
C
                                                                             023170
      INTEGERNAME (3)
      INTEGERELE (99), STA(2)
                                                                             023180
                                                                             053100
      COMMON/LABEL/ ELE.STA
                                                                             023200
      IS=MOD(NUCLI,10)+1
                                                                             023210
      NZ =NUCLI/10000
                                                                             053220
      MW=NUCLI/10-NZ #1000
                                                                             023230
      NAME (1) = ELE (NZ)
                                                                             023240
      NAME (2) =MW
                                                                             023250
      NAME(3) = STA(IS)
                                                                             023260
      RETURN
                                                                             023270
      END
```

CHAPTER 4. DATA FOR RADIOACTIVE SOURCE TERM CALCULATIONS FOR PRESSURIZED WATER REACTORS (PWR's)

This chapter lists the information needed to generate source terms for PWR's. The information is provided by the applicant and is consistent with the contents for the Safety Analysis Report (SAR) and the Environmental Report (ER) of the proposed pressurized water reactor. This information constitutes the basic data required in calculating the releases of radioactive material in liquid and gaseous effluents (the source terms). All data are on a per-reactor basis.

4.1 GENERAL

1. The maximum core thermal power (MWt) evaluated for safety considerations in the SAR.

Note: All the information required in calculating the releases should be adjusted to this power level.

2. The quantity of tritium released in liquid and gaseous effluents (Ci/yr per reactor).

4.2 PRIMARY SYSTEM

- 1. The total mass (lb) of coolant in the primary system, excluding the pressurizer and primary coolant purification system, at full power.
- 2. The average primary system letdown rate (gal/min) to the primary coolant purification system.
- 3. The average flow rate (gal/min) through the primary coolant purification system cation demineralizers.

Note: The letdown rate should include the fraction of time the cation demineralizers are in service.

4. The average shim bleed flow rate (gal/min).

4.3 SECONDARY SYSTEM

- 1. The number and type of steam generators and the carryover factor used in the evaluation for iodine and nonvolatiles.
- 2. The total steam flow rate (lb/hr) in the secondary system.
- 3. The mass of liquid in each steam generator (1b) at full power.
- 4. The primary-to-secondary system leakage rate (1b/day) used in the evaluation.

- 5. Description of the steam generator blowdown purification system. The average steam generator blowdown rate (lb/hr) used in the evaluation.
- 6. The fraction of the steam generator feedwater processed through the condensate demineralizers and the DF's used in the evaluation for the condensate demineralizer system.
- 7. Condensate demineralizers
 - a. Average flow rate (lb/hr);
 - b. Demineralizer type (deep bed or powdered resin);
 - c. Number and size (ft³) of demineralizers;
 - d. Regeneration frequency;
 - e. Indication whether ultrasonic resin cleaning is used and the waste liquid volume associated with its use; and
 - f. Regenerant volume (gal/event) and activity.

4.4 LIQUID WASTE PROCESSING SYSTEMS

- 1. For each liquid waste processing system, including the shim bleed, steam generator blowdown, and detergent waste processing systems, provide in tabular form the following information:
 - a. Sources, flow rates (gal/day), and expected activities (fraction of primary coolant activity) for all inputs to each system.
 - b. Holdup times associated with collection, processing, and discharge of all liquid streams.
 - c. Capacities of all tanks (gal) and processing equipment (gal/day) considered in calculating holdup times.
 - d. Decontamination factors for each processing step.
 - e. Fraction of each processing stream expected to be discharged over the life of the plant.
 - f. For demineralizer regeneration, provide time between regenerations, regenerant volumes and activities, treatment of regenerants, and fraction of regenerant discharged. Include parameters used in making these determinations.
 - g. Liquid source term by radionuclide in Ci/yr for normal operation, including anticipated operational occurrences.

2. Provide piping and instrumentation diagrams (P&ID's) and process flow diagrams for the liquid radwaste systems along with all other systems influencing the source term calculations.

4.5 GASEOUS WASTE PROCESSING SYSTEM

For the waste gas processing system, provide the following:

- The method of stripping gases from the primary coolant, the volumes (ft³/yr) of gases stripped from the primary coolant, the bases for these volumes.
- 2. Description of the process used to hold up gases stripped from the primary system during normal operations and reactor shutdown. If pressurized storage tanks are used, include a process flow diagram of the system indicating the capacities (ft³), number, and design and operating storage pressures for the storage tanks.
- 3. Describe the normal operation of the system, e.g., number of tanks held in reserve for back-to-back shutdown, fill time for tanks. Indicate the minimum holdup time used in the evaluation and the basis for this number.
- 4. If HEPA filters are used downstream of the pressurized storage tanks, provide the decontamination factor used in the evaluation.
