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ABSTRACT 

A Reflected Kinetics Model for Nuclear Space 

Reactor Kinetics and Control Scoping Studies. (May 1986) 

Kenneth Edward Washington, B.S., Texas A&M University; 

M.S., Texas A&M University 

Chairman of Advisory Committee: Dr. Gerald A. Schlapper 

Renewed interest in space nuclear applications over the past several years has 

motivated the study of a specialized reactor kinetics model. Long term civilian and 

dedicated military missions warrant the consideration of a kinetics model favorable 

for study of the feasibility of automatic control of these devices. The need to 

bridge this gap between reactor kinetics and automatic control in conjunction with 

the control drum design characteristic of next generation "paper" space reactors 

inspired the development of a new Reflected Kinetics (RK) model. An extension of 

the conventional point kinetics (PK) model was done in order to explicitly correlate 

leactivity and the reflector/absorber control drums characteristic of space nuclear 

reactor designs. Open loop computations and numerical comparisons to analytic PK 

equations indicated that the RK model is a functional alternative to "equivalent bare 

point kinetics" in the analysis of moderate transients. It was shown that variations 

in the RK reflector-to-core transfer probabilities and coolant flow rate do indeed 

drive the transient diff"erently than the lumped insertion of equivalent reactivity 

amounts in the core. These computations illustrated the potential importance 

of the utilization of variable coolant flow rate to aid control in space reactor 
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systems limited by minimal drum reactivity worth. Additionally the Doppler 

reactivity shutdown mechanism was concluded to be the primary reliable means 

of safety shutdown in such systems. The structure of the RK equations proved 

to be advantagous for integration of automatic control. Unity feedback and two 

existing control techniques, state feedback and modal, were applied in the solution 

of step and ramp servo mechanism problems. Advantages and disadvantages of 

state feedback control and the recently developed modal control as applied to the 

RK model were identified. Numerical computations of the resulting closed loop RK 

equations lead to the conclusion that the drawbacks of a large closed loop system and 

blind eigenvalue assignment in the state feedback case outweigh the advantantage of 

definite system stability. Even though stability cannot be guaranteed in the modal 

caise, it was found that the structure of the RK equations was well suited for the 

success of this output control technique. Overall it was found that the application 

of automatic control in space nuclear systems is readily done under the RK model 

due to the structure of the reactivity inputs in the model. The needs for further 

study in the analysis of existing designs and the solution of the nonlinear equations 

were identified. 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

A. Introduction 

Over the past several years, there has been renewed interest in nuclear space 

reactor applications. The concept of using nuclear reactors in space, however, is 

not a new one. Man has been designing nuclear devices for space since the early 

1960's in the forms of radioisotope thermoelectric generators (RTGs). small power 

level reactors, and rocket propulsion systems'. This early nuclear space effort came 

to a halt in 1973. Much of the recent interest in nuclear energy in space has been 

caused by the success of the Space Shuttle program. The Space Shuttle opens the 

door for long duration civilian and military space missions. One major obstacle 

in the development of such technology is a feasible source of energy for the space 

environment. This need has promoted the consideration of nuclear power for space 

applications. 

B. Objectives 

One of the most important considerations in using nuclear reactors in space is 

that of reactor kinetics and control. Certain aspects of space reactors that differ 

from conventional light water reactors (LWRs) include: the replacement of control 

rods with reflecting control drums, a higher energy neutron spectrum, and more 

demanding power responses. These differences warrant special considerations in 

the development of a reactor kinetics model. Furthermore, potential military space 

needs also warrant the consideration of intelligent ways to manipulate the control 

This Dissertation follows the style of Nuclear Science and Engineering 
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inputs of such complicated systems. UnfortunateK the regulatory structure that 

exists in the nuclear industry has limited the utilization of modern control methods 

in home based nuclear systems. This has stunted the development and use of control 

techniques as applied to the nuclear reactor kinetics and has therefore also had a 

detrimental effect on this phase in the development of the space nuclear program. 

Other factors that have prevented the development of automatic controllers for 

space nuclear applications are the difficulties posed by the integration of the point 

kinetics equations and existing modern multivariable control models. The objective 

of this reseatrch is to develop a model that offers an alternative to the point kinetics 

(PK) modelling approach in the analysis of space reactor kinetics and control 

studies. Modelling effort will focus on the explicit treatment of control drums as 

reactivity input devices so that the transition to automatic control can be smoothly 

done. The proposed model is developed for the specific integration of automatic 

control and the solution of the servo mechanism problem. The integration of the 

kinetics model with an automatic controller will provide a useful tool for performing 

space reactor scoping studies for different designs and configurations. Such a tool 

should prove to be invaluable in the design phcise of a space nuclear system from 

the point of view of kinetics and control limitations. 

Before discussing the proposed system model and control methods, the litera

ture will be reviewed in two areas. The first area is that of nuclear reactor kinetics 

models. Existing control techniques applied to nuclear systems and other multivari

able methods that appear to be well suited for nuclear systems are then reviewed. 

C. Literature Review : Reactor Kinetics Models 

A multitude of models and solution methods exist in the literature for the 
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study of conventional light water reactor kinetics. Probably the most widely known 

and used of these approaches is the point kinetics (PK) model. The simplicity 

yet reasonable accuracy of this model when applied to thermal reactors has been 

the source of its extreme popularity. Nuclear Reactor Analysis, by Duderstadt and 

Hamilton^, and Dynamics of Nuclear Reactors by Hetrick^ give good reviews of 

the theory, application, and limitations of the PK model. The main limitation 

of the standard PK approach from the space reactor perspective is the bare 

reactor assumption. Another limitation is that the reactivity expression in the 

PK equations is lumped into the "reactivity" parameter which must be known in 

order to numerically compute the transient. These limitations make it difficult to 

treat the effect of controlling reflectors. 

The success of the PK approach has dictated its modification and extension 

into many different forms. Among the most common of these are the adiabatic 

and quasistatic methods.^~^. While these methods relax the fundamental mode 

limitation, they still do not treat external reflectors as a direct means of reactivity 

control. Wasserman" developed a simple model to account for reflected neutrons 

by treating them as additional delayed neutron groups. The disadvantage of this 

approach is that information regarding the reaction rates in the reflectors are lost. 

This information is needed in order to simplify the use of automatic control in 

the positioning of the reflectors. Various models with special application to coupled 

reactor cores are presented in Coupled Reactor Kinetics^. While many of the models 

are both simple and applicable to reflected systems, the consideration of automatic 

control was never made. 

Other reactor kinetics models involve spatial and nonlinear effects'°~'^, modal 

expansions'^'''*, and finite difference techniques'^''^. A comprehensive overview of 



space-time kinetics is found in Space-Time Nuclear Reactor Kinetics by Stacey' . 

D. Literature Review : Nuclear 
Applications of Automatic Control 

General concepts in multivariable control theory can be found in Linear System 

Theory and Design by Chen'*. Most of the work done in the nuclear field in 

automatic control has been limited to conventional light water reactors (LWRs). 

Owens'^ addresses the subjects of controllability and observability in cylindrical 

reactors. Weaver and Vanasse^*^ applied modern control theory techniques to 

multiregion reactors using full state feedback. Oohori^' studied time optimal control 

for coupled core reactors which could be modified to work with space reactor designs. 

Numerous authors have presented control schemes for the solution of the Xenon 

oscillation problem^^"^^; however, these control schemes are not applicable to the 

proposed problem since Xenon oscillations are not an anticipated concern in space 

reactors. Tsuji^^ and Cherchas^^ present control schemes with application to load 

following of LWR reactors. Miller^^ developed a controller for the study of the effects 

of sensor failure in LWR systems. These methods are limited to LWR analysis. In 

order to consider the treatment of control drums modifications of these models 

would have to be made. Furthermore, often the rigor presented in these models is 

unwarranted since in a compact, medium spectrum space reactor, the point reactor 

model is adequate. On the other hand, the bare core limitation of the PK equations 

and other known variations are too restrictive for our purposes. 

E. Proposed Kinetics Model 

Perhaps the most important thing to remember in the development of a space 

reactor kinetics model is that the reactivity inputs that provide power level changes 
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are primarily due to the reflecting control drums. Furthermore, the effect of the 

control drums on the core neutronics may change as the power sequence progresses. 

The model proposed in this research is an extension of the traditional point kinetics 

approach to account for the influence of these reflecting control drums on core 

reactivity directly. If the reflectors are taken to be entities that either add or take 

away neutrons from each generation, then the point kinetics equations can be recast 

with a few additional terms. These additional terms correspond to the injection of 

neutrons into the core from the reflectors and the leakage of neutrons from the core 

to the reflectors. Additional equations also will appear which describe the balance 

of neutrons in each of the controlling reflectors. The resulting set of equations 

can be written without reference to a reactivity input since the only external 

sources of neutrons to the core multiplying medium are the reflecting control drums. 