- 5. If a charcoal delay system is used, describe this system and indicate the minimum holdup times for each radionuclide considered in the evaluation. List all parameters, including mass of charcoal (lb), flow rate ft /min), operating and dew point temperatures, and the dynamic adsorption coefficients for Xe and Kr used in calculating holdup times.
- 6. Provide piping and instrumentation diagrams (P&ID's) and process flow diagrams for the gaseous radwaste systems along with other systems influencing the source term calculations.

4.6 VENTILATION AND EXHAUST SYSTEMS

For each building housing systems that contain radioactive materials, the steam generator blowdown system vent exhaust, gaseous waste processing system vent, and the main condenser air removal system, provide the following:

- 1. Provisions incorporated to reduce radioactivity releases through the ventilation or exhaust systems.
- 2. Decontamination factors assumed and the bases (include charcoal adsorbers, depth of charcoal beds, HEPA filters, and mechanical devices).
- 3. Release rates for radioiodine, noble gases, and radioactive particulates (Ci/yr), radioactive particulate size distribution, and the bases.

- 4. Release point description, including height above grade, height above relative location to adjacent structures, relative temperature difference between gaseous effluents and ambient air, flow rate, velocity, and size and shape of flow orifice.
- 5. For the containment building, the building free volume (ft³) and a thorough description of the internal recirculation system (if provided), including the recirculation rate, charcoal bed depth, operating time assumed, and mixing efficiency. Indicated the expected purge and venting frequencies and duration and continuous purge rate (if used).

APPENDIX A

LIQUID SOURCE TERM CALCULATIONAL PROCEDURE FOR REGENERANT WASTES FROM DEMINERALIZERS OTHER THAN CONDENSATE DEMINERALIZERS

Often in PWR radwaste systems, demineralizers other than the condensate demineralizers may undergo regeneration, for example, the radwaste demineralizer in the dirty waste system. The PWR-GALE Code can calculate the liquid effluent resulting from periodic regeneration of non-condensate demineralizers by following the procedure outlined below.

1. Input to Cards 1-11 and Cards 27-42

A separate computer run for calculating the regeneration waste effluent from non-condensate demineralizers is required. Cards 1-11 should be filled out as indicated for the specific plant in Sections 1.5.2.1 through 1.5.2.11 of this report. Also Cards 27 through 41 may be left blank (except that values of 1.0 must be entered for Card 28 entries). Card 42 should be left blank.

2. Input to Cards 12-26

The only liquid source term data cards completed (Cards 12-26) should be the three card sets used in the input data for the stream in which the demineralizer to be regenerated is located. The remaining card sets should have a zero entered for the input flow rate.

a. Input Flow and Activity (Card 12, 15, 18, 21 or 24)

The input flow rate and input activity should be the average daily input flow rate and input activity processed through the demineralizer to be regenerated. For example, if the demineralizer to be regenerated is used to process a shim bleed waste stream, the total input flow rate might be 1440 gallons per day.

Note that it is <u>not</u> the flow rate and activity which is due to the regenerant waste which is entered, it is the normal flow rate and activity through the component to be regenerated which is entered.

b. Regeneration Frequency (Card 14, 17, 20, 23 or 26)

Enter the time between regenerations in days as the "collection time." If a regeneration frequency is stated by the applicant, it may be used; otherwise the following frequency may be used:

TABLE A-1

Demineralizer Service Regeneration Fre		
Primary Coolant Letdown	180 days	
Boron Recovery System	180 days	
Equipment Drain Wastes	*	
Floor Drain Wastes	*	
Steam Generator Blowdown	90 days	

* Regeneration frequency is calculated by dividing the waste quantity (gallons) by the waste flow rate in gallons per day. The waste quantity is 25000 gal/ft times the volume in ft of resin for equipment drain waste and 2000 gal/ft times the volume in ft of resin for floor drain waste. The calculated values of 25,000 and 2,000 gal/ft of resin for the waste are based on 12,000 g $^{\rm CaCO}_3$ ion exchange capacity per ft of resin and 5 $_{\mu}$ mho/cm and 50 $_{\mu}$ mho/cm average conductivity for equipment and floor drain liquid wastes.

By inputting the normal flow rate and activity in Item a and the regeneration frequency as the collection time in Item b the PWR-GALE Code will accumulate <u>all</u> of the activity processed through the demineralizer during its normal operation and decay the activity as a function of the time over which it was collected.

c. Process Time and Fraction Discharged

Use the same "process time" and "fraction discharged" as indicated for the stream in which the regeneration wastes are processed as indicated in Section 1.5.2.12.4 of this document.

d. Decontamination Factors (Card 13, 16, 19, 22 or 25)

The decontamination factors entered should consider radionuclide removal by the equipment used to process the regenerant wastes using the normal source term procedures of 1.5.2.12.2. In addition, the decontamination factors entered should be used to adjust the source term for the fraction of the activity in the process stream flowing through the demineralizer during normal operation which is not removed by the demineralizer.