Using the above model, we will be able to compute responses of various open loop 

systems suited for space reactor applications with a minimum of computational 

effort. This model will provide the basis of the development of more comprehensive 

system models that include Doppler feedback, heat removal, thermophysical effects, 

and automatic control applications. Thermal modelling will be handled with the 

lumped parameter approach. This will involve the homogenization of the core and 

coolant regions. The structure of the model described above will permit the explicit 

treatment of temperature feedback effects on material properties and the leakage of 

neutrons from the core. The transition to automatic control is demonstrated by the 

application of two known controller methodologies. The first is the well studied state 

feedback approach. As an alternative to the brute force state feedback approach, 

modal control developed by Andry^* and successfully applied to the control of 

aircraft will be considered. This form of output feedback control will prove to be 



6 

particularly well suited for the solution of the RK servo mechanism problem. 

F. Numerical Methods 

The linear dynamical equations in open loop and closed loop form are usually 

written in matrix notation as, 

A' = AX -^ S, S = BU. (1.1) 

Conventional methods of solving this matrix equation include various finite differ

ence (FD) routines of which Runge Kutta is probably the most common. However, if 

the equations are stiff (both large and small eigenvalues in the A matrix), FD meth

ods require extremely small time steps for the convergence to accurate solutions. 

This can lead to the excessive use of computer time in obtaining accurate late time 

solutions. Considerable success has been demonstrated in solving linear time invari

ant equations with an exponential operator technique referred to as ASH""'. More 

recent applications of ASH have also included the solution of stiff, highly coupled 

dynamical equations resulting from high order spatial modelling of partial differen

tial equations^°'^'. The dynamical equations resulting from the development of the 

kinetic model here is expected to present the same difficulties as these previously 

studied problems. Therefore, a computational advantage may exist in the use of 

the ASH exponential operator method for the solution of the developed kinetics 

equations. The ASH method applied to the linear RK dynamical equations will 

be compared to Runge Kutta methods with regard to computational efficiency and 

solvability. A straight-forward extension of the ASH methodology is also developed 

that allows for the ready treatment of elementary time variant source terms. 



CHAPTER 11 

DERIVATION OF THE 

REFLECTED KINETICS MODEL 

A. Introduction 

Before one can adequately model the behavior of any system, the aspects which 

are to be the focus of analysis must be identified. In particular the features of 

the model that set it aside from other systems should be considered. Since the 

rigorous treatment of all the phenomena that occur during a reactor transient is 

not very practical, the present research will focus on the development of a model that 

will account for the differences between the control of proposed space reactors and 

conventional LWR reactors. Such a model will provide an alternative to the point 

kinetics equations in the analysis of space reactors with exterior control drums. 

Furthermore, the structure of the derived model will prove to be well suited for 

the use of automatic controllers. This chapter is limited to the modelling of the 

neutronic behavior of the core and reflector regions. This will provide a foundation 

upon which the thermal transport model and automatic controllers can be built. 

Discussion of this theory is reserved for later chapters. Three aspects common to 

most space reactor designs that warrant special consideration include: 

• A space reactor typically obtains positive and negative reactivity input by 

means of reflecting/absorbing control drum movement. 

• The application of such reactors in the space environment usually will dictate 

the need to change operating power levels more suddenly and rapidly than 

typically encountered in a power reactor. 

• The average neutron energy in reactors of the type considered here is typically 



10 KeV as opposed to the thermal energy associated with large power reactors. 

From the point of view of kinetics and control, the first point is the most signif

icant and therefore will be the driving motivation behind the model development. 

The second point provides the primary motivation behind the later consideration 

of the feasibility of automatically controlled space reactors. The final point renders 

the point core simplification in the developed model valid. 

The reflected kinetics (RK) model is derived by extending the standard PK 

equations to account for the effect of movable control reflectors. This will allow 

certain desirable features of the PK approach to be maintained while those that 

conflict with the needs of our model are modified accordingly. In order to do this, 

it will be necessary to examine the point kinetics equations from a different point 

of view than that typically found in the literature. 

B. Point Kinetics Equations 

The derivation of the PK equations usually involves the following assumptions: 

1. Neutron energies belong to a single energy group. 

2. Fundamental mode in space has been achieved thereby allowing separation of 

space and time. 

3. The reactor core is bare (ie, no refiectors). 

4. Delayed neutron precursors are grouped into predefined groups. 

5. Delayed neutron precursors do not diffuse before they decay. 

Under these assumptions the point kinetics equations are easily derived from 

the neutron diffusion equation balance statement. 

1 

n(0-5^A,C.(0 (2.1a) dn 

dt 

p-13 



Table I 

Deflnltlor^ of ComTnonly Used Reactor Kinetics 
Parameters and the RK Transfer Probabilities 

n Neutron I Nurober of delayed N Number of 
density neutron precursors reflectors 

C, Precursor p , Delayed neutron x, Precursor 
density fraction decay constant 

K Infinite multiplication constant 
Kerr Effective multiplication constant 
e Reactivity = (Ke„ - 1.0> / Kw, 
I Lifetime of Neutrons (sec) 
A Mean generation time (sec) = i/Kerr 
Put System non leakage Probability 
Pe Core loss transfer probability 
P,r Transfer probability from core to reflector r. 
Pr Transfer probability from reflector r to core. 

- ^ = ^n(0-A,C.(0 (2.16) 

The parameters in the above equation and other symbols and notation used later 

are given in Table I. 

Hetrick^ derives the PK equations starting from the general neutron transport 

equation and expresses them in more general terms: however, such rigor is usually 

unnecessary. 

For LWR applications, the PK equations are both convenient to work with and 

sufficiently accurate. While the accuracy of the PK method may be sufficient for the 

treatment of space nuclear cores, the differences between LWR's and space reactor 

cores warrant some special considerations. First, the presence of the reflecting 

control drums removes the validity of the bare reactor assumption. Secondly, the 

transients that are expected introduce new difficulties in determining the Keff (or 



p) resulting from certain control input. Additionally, if the control drum reactivity 

worth is lumped into an overall reactivity term as in the PK equations, study of 

the feasibility of the integration of automatic control techniques would be difficult. 

On the other hand, the fundamental mode assumption in the PK equations is also 

applicable to space reactors since such compact reactors with intermediate or fast 

neutron energy spectra exhibit the more rapid transmission of information through 

the system. This results in a relaxation of the fundamental mode assumption as 

can- be seen upon examination of the magnitude of the second harmonic term to 

the first in the derivation of the PK equations from the time dependent neutron 

diffusion equation. 

C. Reflected Kinetics Model 

The RK model is developed as from the main structure of the point kinetics 

equations. The primary modification is done in order to accommodate the inde

pendent reactivity worths of the control drums that are neutronically coupled to 

the core. First it is necessary to look at the PK equations from the perspective of 

neutron flow as shown in Fig. 1. From Fig. 1 an alternate form of the PK equa

tions can be written down immediately by balancing neutrons within a particular 

generation. First we define the neutron production term. Q. as 

^oc'^c(0 ^ 

Coc 
Q3"-'^f~"'")-tA,C,. (2.2) 

t = l 

The PK equations are then written as. 

^^=P,Q-lM (2.3,.) 

^ = M l i / n ( , ) - A , C . « ) . (2.36) 
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Loss 

Fig. 1 Bare Core Neutron Flow Diagran 



This form of the kinetics equation is particular well suited for extension to the 

reflected case. Also note that given the proper definition of P^, equation (2.3) is 

identical to equation (2.1). The Pc definition is discussed following the development 

of the RK equations. 

The flow diagram shown in Fig. 1 can easily be modified to include the effect 

of multiple reflectors as shown in Fig. 2. Given that the transfer probability terms 

(Pc, PFTI and Pr) are defined as shown in Table 1. the neutron balance statements 

of the reflected system are given by, 

^=/.,e-!^-f ^ , (2.4a) 

^ = ^ ^ n S ) - A.C,((). (2.4c) 

where Q is defined by equation 2.2. These expressions represent the balance of 

neutrons in the core, the balance of neutrons in the reflectors, and the balance of 

delayed neutron precursors in the core respectively. Equation 2.4 is the foundation 

for the RK equations. The similarity between these equations and the point kinetics 

equations are obvious. This is mainly due to the preservation of the fundamental 

mode and separation of space and time assumption in both models. Several 

important differing features are now noted. First, these equations are not driven 

by a Keff or p term representing some lumped driving reactivity input. Second, 

the RK equations are dependent on the definition of the transfer probability terms. 

Third, given that Pc, Ppr, Pr, -ft̂ oc, " o and nr are not constant, the RK basic 

equations are nonlinear time-variant in nature. Finally, control drum reactivity 

worth can be treated more explicitly than in the PK equations by direct correlation 
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Fia. 2 Reflected Î .eactor Neutron 
Flow Diagran 



between physical system configuration and the transfer probabilities. The additional 

equations and non-constant transfer probabilities introduced by the modelling of the 

reflectors in the RK equations result in analytic solutions that are more difficult or 

impossible to obtain even for step Pr.Koc- or Pc inputs. 

In order for the RK equations to assume any useful meaning, the transfer 

probabilities must be defined. This will be accomplished in the following section. 

Some simple ways to calculate the numerical values are also suggested. 

D. Definition of Transfer Probabilities 

The Pc transfer probability is defined as the probability that a fission or 

precursor neutron will remain in the core until the next generation. There are 

two subtle differences between Pc and the non-leakage probability {PM)- The 

first pertains to a bare system in that neutrons that leak from the core in future 

generations do not contribute to Pc; however, they are included in PNL- The second 

subtle difference is that in a reflected system. Pc only refers to loss of neutrons from 

the core as opposed to the system as a whole. The advantage of using Pc as opposed 

to a PsL term is the ease at which it allows us to extend the PK equations to the 

RK equations. In order to clarify the relationship between these two probabilities, 

consider the following definitions: 

Keff = KO^PM 

(2.5) 
^ = ^ocPsL 

It can be shown that equation 2.1a becomes, 



If this is equated to the dn ' di expression in equation 2.3. then the following simple 

relationship is obtained after a little algebra. 

P . = / > . v . H l - P . v . ) i ^ (2.7) 

While this expression has little if any computational value, it does provide valuable 

insight as to the physical meaning and magnitude of Pc relative to P.vi. Since Q 

is always positive, the relative magnitude of Pc with respect to Pfn is determined 

by the sign of dn'dt. More importantly, at or near steady state, the difference 

between the two are negligible and for all practical purposes can be taken to be the 

same. Naturally, this is only true for a bare system. When the transition is made to 

reflected systems, more elaborate methods of finding Pc will have to be used such as 

experimental means or Monte Carlo calculations. In section F, a relationship will 

be derived between reactivity (and Keff) and the transfer probabilities, thereby 

defining the non-leakage probability for a reflected system in terms of the transfer 

probabilities. Such a relationship would be needed to find Pc by experimental or 

calculational means. 

The Pfr transfer probability is defined as the relative probability that a neutron 

lost from the core region will appear in any given reflector initially. This term 

can be viewed as an importance factor based upon the geometric configuration of 

the reflectors surrounding the core. For example, a symmetric core with identical 

reflectors totally surrounding the core at equal intervals results in Pfr values given 

by, 

Ppr = ^ (2.8) 
Are/ 

Of course such an ideal situation will rarely if ever exist. Furthermore, non-isotropic 

flux conditions and leakage losses to free space will have an effect on the Pfr 



distribution. 

Perhaps a choice of Pfr that has more physical justification would be the 

relative ratio of the total neutron current into each of the reflectors during typical 

steady state operating conditions. The surface area used in this calculation would 

be the projected area of the surrounding reflector onto the surface of the core. Ppr 

would then be calculated by the following equation assuming the steady state flux 

(or current) was known. 
f. 7•ndA 

/^cnre-7-^'^'4 

The equation above by no means provides a rigorous method of calculating exact 

Pfr values: however, it does provide a good starting point if one needs a value for 

doing scoping calculations of the nature desired here. If more rigor is desired, Monte 

Carlo techniques are suggested. All of the computational results presented in this 

work use the data from the University of Missouri Research Reactor (MURR) that 

was experimentally determined.^^ This system is a doubly reflected system and is 

discussed in greater detail in chapter III. 

Perhaps the most significant of the transfer probabilities from the point of view 

of control are the Pr transfer probabilities. Pr is defined as the probability that a 

neutron lost from a given reflector region will reflect back to the core. Clearly this 

is highly dependent upon the reflecting and absorbing properties of the portion of 

the reflector that faces the core. This can also account for (n,2n) reactions that are 

common in Berryllium (Be) reflectors. A typical design configuration is a reflector 

consisting of Be on one side of the drum and Boron Carbide [B4C) on the other 

side. This offers a means of changing the power level since Be is a good neutron 

reflector and B4C is a good neutron absorber. In such a mode of control, the driving 

reactivity input as modelled by the RK equations is through changes in Pr- For 



most cases of interest, it is assumed that Ppr remains unaltered by control drum 

motion. It is also assumed that Lr is constant. All changes in reflector neutron loss 

resulting from changes in ir are assumed to be accounted for in the Pr probability 

term. 

In light of the above discussion, the RK model can be used in analyzing 

transients by direct change of the transfer probability, Pr. A potential advantage 

exists in this approach since such parameter changes correspond more directly to 

control drum motion than changes in A'e// or p. Reactivity is commonly related 

to control rod position or material property changes by first order perturbation 

techniques. Such perturbation calculations with regard to individual control drum 

position introduce additional room for error particularly for very rapid transients. 

The RK approach removes this indirect link in the modelling process. Furthermore, 

the Pr approach provides a more appropriate environment for the use of an 

automatic controller that will dictate the required reflector control motion. Nominal 

values of Pr can be found by experimentally measuring A'e// for the initial control 

drum position. This requires the development of a relationship relating the transfer 

probabilities to A'e//. This relationship turns out to be closely related to the critical 

condition that is developed later in this chapter. Now that the transfer probabilities 

have taken on more physical meaning, the RK equations can be put into usable form 

by linearizing them about a steady state operating point. 

E. Linearization of the RK Equations 

There are several practical reasons for linearizing the RK equation set devel

oped in the earlier part of this chapter. The most fundamental reason for lineariza

tion is our desire to design a stabilizing feedback controller that will allow robust 



tracking of step and ramp reference signals. Unfortunately, design methods for 

nonlinear systems are either non-existent or are limited to a small range of special 

problems that fall into certain well known categories. .\lso. linearization transforms 

the model equations into a more advantageous form from the point of view of calcu

lating solution trajectories. In particular, linearization allows use of the exponential 

operator method that has proven to be more time efficient than Runge Kutta and 

other finite difference integration techniques. The penalty for linearization is that 

it imposes a limit on the types of transients that can be analyzed without violat

ing the linearization assumptions. In chapter III. the effects of linearization are 

demonstrated for a sample problem. 

The following definitions are utilized in the linearization process: 

ric = rico •*• Suc, n-r — Wru -r firir Ci = C,o — SCt, . , 
K = A'o + 8K Pc = PcO - SPc Pr = Pro - ^Pr- ^ ^ ^ 

For notational simplicity, A'oc is also denoted simply by K. Note that the 

parameters Ppr-, ^r, (-c-, and /3t will be taken to be constant. While this is not 

strictly correct over long periods of time, it is an adequate assumption within the 

time frame of a typical transient. Linearization is done by first inserting equation 

2.10 into the nonlinear RK equations given by equation 2.4. All terms involving 

the product of two differentials or more are then considered to be negligible with 

respect to the other terms. The details of the linearization are included since the 

intermediate steps are used in the derivation of the critical condition in the next 

section. 

First consider linearization of the Q source term. Equation 2.2 is rewritten in 

terms of the differentials as, 

n - Sn ' 
Q = {1- /?)(A'o + SK)^ '- -r Yi MCro - <5C0 (2.11) 



As stated, if we neglect the bKbn^ term, then Q become? Q = Q.. -*- 8Q. where. 

Qo = — r ^ . (2.12a) 
ic. 

6 ( ? = ( 1 - J ) ^ ^ ' ' ^ ' ' " 7 " " ^ ' ^ ' ^ - X : A , 6 C . . (2.126) 

In a similar fashion the following relationships are easily derived: 

PcQ ^ PcoQo -r [PcotQ - 6PcQo), (2.13a) 

P r Q :r Pronro + [PrO^Ur - -JPrTlro). (2.136) 

Koo^c — KoTico - {nco6K ~ bricKi). (2.13c) 

Before the transient begins, the condition of the system neutronics is given by 

equation 2.4 with the time derivatives set to zero. This information stipulates the 

relationship that ric, rir. and C, must have during a steady state (or critical) plant 

condition. It is easily shown that, 

rtro = trPFr[l " Pco)Qo, (2.14a) 

Cio = ^ ^ , (2.146) 

The linearization is completed by inserting the equation 2.13 and 2.14 into equation 

2.4. After a little algebraic manipulation, the linearized RK equations are found to 

be, 

/ D ; ;^ . Ir- "'̂ '•"'jiD '^"'^ y-^ PrO<5nr ^ nrO<5Pr /"o n c ^ 
6nc = Pco<5(? + Ko-j-bPc ' -J- - 2-^ 7 ' (2.15a) 

r 

S'rir = P f r ( l - Pc0)SQ - PprKo'j^SPc - ^ , (2.156) 
Lc Lr 

8C, = i3~6K ' l3rKo^ - X,8C,. (2.15c) 
Lc Lc 



The above kinetics equations are linear, time-invariant descriptions of the space 

reactor power plant. These equations can be written in matrix format as, 

X = Ax — Bu. 