e. Sample Case

A demineralizer is used to process shim bleed waste and is to be regenerated. The normal flow rate for the demineralizer is 1440 gpd and the activity is calculated in the PWR-GALE Code. The regenerant wastes will be processed through an evaporator and discharged.

Fill in the Cards 12-14 in the following manner:

Card 12

Spaces 18-41 enter - shim bleed demin regen Spaces 42-49 enter - 1440.0

Card 13

The wastes will be processed through an evaporator which will provide the following DF's according to Table 1-4 of Section 1.5.2.12.2.

I -10^{2} Cs, Rb -10^{3} Others -10^{3}

While in operation, referring to Table 1-4 of Section 1.5.2.12.2 demineralizer DF's are:

I - 10 Cs, Rb - 2 Others - 10

Therefore, for "I" and "Others," 90% of the activity processed through the demineralizer is removed by the resins and no adjustment is needed. Only 50% of the Cs and Rb in the waste stream is removed by the resins, however, so the DF entered for Cs should be adjusted. Thus, the DF's entered on Card 13 would be:

I - 100.0 Cs, Rb - 2000.0 Others - 1000.0

Card 14

Spaces 29-33 "Collection Time." Using the value from Table A-1 of 180 days for the regeneration frequency

Enter 180.0 days in spaces 29-33.

Use the same "Process time" and "fraction discharged" as is indicated for the stream in which the regeneration wastes are processed as indicated in Section 1.5.2.12.4 of this report.

Note: If there is more than one stream for which non-condensate regenerant demineralizer is used, follow the same procedures explained under item A2 for the other stream or streams.

3. Components in Service

- a. If the waste is processed through a component other than a regenerable demineralizer prior to processing by the regenerable demineralizer, the activity in the steam entering the demineralizer will be less than the activity entered as described above. To compensate for this difference, the DF's for the regenerant waste calculation should be adjusted in a manner similar to that described above. The product of the DF's should be used.
- b. If two regenerable demineralizers are used in series, follow the procedure in a above. Adjust the DF for nuclides removed from the waste stream, by using the product of the DF's for two demineralizers in series, i.e., consider the two demineralizers as one larger demineralizer.

4. Use of Computer Calculated Result

Combine the values printed out in the individual liquid source term columns for the system in which the demineralizer is being regenerated (not the adjusted total value) with the normal liquid source term run values. Do not use the adjusted total value from the right hand column since the source term run to which the regenerant waste run will be added has already been adjusted.

REFERENCES

- 1. American National Standards Source Term Specification, ANSI N237-1976, American National Standards Institute.
- 2. Regulatory Guide 1.140, "Design, Testing, and Maintenance Criteria for Normal Ventilation Exhaust System Air Filtration and Adsorption Units of Light-Water-Cooled Nuclear Power Plants," March 1978, Office of Standards Development, U. S. Nuclear Regulatory Commission.
- 3. Letter from H. Till, Electric Power Research Institute, to J. Collins, NRC, March 8, 1978.
- 4. NUREG/CR-0140, "In-Plant Source Term Measurements at Ft. Calhoun Station, Unit 1," July 1978.
- 5. NUREG/CR-0715, "In-Plant Source Term Measurements at Zion Station," May, 1979.
- 6. NUREG/CR-1629, "In-Plant Source Term Measurements at Turkey Point Station Unit 3 and 4," September, 1980.
- 7. Electric Power Research Institute Report EPRI NP-939, "Sources of Radioiodine at Pressurized Water Reactors," November, 1978.
- 8. Westinghouse Electric Corporation, WCAP-8253, "Source Term Data for Westinghouse Pressurized Water Reactors," July, 1975.
- 9. Letter from T. M. Anderson, Westinghouse Electric Corp. to J. Collins, NRC, April 17, 1979.
- 10. Combustion Engineering, CENPD-67, Rev. 1, "Iodine Decontamination Factors During PWR Steam Generation and Steam Venting," J. A. Martucci, November, 1974.
- 11. Combustion Engineering, CENPD-67, Addendum 1P, "Iodine Decontamination Factors During PWR Steam Generation and Steam Venting," November 1974.
- 12. Westinghouse Electric Corporation, WCAP-8215, "Steam Side Iodine Transport Study at Point Beach Unit No. 1 of Wisconsin Electric Power Company," October 1973.
- 13. General Electric Company, Figure 5 of Draft Report, "Fission Product Transport Measurements at Brunswick 2," C. Lin and H. Kenitzer (to be published).
- 14. NUREG-0017, "Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Pressurized Water Reactors (PWR-GALE Code)," April 1976.