X = i6nc Srir 6C,'^ . (2.16) 

V=\6K SPc 8Pr^ . 

Detailed expressions of the elements of the .4 and B matrices are given in Appendix 

A. These matrices provide the core of the computer codes developed throughout 

this work for the analysis reflected systems with the RK model. 

The conditions for criticality are developed in the following section. This 

will provide a useful relationship between the transfer probabilities and the core 

reactivity, p. ks mentioned before, this is required in order to explain the 

experimental measurement of the Pr transfer probability. It is also required for 

the comparison of the RK model to the PK solution as done in chapter III. 

F. Criticality Conditions 

When the core is in a critical state, the neutron and delayed neutron precursor 

densities are constant in time. This condition is mathematically represented by 

zero time derivatives in the RK equations. Equation 2.4a is set to zero and the 

relationships given by equation 2.14 are inserted so that only the Uco/^c terms 

appear. It can be shown that this simplifies to, 

Kr Pc-(l-Pc)5^PFrPr = 1. (2.17) 

This expression is called the "critical condition" since when the above condition 

exists the reactor is said to be critical. This critical condition stipulates what 



the relationship between the transfer probabilities and the infinite multiplication 

constant (A'oo) must be in such a critical system. The importance of this statement 

is that it defines the value of the infinite multiplication constant, given the initial 

values of the transfer probabilities in an initially critical system. In all of the 

benchmark and actual computations, this relationship is used in order to determine 

the nominal value of A'oc- Since criticality is equivalently defined by A'e// = 1, then 

by definition the steady state non-leakage probability is given by. 

PNL = PC - (1 - Pc) Y. ^ ^ - ^ - (2.18) 
r 

Note that the non-leakage probability is greater for a reflected system than a bare 

one as expected due to the neutron "reflection". It now is assumed that this equation 

is also valid for non steady state conditions. Further insight can be found upon 

linearization of equation 2.18. Linearization procedures are applied as usual to 

give, 

PNLO = PcO + (1 - Pco) Y. ^FrPrO. (2.19a) 

SPNL = 6Pc - E ^^^p^ ru 
r 

( l -Pco)X;PFr<5Pr . (2.196) 

The effective multiplication constant. Keff, can therefore be expressed in terms of 

the linearized non leakage probability as follows, 

Keff =r KOPNLV - KoSPsL * PsLoSK, (2.20) 

If we now assume that we are near critical, the reactivity change is given by the 

change in Keff- . Equation 2.19 is substituted into equation 2.20 above and the 



reactivity change in terms of the transfer probabilities becomes. 

6p = KobPc 1 - Y ^f-^r,' - A - n ( l - P c u ) 5 ^ P F r < 5 P r -

(2.21) 

Pco6K - (1 - Pco)SK Y PfrPru. 
r 

This expression is essential in order to test the validity of the RK equations 

by calculating the equivalent reactivity for a given transfer probability input set. 

Comparisons with an analytic PK solution which requires a numerical value for 

reactivity can therefore be done in order to validate the equations for simple cases. 

G. Summary 

In this chapter we have developed the basic foundation of the Reflected Kinetics 

Model. This was accomplished by first observing the paths of neutron flow under 

the point kinetics philosophy. Qualitative discussions of the physical meaning of the 

neutron transfer probabilities and potential ways for determining their values were 

discussed. The nonlinear RK equations were written down from first principles of 

neutron balance using a neutron flow diagram of a reflected system as a guide. Since 

linear equations are much more attractive from a design and analysis standpoint, 

the RK equations were then linearized. Finally, some useful relationships involving 

criticality conditions were then developed for use in the next chapter which will 

deal with validation of the preliminary RK equations. 



CHAPTER 111 

PRELIMINARY VALIDATION OF THE RK MODEL 

A. Introduction 

The main objective of this chapter is to benchmark the RK equations by 

comparing their numerical solution obtained to both an analytic solution and the 

more conventional point kinetics (PK) method. The first benchmark is a comparison 

of the linearized RK solution trajectory to the analytic solution for a simplified case. 

This analytic solution is developed by method of Laplace transforms. The poles of 

the analytic solution are also compared to the eigenvalues of the numerical RK 

matrix. Secondly, the equivalent bare system is identified for the same problem so 

that the point kinetics equations can be solved for comparison. These comparisons 

are not limited to one precursor group since the analytic PK solution is readily found 

for a general number of delayed neutron precursor groups. The equivalent bare 

core reduction involves the use of the equivalent reactivity expressions developed in 

chapter II. Finally, an analogy is made between the RK and PK transfer functions. 

This analogy will illustrate why reflectors are often treated as additional fictitious 

delayed neutron precursor groups in the point reactor kinetics model. 

In order to benchmark the RK equations, reliable numerical tools are needed 

for the computation of the transient responses. The magnitude of the eigenvalues 

of the open loop system make it computationally unfeasible to use discrete time 

integration schemes such as Runge Kutta in solving the RK equations. Therefore, 

all RK transient calculations are performed using the ASH exponential operator 

method. The ASH method is discussed as well as an extension that allows problems 

with more general source terms to be solved. The analytic RK solution and the 
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analytic PK solution are first discussed. 

B. Analytic Solutions to the RK and PK Equations 

An analytic solution is developed for a simplified version of the nonlinearized 

RK equations. The method used is that of Laplace transforms. Even though we 

are dealing with the nonlinear RK equations, the following assumptions make these 

equations linear without introducing the typical linearization assumptions. The 

simplifications in addition to those made in chapter II are. 

• One delayed neutron group 

• One reflector with constant Ppr and Pr. 

• The initially critical core is perturbed only by a change in K 

Under these assumptions equation 2.4 reduces to three coupled linear expres

sions. It is important to note that the linearization assumptions used in chapter II 

are not applied in the analytic solution. These three coupled equations are solved 

for the neutron concentration only. In the Laplace transform space the coupled 

transient equations are reduced to coupled algebraic ones. If s is defined as the 

Laplace transform variable then a little algebraic manipulation reveals that the 

laplace transform of the core density, Nc{s), is given by. 

rtcis) .\{s) 
ndO) M{s)' 

where, 

N{S) = XcKo[{s -r Xr)PFrPr{l ~ Pc)~ 

d{s + Ar)Pc -r 0XrPFrPr{l " Pc)i ^ {s ^ X){s ~ Xr), 

M{s) = {s- X){s + Xc){s -r Xr) - XcK{s ^ X-3s) 

\{s-^Xr)Pc^XrPFrPr{l-Pc)]. 

(3.1) 

(3.2a) 

(3.26) 
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ncit) = nc{0)Y^-jl/'- (3.3) 

The inversion of this transform is done by applying the complex inversion formula. 

This merely says that the inverse transform is equal to the sum of the residues of 

the function nc{s)exp{st) at its singularities. For the three simple poles in this case 

the residues are found by differentiating the denominator term with respect to s. 

The solution is therefore given by. 

where p are the roots of M{s) — 0. The derivative of the denominator is readily 

found to be, 

M'{S) = [S -r X){S - Ac) - (5 ^ Xc){s - Ar) - (A - X){s - Ar) 
(3.4) 

- (1 - d)XcK[{s + Ar)Pc -f XrPFrPr{l " Pc)] " XcK{s - A - s3)Pc. 

The poles are numerically calculated by the commonly used modified Regula Falsa 

root finding technique and the solution is constructed by summing the contributions 

at each of the three poles given by equation 3.3. 

The step reactivity point kinetics problem can be solved analytically in a similar 

fashion. The easiest approach is again by method of Laplace transform. The 

solution is constructed for the step reactivity case and for a general number of 

precursor groups, I. given by equation 2.1. The core neutron concentration is found 

to be given by. 

"'"-fE r r'.-^ (3.5) 
"<=f' ^ n = l v ^ A,/?,/.\. 

tr-.i^n^x.y 
where 5„ are the (/ -f- 1) roots of the equation. 



Again, the roots are found numericalh and the solution is constructed by summing 

the contribution of each of the residues at the poles. For the 6 group case, there 

are seven simple poles that satisfy equation 3.6. 

C. ASH Exponential Operator Methods 

Recall that the RK equations developed in chapter II as well cis most problems 

of interest in the control field are written in the general matrix form. 