- 15. NUREG-0016, Rev. 1, "Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Boiling Water Reactors (BWR-GALE Code)," January 1979.
- 16. Pilgrim 2 Preliminary Safety Analysis Report (PSAR) (Docket No. 50-471), Appendix 11E, Amendment 12, November 1974.
- 17. Letter from K. Seyfrit, Technical Assistance Branch, AEC, Regulatory Operations, to G. Lainas, Containment Systems Branch, AEC, Licensing "PWR Purging and Venting Experience," September 3, 1974.
- 18. NUREG-75/087, "U. S. Nuclear Regulatory Commission Standard Review Plan," Section 6.2.4, "Containment Isolation System," Rev. 1, November 1978.
- 19. Rochester Gas and Electric Corporation, "Radioactivity in the Containment Building Atmosphere of Ginna Station," A. R. Piccot, 1971.
- 20. Nuclear Containment Systems, Incorporated, NCS-1101, "Dynamic Adsorption Coefficient and Its Application for Krypton-Xenon Delay Bed Design," J. L. Kovach, Draft, November 1971.
- 21. L. R. Michaels and N. R. Horton, "Improved BWR Offgas Systems," 12th Air Cleaning Conference, San Jose, California, August 1972.
- 22. W. E. Browning et al., "Removal of Fission Product Gases from Reactor Offgas Streams by Adsorption," ORNL Central Files Number 59-6-47, June 11, 1959.
- H. J. Schroeder et al., "Offgas Facility at the Gundremmingen Nuclear Power Plant," <u>Journal for Nuclear Engineers and Scientists</u>," No. 5, May 1971, pp. 205-213.
- 24. Letter from Kerndraftwerk Lingen GMBH to Peter Lang, North American Carbon, "Gas Delay System at KWL," December 30, 1970.
- 25. General Electric Company, NEDO-10751, "Experimental and Operational Confirmation of Offgas System Design Parameters," C. W. Miller, proprietary report, October 1972.
- 26. Letter from J. L. Kovach, Nuclear Containment Systems, Inc., to V. Benaroya, AEC, "Gas Delay Systems," December 1, 1971.
- 27. D. P. Siegwarth et al., "Measurement of Dynamic Adsorption Coefficients for Noble Gases on Activated Carbon," 12th Air Cleaning Conference, August 1972.
- 28. General Electric Co., NEDO-20116, "Experimental and Operational Confirmation of Offgas System Design Parameters," C. W. Miller, October 1973.

- 29. ANSI/ANS 55.6-1979, "American National Standard Liquid Radioactive Waste Processing System for Light Water Reactor Plants," American National Standards Institute, April 1979.
- 30. NWT 133-1, "OTSG Secondary Water Chemistry Study," Nuclear Water and Waste Technology, March 1978.
- 31. NWT 133-2, "OTSG Secondary Water Chemistry Study," Nuclear Water and Waste Technology, June 1978.
- 32. NUREG/CR-0143, "The Use of Ion Exchange to Treat Radioactive Liquids in Light-Water-Cooled Nuclear Power Plants," August 1978.
- 33. NUREG/CR-0142, "The Use of Evaporation to Treat Radioactive Liquids in Light-Water-Cooled Nuclear Power Plants," September, 1978.
- 34. NUREG/CR-0141, "The Use of Filtration to Treat Radioactive Liquids in Light-Water-Cooled Nuclear Power Plants," September 1978.
- 35. "A Study of Reverse Osmosis Applicability to Light Water Reactor Radwaste Processing," J. Markind, T. Van Tran, November 1978.
- 36. W. R. Greenway et al., "Treatment of Radioactive Steam Generator Blowdown," 33rd Annual Meeting, International Water Conference of the Engineers' Society of Western Pennsylvania, October 24-26, 1972.
- 37. C. Kunz et al., "C-14 Gaseous Effluent From Pressurized Water Reactors," CONF-741018, Symposium on Population Exposures, Proceedings of the Eighth Midyear Topical Symposium of Health Physics Society, Knoxville, Tennessee, October 21-24, 1974, pp. 229-234.
- 38. Westinghouse Electric Corporation, WCAP-7702, "Interim Report on Study of Iodine Transport in PWR Steam Systems," May, 1971.
- 39. Letter from T. M. Anderson, Westinghouse Electric Corp., to R. Bangart, NRC, November 8, 1979.
- 40. Letter from J. J. Barton, Metropolitan Edison Co., to J. Collins, NRC, December 4, 1979.
- 41. U.S.E.P.A., EPA-520/5-76-003, "Radiological Surveillance Studies at the Oyster Creek BWR Nuclear Generating Station," June 1976.
- 42. "In-Plant Source Term Measurements at Prairie Island Nuclear Generating Station." To be published as a NUREG document.
- 43. "In-Plant Source Term Measurements at Rancho Seco Station," NUREG/CR-2348, October 1981.