A' = AX - 5 . 5 = BU. (3.7) 

The numerical solution of the RK open loop equations is therefore equivalent to 

the solution to this matrix equation. Conventional solution techniques are based 

on discrete integration techniques which fail if the equations are stiff. Also, if 

late time solutions are desired, then excessive computation time due tosmall time 

steps may result. The ASH approach is an operator method that solves equations 

of this type essentially analytic in time. The computational advantages that ASH 

offer over discrete integration techniques in solving hyperbolic and parabolic partial 

differential equations reduced to the form of equation 3.7 are discussed by Lee and 

Washington.^' 

It is assumed that A and S are constant over the time interval [0,/;. This 

limitation will be avoided for the source: however, the restriction on the A matrix 

to be time invariant must remain in order for the .\SH method to work. Assuming 

that matrix exponentiation is well defined and obtainable, then the solution to 

equation 3.7 is given by the analytic expression, 

X{t) = e'^*A'(0) - A"^ (e^' - I)BU. (3.8) 



The ASH method consists primarily of a computationally efficient and accurate 

way of expressing the matrix exponential terms in the above expression. This is 

basically done by scaling the At matrix down by powers of two until a Taylor series 

for f^^. truncated to a specified number of terms for a desired accuracy, converges 

with minimum roundoff error. A recurrence relation is then used to rescale the 

solution. Details of the scaling laws and rescaling recurrence relationships are given 

in Appendix B. 

In the paist, one of the primary limitations of the ASH solution technique has 

been that the scaling laws and recursion relations are valid only for constant source 

terms. Even though Lee^^ developed recursion relations for linear source terms, 

the complexity of the algorithms indicate that extensions to more elaborate sources 

such as higher order polynomials, exponentials, or trigonometric forms would be 

nearly impossible to obtain. The simplicity of the Extended Source -\SH (ESASH) 

method presented below is that it removes the constant source limitation of ASH 

while still avoiding the use of complex recursion relations. 

The idea behind the ESASH approach is to include time states which corre

spond to the functional forms desired in the source vector. These states are then 

coupled to the other states in the system thereby leaving the source input vector a 

constant. For example, consider the equation. 

<i = 1, <i(0) = 0 (3.9) 

The solution to this simple equation states that t^ = t. Therefore, if this is added to 

the state equations and the initial condition is set to zero, then linear source terms 

can be treated by coupling this state to the equations that have linear source input 

terms. This idea can be extended to higher order polynomials such as t"^ where we 



merely need to include the transient equation. 

<2 = 2/ i . /2(0) = 0 (3.10) 

In this case, since ii is equal to time, then /o w-ill become equal to the square of time. 

The extension to higher order polynomials is obvious. This extension is not limited 

to polynomial sources. Suppose one wishes to use ASH to solve a problem with an 

exponential source term. Using the same idea, we write a time derivative which 

when solved will give us an exponential in time, which can therefore be included as 

an input. The pertinent equations that produce this exponential source are given 

by. 

te = ate. ^ ( 0 ) = 1.0, fe = e** (3.11) 

Trigonometric functions can be represented by the two simple equations: 

tc = ijJts, ^c(O) = 1. tc = cos(u;<) 

. • (3.12) 
i, = -^tc, ts{0) = 0. t, = s\n{^'t) 

The success of the ESASH method is dependent upon the accurate calculation 

of the time states. Since ASH automatically ensures that the cumulative error is less 

than some user input tolerance (see Appendix B). then this should not be a problem. 

The additional computational time required to solve the resulting larger system 

is little sacrifice compared to the development and application of more complex 

recursion relations if they could even be found. The penalty for this approach is 

the additional memory requirements needed to accomodate the enlarged equation 

set. While the idea of expressing high order equations as a collection of many low 

order ones is certainly not a new one, the application of this simple idea to the ASH 

methodology will lead to the more accurate solution of a wider range of transient 



problems. In particular, this modification has enabled the use of ASH in solving 

the ramp reactivity input and ramp closed loop RK servo problem. The improved 

accuracy that ASH offers over finite difference methods, and the ability of ASH 

to solve systems with large negative eigenvalues with minimal computational effort 

make it the method of choice in solving the open loop RK equations. 

Three computer codes were written which evaluate the open loop RK equations, 

the analytic simplified RK solution, and the analytic bare reactor PK solution 

respectively. The first program is a direct application of the ASH methodology to 

the RK equation set in the FORTRAN language. This code basically develops the 

A and S matrices for a selected set of system parameters and input conditions. 

The second program interactively solves for each of the three poles in the analytic 

RK solution. The contribution of each of the three residues in the inverse Laplace 

transform are then numerically added to construct the solution. The third program 

is an implementation of the step reactivity PK solution. It was written so that over 

many time steps the equations are solved analytically for different user chosen step 

reactivities. This allows for the approximation of reactivity inputs that are more 

complex than steps over the duration of a transient. These programs are used in 

the comparisons discussed in the next section. 

D. Numerical RK, Analytic RK, and Analytic PK Comparisons 

The benchmark runs that are made involve the data given in Table II. This 

data is the result of experiments performed at the University of Missouri Research 

Reactor (MURR) facility. The reasoning behind the use of this reactor's data is 

discussed in chapter VI. The value of K listed in Tablell wais determined from the 

critical condition as discussed in chapter II. Note that the data in Table II may not 



Table II 

Available Neutronic Data for the 
Doublv Reflected MURR Facilitv 

Core Reflector #1 Reflector #2 

l^ 5.7x10"^ sec Zj, 3.22x10"^ sec 2x10"^ sec 

Pc 0.34695 Pp 0.2550 0.i»198l 

B 0.00738 Ppj, 0.73^9 0.26506 

X 0.7738 sec"' ' 

K 1.8450 

be typical for a space reactor, it merely provides a set of input parameters that 

describe the conditions of a real reactor. In each of the benchmarks, the input 

perturbation is equivalent to a 0.001 reactivity insertion. 

The objective is to construct two equivalent systems for the doubly reflected 

system described by the data in Table II. The first simplification that is considered 

is a singly reflected case so that the analytic RK solution can be applied. This 

single reflector reduction will also be important in chapter V since one of the 

controllers discussed will only be applicable to singly reflected systems as a result of 

a mathematical restriction. The equivalent reflector lifetime is given by a weighted 

sum of the lifetimes of the individual reflectors. The destination transfer probability, 



Pfr is also given by the sum of the individual ones. The core return probability. 

Pr. is a weighted average on the destination transfer probability of the individual 

return probabilities, and is expressed mathematically as. 

Pr(tff) = '~^ p^J (3.13) 

With these definitions, the critical reflected system and the equivalent critical singly 

reflected system have the same infinite multiplication constant. Next, the equivalent 

bare core configuration is found so that the classical point kinetics equations are 

applicable. The mean generation time (.\) in equation 3.5 is calculated as usual as 

the bare core lifetime divided by A'. The equivalent bare core lifetime is given by 

the sum of the lifetime of the neutrons that remain in the core and the lifetimes of 

the reflector neutrons that return to the core. Mathematically this can be written 

as, 

ic{eff) = Pc£c - (1 - Pc) Y ^FrPrir. (3.14) 
r 

Recall that equation 2.21 was derived for the specific purpose of the calculation of 

the equivalent reactivity. The PK comparisons are done with six delayed neutron 

precursor groups. The delayed neutron fractions and decay constants are those of 

the fast fission of Uranium 235 (U235) taken from Keepin.^'* The delayed neutron 

fractions and decay constants have been weighted so that they correspond to the 

same total delayed neutron fraction and effective decay constant respectively. The 

singly reflected and bare equivalent system parameters are given in Table III. 

A comparison of the linearized and analytic RK core densities is shown in 

Fig. 3. The input in this case was in the form of a step as evidenced by the 

predictable prompt jump shown in Fig. 3. The linearized RK calculation with 6 

delayed neutron groups is compared to the PK analytic solution in Fig. 4. The 



Table III 

Equivalent Singly Reflected and Bare 
System Parameters for the MURR Data Set 

Singly Reflected Bare 

i^ 5.7x10"^ sec A 7.5̂ 74x10"'̂  sec 

Pc 0.3^595 6p 0.0005̂ )2 

ij. 2.83'xlO"̂  sec 

Ppp 1.0000 

Pp 0.29868 

5P- 0.00083 

0.001 reactivity insertion in this case was done over a period of 32 seconds in the 

form of a steady ramp. 

At early times the validity of the linearization assumptions are evident in both 

Fig. 3 and Fig. 4. However, violation of the linearization assumptions eventually 

gives rise to unacceptable errors in the results. This is evident at late times in both 

Fig. 3 and Fig. 4. where the true response diverges from the linear approximation. 

When the change in the densities have increased more than about 10 percent, the 

neglection of the second order differential terms is a poor assumption. 

Another observation made from Fig. 4 is that the linear model gives responds 

symmetrically to equal magnitude, opposite sign reactivity input; however, the 
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Table IV 

Comparison of the RK Open Loop Eigenvalues 
and the Poles In the RK Analytic Solution 

RK (A) RK Poles RK Poles 

Eigenvalues Positive e Negative e 

1.3677E-15 S.0789E-03 -5.2S39E-03 

•1.0844E*01 -1.00S5E*01 -1.1624E-01 

•3.7345E-^03 -3.734SE-^03 -3.7342E*C3 

analytic RK response is not symmetric. This behavior is expected since the non 

symetric terms were assumed to be negligible in the linearization process. Figure 

4 also illustrates the success of the ESASH method in solving problems with linear 

source input vectors. 

The poles of the analytic RK transfer function are next compared to the 

eigenvalues of the RK open loop state equations. Since both models represent 

the same phenomenon, certain information should be common between these poles 

and eigenvalues. As seen in Table IV, two of the poles are nearly identical to two 

of the eigenvalues. 

The third eigenvalue, which is essentially zero for the linearized model, is 

explained by the fact that the linearized RK equations effectively represent a critical 

system with an external source of neutrons. This neutron source is provided by 

the reflectors and modelled as an external forcing function, SPr. On the other 



hand, the analytic RK equations are not driven by an external forcing function. 

Instead, they behave more like the true system which becomes either supercritical 

or subcritical once it is altered. This explains the departure of the two solutions 

at late times from a more physical point of view since a supercritical system with 

no feedback is unstable and the small positive pole becomes very important at late 

times. Temperature feedback effects are discussed in chapter IV. 

E. Comparison of RK and PK Response Functions 

The response function relating core neutron density and reactivity is derived 

from the RK equations developed in chapter II as usual by Laplace transforming 

the transient equations. The main difficulty that arises in the development of such a 

transfer function is the identification of a reactivity term from the direct probability 

inputs used in the RK model. This is necessary in order to make a meaningful 

comparison between the RK and the PK response functions. 

We begin the response function development with the precursor balance given 

by equation 2.4c. It is eeisily shown that the Laplace transform of equation 2.4c 

reduces to, 

Ar(.\ /? KpSricis) + nco6K{s) 
dCi{s) = (3.1o) 

S - I- A , Lc 

Next the delayed neutron kernal and its Laplace transform are defined as, 

t 

t 

The delayed neutron kernel is commonly used in point kinetics analysis and it 

appears in the PK response function. A little algebraic manipulation reveals the 



useful relationship, 

Y^=3^-sD{s). (3.17) 
t 

The Laplace transform of the neutron production. 6Q. is found to be, 

SQ=^—i-—ii l-3sD{s). (3.18) 

The reflector and core neutron density transfer functions can now be written down 

directly in terms of 6Q as, 

6nr{s • Xjir) = PFA\ - Pc0)8Q - PFrKo'j^SPr, (3.19fl) 
Lc 

6nc{s - 1,^,) = PcoSQ + Ko'^SPc - Y ^ - ' - "^" - " ^-^^-^-. (3.196) 
ic ^ Lr 

Finally, the 6Q, Uro, and Sur terms are eliminated from equation 3.19b eind the 

response function is written as, 

Nis) = PcoSK[l - dsDis)] 4- KoSPc -r Y PfrSPril - Pco)A'o 

PTOPFT ., 
(3.20a) 

[sir + 1) 
1(1 - Pco)f>K,\ - 3sD{s)] - KoSPc] 

M{s) = |!^c - PcoKo3D{sy + i [ ( l - PcoKo) 

- {1 - Pco)\l - 3sD{s)]KoY 
PTOPFT 1 

[sLr^iy 

6nc{s)/nco ^^{s) 

(3.206) 

(3.20c) 
1/0 M{s) 

In order to write the RK transfer function in the desired form the equivalent 

reactivity in equation 3.20 must be identified. A few assumptions regarding the 

magnitude of the poles are made so that the numerator, N(s), term can be simplified. 

5^r ^ 1 ^ 1, 
(3.21) 

1 - 3sD(s) = 1. 
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These assumptions are valid since sir and 3sD{s) are typically smaller than unity 

for the system poles, s. that solve the expression .\d{s) = 0. This is easily verified 

for the benchmark case in the previous section as seen by the values in Table III 

and Table IV. Extremely large poles that do not satisfy these assumptions are 

accounted for by the fact that they make little or no contribution at all to the 

transient response due to the nature of the quickly diminishing exp{st) term in the 

inverse Laplace transform. Under these two assumptions the change in reactivity 

is equal to the numerator term, 6p = N{s). The RK response function is therefore 

reduced to the following form, 

SUc 'Hf i . 1 

6p'3 M{s)' 

When there are no reflectors, this expression reduces to. 

(3.22) 

M(5) = ^ic-fSDisy. (3.23) 

Equation 3.23 is also the linearized point kinetics core response function. This 

limiting behavior is importance for the following reason. In the modelling of a 

reflected system where the reflectors have little impact on the neutronics of the 

system, it is desireable for the solution to limit to that of a bare reactor. In 

other words, the reflector modelling should hold for weak and strong reflection 

configurations. The last two terms in the RK response function are present as 

a result of the modelling of the reflectors. The first extra term represents the 

fact that the core criticality is more than a function of the leakage from the 

core. This is a result of the fact that when neutrons are lost from the core in 

a reflected system, they may return or "reflect" thereby remaining in the neutron 

generation. The second extra term represents the delayed return of the neutrons 



and possible creation of (n.2n) neutrons from the reflectors back into the core. 

These last two terms could also lead to an alternative treatment of a reflected 

system in a point kinetics environment. If appropriate definitions are made for 

X{reflector) and 3{reflector) then additional fictitous delayed neutron precursor 

groups which represent the reflectors can be identified. These additional terms 

can then be absorbed into the delayed neutron kernel. D{s). A realization of this 

transfer function would merely lead to the standard point kinetics equations with 

additional delayed neutron groups. However in doing so. the ability to directly 

model the control function of the reflectors would be lost. 



CHAPTER IV 

THERMAL MODELLING AND 

TEMPERATURE FEEDBACK EFFECTS 

A. Introduction 

In chapter II. the RK model was developed basically to assess the transient 

behavior of the core and the reflectors with no regard to thermally induced eff"ects. 

The intent of this chapter is to introduce into the RK equations such phenomena by 

modelling the temperature change in both the core and coolant regions. The lumped 

parameter procedure will be applied in order to express the relationship between 

the thermal energj' production and the core and coolant temperatures. These 

temperatures are needed in order to model the temperature feedback efi"ects. The 

three effects to be considered are Doppler feedback, coolant temperature feedback, 

and thermal expansion feedback effects. As an additional result of the application of 

the lumped parameter method in the coolant region, the coolant velocity is extracted 

as an additional control variable. This plays an important role in obtaining favorable 

closed loop transient responses. The open loop RK matrices are then identified in 

order to proceed with the application of control techniques. 

B. Derivation of the Lumped Parameter Equations 

In order to model the transport of heat from the core, the heat conduction 

equation is integrated over the homogenized fuel region and the coolant channel, and 

appropriate volume averaged properties are identified. This approach is frequently 

referred to as the lumped parameter method. The heat conduction equation within 



an energy producing region is written as. 

pcj, ^- ~vVT 
dt 

= q" - V • A 'Vr (4.1) 

where T is temperature, q'" is volumetric heat generation rate, p is material density. 

Cj, is heat capacity, K denotes thermal conductivity of the material, and v is an 

advection velocity. The two regions of interest are the averaged core region and the 

coolant channel. 

One major simplification made in the modelling of the energy transport from 

the fuel into the coolant is that the entire core region is lumped into a single effective 

volume. This volume includes fuel, structural materials, cladding, and any other 

non-coolant materials within the boundary of the primary cycle. This region will 

be referred to simply as the "core". Within the core region, the convection term 

[v • VT") is zero and the energy production term is calculated from the neutron flux. 

4>. directly as, 

q"'=-j'LfO=-,'£fV„n, (4.2) 

where E / denotes the core eflfective macroscopic fission crossection is denoted by . 

and 7 denotes the quantity of energy produced per fission. Typical values for 7 and 

H/ are 200 MeV per fission and 0.1 c m " ' respectively. Also note that the neutron 

flux is directly proportional to the neutron density with the neutron average speed, 

t'n. as the constant of proportionality. Finally, it is aslo assumed that K, Cp, and 

p are constant throughout the extent of any transient of concern. The conduction 

equation to be integrated term by term over the core is therefore, 

pc,.^=-,'£fVnn-KV^T (4.3) 

The integral of the first term over the core volume is given by, 

PCj, — I c o r e ( 4 .4 ) 



where Tf is the core averaged temperature defined mathematically as, 

Tf=-^- f Td\. (4.5) 
' cort Jvcore 

The coolant average temperature. Tc. and the core averaged neutron density, n -̂. 

are defined in a similar manner. Since the fission crossection is assumed to be 

independent of position, the integral of the second term over the core volume is. 

TfE/t'nncV^^e. (4.6) 

• Finally, the conduction term is integrated and the Gauss divergence theorem is 

applied resulting in the following. 

A' / V^Td^r = KASTUurfac.: (4.7) 

where Ag is the heat transfer surface area between the lumped core region and the 

coolant channel. Newton's law of cooling provides the necessary boundary condition 

at the surface so that the gradient term can be represented by a linear combination 

of the volume averaged temperatures Tf and Tc-

KVT\surface = -hf{Tj - Tc). (4.8) 

This approach is valid assuming that the heat transfer coefficient, hj, can be exper

imentally determined with respect to the difference of the two average temperatures 

Tf and Tc- This approach is reasonable since the average temperatures are readily 

measureable. 

If we collect the three integrated terms in the conduction equation and divide 

through by the core volume, the total differential equation that we need to model 

the heat removal from the core becomes. 

/ ' / c p / ^ = n E / r n , - '^{Tf - Tc). (4.9) 



In order to include this equation in the slate space equations derived in chapter 

II, equation 4.9 must be written in linear terms. This is necessary so that the 

neutron density is consistent with the form of the linearized RK equations. The 

linear perturbation form of the core temperature equation is written as, 

6Tf = - — 6Tf--6Tc-^^^=^^^nc. (4.10) 
Tf • Tf Pj^vf 

where the thermal constant TX for material "x" is defined as. 

Note that in expressing the lumped parameter equation in this form that no 

linearization aissumptions are made since equation 4.9 is already linear under the 

lumped parameter assumptions. 

The process performed above is now repeated by integrating equation 4.1 over 

the coolant channel. In integrating the conduction equation over the coolant channel 

one must first realize that the convection term can no longer be ignored since the 

coolant consists primairily of an axial velocity component. Secondly, within the 

coolant volume there is practically no energy production thereby making q'" zero. 

Integration of the heat conduction term over the coolant volume yields analagous 

results ais before with the exception of a sign change that signifies the direction of 

the flow of heat. The integrals of the other terms are also similar to the fuel case 

where the only difference is that the density and the heat capacity are now that 

of the coolant material. Finally, if we assume that the coolant velocity and the 

temperature gradient in the coolant region are independent of spatial position, the 

lumped parameter equation for the coolant region resulting from the integration of 

the terms in equation 4.1 is, 

= ^^[Tf-Tc). (4.12) PcC PC 

dTc 
dt 

+ vc • VTc 
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The c subscripts in equation 4.12 denote coolant properties. The convection term 

is simplified by assuming a uniform, linear temperature rise in the coolant channel. 

Furthermore, it is assumed that the temperature gradient is primarily in the same 

direction as the coolant flow. Therefore the convection term reduces to the form, 

t v v r c = ^ ( r . - r , ) . (4.13) 

where L is the coolant channel length and Ti is the inlet coolant temperature. If 

we substitute equation 4.13 into equation 4.12 and again use the definition of the 

thermal time constant given by equaton 4.11, the coolant channel lumped parameter 

equation becomes, 

bTc = -{Tf - Tc) ^ - ^ ( T , - Tc). (4.14) 
fc TL t'co 

The axial time constant, r^, is defined as the average time it takes the coolant to 

pass through one half the channel length, and is expressed mathematically as, 

L 
<L = (4.15) 

2t'c(.) 

Unlike the core lumped parameter equation, the coolant region lumped parameter 

expression is nonlinear. The nonlinearity is caused by the fact that the coolant 

velocity, Vc, is taken to be time variant and will prove to play a major role in the 

control process. The result of the linearization of equation 4.14 is. 

,h = f-l-^)^r.^l6r;^'^'-^-°'^. (..16) 
\ Tc TL J TC TI VCO 

The development of equation 4.10 and equation 4.16 above provides two more 

states that are added to the RK state equations. This is an important step in the 

development of the model since these states allow us to model the temperature 

induced effects in a simple and direct manner that is well suited for the desired 

scoping studies. 



C. Temperature Feedback EflTects 

In a thermal power reactor the temperature changes in the core and coolant 

regions are typically modelled with a constant temperature feedback coefficient. 

These coefficients are defined by the general equation. 

dp 
Qr = ^ (4.17 

dT ' 

This equation translates into the discrete form shown below which is of most use 

when analyzing transients within the point reactor framework, 

Ap^QT^T (4.18) 

In the RK model, reactivity is represented explicitly as the infinite multiplication 

constant, the core loss probability, and the reflector return probabilities. This 

modelling approach requires a more specific means of treating the temperature 

changes in the core and coolant regions. In particular, since we have direct control 

over the leakage properties of the core through reflector position, only the infinite 

multiplication factor, K, and the core loss probability, Pc, will be sensitive to these 

temperatures. The advantage of the reactivity separation principle in the RK model 

is clearly evident in the treatment of temperature feedback effects. The mechanism 

for temperature feedback within the core region is primarily the Doppler eff"ect. The 

Doppler eff'ect is basically a broadening of the resonance region of absorption cross 

section of Uranium fuel material in the core region, which increases the fraction of 

absorptions that do not cause fission. This change in the material properties results 

in a negative reactivity contribution with increasing core temperature (and power). 

This is a common safety shutdown mechanism in commercial power reactors, small 

experimental reactors, and space reactor concepts. Since within the RK model 



framework the reactivity is handled in a direct manner, the reactivity changes 

denoted by equation 4.18 can be modelled more directly as a change in only the 

infinite multiplication constant since that term is an explicit statement of material 

properties. In the RK model the 6K term will be removed from the input vector 

and modelled internally as. 

6K = -afSTf - acSTc. (4.19) 

where Q / and Q,. are the Doppler and coolant temperature feedback coefficients 

respectively. 

Since temperature variations in the core will cause physical changes to occur, 

there must exist a relationship between the temperature rise and the core loss 

probability. This relationship is independent of the neutronic effects described by 

the variation oi 6K in equation 4.19. The structure of the RK equations makes it a 

trivial matter to remove the 6Pc term from the input vector and treat it internally 

as, 

6Pc = -Oi.STf, (4.20) 

where a^ is the core loss feedback coefficient. 

The RK state equations are restructured as a result of the above temperature 

feedback modelling. As usual the system is described by the matrix equation 

A' = AX -r BU, where the state vector A' and input vector U are now given by, 

X=\6nc bur <5C, bTf bT^^, (4.21a) 

U = (4.216) 
bPr 

,bVc/VcO_ 

Internal to the structure of the newly formed A and B matrices are the previous 

ones given in Appendix A. The new matrices are formed directly from these matrices 



and the structure of the equations developed in this chapter. These matrices for 

a 1 reflector. 1 precursor group simplification are also given in .\ppendix A. The 

subroutine MAKEAB is the FORTRAN translation of the modelling developed in 

this chapter. This module is the heart of all of the RK numerical codes listed in 

Appendix C. 

file:///ppendix


CHAPTER \ ' 

INTEGRATION OF AUTOM.ATIC CONTROL 

AND THE RK MODEL 

A. Introduction 

In the last few years, automatic control has become an integral part of almost 

every branch of science and engineering. This interest has been the result of the 

need for more intelligent ways to control large complicated systems with multiple 

inputs. A nuclear power plant is such a system. Unfortunately the regulatory 

structure that exists in the nuclear industry has limited the utilization of modern 

control methods in nuclear systems. Military applications of nuclear space reactors 

make the use of automatic control a requirement. However, the situation that 

exists in the LWR nuclear power industry has slowed this development phase of 

the space nuclear effort. The other factors that have prevented the development of 

automatic controllers for space are the difficulties posed by the integration of the 

point kinetics equations and potential control models. The objective of this chapter 

is to propose two multivariable controllers and integrate them into the RK model. 

This will illustrate the adaptability of the RK equations to the automatic form of 

input. Furthermore, the closed loop numerical computations presented in chapter 

VI will verify the need for automatic control in space nuclear applications. 

Thus far, the RK model developed in the preceding chapters is only useful as 

an open loop analysis tool. The term "open loop'" is used throughout this chapter 

to signify the responses resulting from operator determined inputs. This type of 

analysis is limiting from the point of view of scoping studies in that the selection of 

inputs can only be useful as a parameter sensitivitv studv. An automatic controller 



(or servo compensator) provides the connection between the system outputs and 

the inputs that are needed for doing closed loop response studies. For example, 

in the tracking problem, this connection is done such that the output of concern 

follows a certain reference signal in time. This problem is also called the servo 

problem, hence the term "servo compensator". In this chapter two control methods 

are applied to the solution of the RK tracking problem. In both cases, the reference 

signals of concern are arbitrary steps and ramps. 

The first controller is based on the well studied conventional state feedback 

approach. Since the precursor states in the RK model are assumed to be unmea-

sureable. an observer is necessary to estimate these states for feedback. Tracking 

requirements and plant stability can be satisfied through the use of this type of 

controller if the RK plant is controllable and observable. Controllability and ob

servability are discussed in the following section. The second controller is based 

on output feedback and the spectral assignment of eigenmodes. This approach, 

referred to as modal control, was first developed in order to stabilize and mold the 

response of aircraft.^® These investigations however did not consider the solution of 

the servo problem. The capability to solve the RK servo problem is demonstrated 

in the numerical results presented in chapter VI. The advantages and disadvantages 

of the state feedback and modal control approaches for to the solution of the RK 

servo problem are identified. 

B. Controllability and Observability 

The properties of controllability and observability are sufficient conditions to 

guarantee the existence of an automatic controller that will stabilize the closed 

loop system. In the state feedback case, controllability and observability are also 



necessary since some of the stales usuali\ must be estimated with an observer. 

In the RK system, this is true since the precursor slates are not measureable. 

Furthermore, a state feedback controller will have the ability to arbitrarily assign 

all of the closed loop eigenvalues. A controllable system is formally defined as one 

in which all of the states can be driven from an initial condition to any arbitrary 

final state with an appropriately chosen piecewise continuous input function. An 

observable system is defined as one in which knowledge of the input, output, and the 

system matrices are sufficient to determine the initial condition of all the states in 

the system. Mathematically, the property of controllability for linear time invariant 

systems can be determined by checking the dimension of the controllability array. 

{A,B). The controllability aoray {A,B) is defined as, 

{A.B) = {B ' AB A'B ••• A^'^B] (5.1) 

If the controllability array has rank equal to the rank of A (n). then the system 

is said to be controllable. Dually, the property of observability for a linear, time 

invariant system can be determined by checking the rank of the observability array. 

{C,A). Again, if the rank of the observability array is equal to n. the system is 

observable. 

Since the reflector return probabilities, Pr, only enter into the core neutron 

density equation, then an increase in the number of reflectors has no effect on 

the controllability properties of the RK system. Mathematically, this happens 

because the rank of B is at most two. regardless of the number of reflectors. 

The point treatment of the core in the RK model makes the distinction of the 

geometric location of the reflectors with respect to the core impossible. Therefore 

controllability only needs to be tested for the one reflector case. One should also 



note the structure of the delayed neutron precursor slates given by the third block 

row of the A matrix in Appendix A. Since each of the stales are connected to the 

core density through the ,43] block, and are linearly independent due to the diagonal 

structure of the ^33 block, then we find again that controllability is guaranteed for 

multiple group problems if it exists for the one group problem. 

Controllability and observability are tested directly by constructing the {A, B) 

and {C.A) arrays. Gaussian elimination with full pivoting is then used to find the 

rank of these matrices. While in general the numerical computation of rank cannot 

reliably be done, for certain systems that are well conditioned, the roundoff error 

that usually creates the computational difficulties is avoided. The validity of the 

rank computed using the full pivoting elimination scheme is tested by comparing 

the magnitude of the largest and the smallest element in the array before and after 

reduction. If many orders of magnitude are spanned between these numbers, then 

the rank obtained by this direct approach would be suspect. Using the MURR 

input data given in Table III, it was first found that the RK system is completely 

controllable and observable as long as at least one of the temperature feedback 

coefficients, Q / , QC, and ae is negative. Physically this indicates the fact that reactor 

instabilities caused by positive temperature (or power) feedback efl"ects cannot be 

overriden by careful input manipulation. Fortunately, all conventional LWR designs 

and the majority of space reactor systems of interest exhibit an overall negative 

temperature feedback coefficient. The system was also found to be uncontrollable if 

Pfr was zero. This is interpreted physically by the fact that reflector variations will 

certainly have no impact on the system response if neutrons never interact with the 

control drum. Again, this condition is unrealistic and will not exist in the systems 

under analysis. Controllability and observability of the RK system has therefore 



been established for this test case. 

C. Tracking Under the Internal Model Principle 

In order to achieve robust asymptotic robust tracking of step and ramp 

reference signals, the application of the internal modal principle is essential. 

Robustness refers to the ability of the closed loop system to maintain tracking when 

the plant parameters are slightly perturbed. The internal model principle basically 

states that in order to track a certain response with zero steady state error, an 

identical match of the reference modes must be included in the system internall)-. 

This will cause the unstable reference mode to be cancelled by the internal model. 

This is best illustrated in the Laplace transform space. Suppose we want to track 

a step signal; in the Laplace transform space a step is represented by 1 's. The 

internal model principle dictates the addition of an integrator to the system so that 

the transfer function between the error and the reference signal has an 5 in the 

numerator. This internal "5" will cancel the "5" posed by the step reference signal, 

thereby resulting in asymptotic tracking with zero error. Furthermore, this tracking 

will persist even if the plant parameters are modified, as long as closed loop stability 

is not corrupted. 

There are two basic limitations of the application of this principle. First, 

tracking is only obtained when unity feedback is employed, i.e., the input to the 

controller must be the error signal, e = R{t) - y{t). In practice, unity feedback 

situations unfortunately rarely exist because the output, y{t). is usually not the 

same as the measureable output. ym{t). This is because measured signals are 

typically voltages or currents, while the control variable is more physical (such 

as power or temperature). This also occurs on the input side where the controller 



determines voltage inputs which most likely are incompatible with the inputs in the 

model equations. Often the transducer that provides this link has unity gain and 

also responds must faster than the system. In such a case, it is standard engineering 

practice to ignore the transducer as will be done here. Control methods that solve 

the more difficult general problem where the transducers are not neglected are 

beyond the scope of this study. Interested readers are referred to Schumacher"^ 

and Ohm^® who take a geometric approach to develop constructive proofs of the 

solvability of the general problem. Since the main purpose here is to determine 

the potential advantages of automatic versus manual control in space nuclear 

applications, unity feedback will be assumed. The second limitation of the internal 

model principle is that unstable zeroes of the open loop plant cannot be tracked. 

This limitation exists because any unstable zeros will offset the internal modes 

leaving the reference signal to be tracked unaccounted for. 

The desire to track steps and ramps leads to the addition of two integrators to 

the RK system. These two integrators provide two error transfer function zeros (at 

zero) which are needed in order to track the first order polynomial reference signals. 

Two more states are therefore added to the RK system equations resulting in an 

augmented system. These states, denoted by ^i and 92- correspond to the following 

dynamical equations, 

9] = i ? ( 0 - y , 92=91. (5.2) 

and the augmented plant A matrix becomes, 

f Af, 0 0 \ 
A = -C j , 0 0 (5.3) 

V 0 1 0 ; 

Once stability is achieved, the tracking of steps and ramps will result. The primary 

work involved in the development of a stale feedback controller is the development 



of a feasible algorithm to compute the feedback gains. The algorithm chosen for 

the state feedback controller is based on the solution of Sylvester's equation. This 

methodology was first published by Bhattacharyya and deSouza^' and studied 

further by Keel in 1982^*. The theory behind this favorable pole placement 

algorithm is briefly reviewed below for completeness and continuity. 

D. Pole Placement Algorithm 

The pole placement algorithm addresses the problem of finding a feedback 

matrix, F. such that the control law. u = Fx. results in a stable closed loop matrix. 

A -̂  BF. Furthermore, arbitrary assignment of all the eigenvalues of the closed loop 

system is desired. Suppose we construct a matrix. M. such that the spectrum of 

M is equal to the desired spectrum of the closed loop. This is written as, 

o{A ^ BF) = a{M). T-^{A - BF)T = M, (5.4) 

where the above matrix T is invertible and must exist for the problem to be solvable. 

If we let the matrix, G, be defined as the product of F and T then we have, 

AT-TM = -BG. FT = G. (5.5) 

The pole placement problem is solved if an arbitrarily chosen G matrix is found such 

that equation 5.5 has a solution T that is invertible. Keel^* showed that if {A,B) is 

controllable and {G.M) is observable then such a solution exists. Furthermore, G 

parameterizes the family of all F matrices that will assign the eigenvalues of A —BF 

to that of the chosen matrix. M. For the single input case, the F matrix is unique 

and therefore independent of the selection of G. 

Equation 5.5 is a well studied equation known as Sylvester's equation. Estab

lished stable computational solutions to Sylvester's equation exist for T^^, most of 



which involve reduction of the A. M. and BG matrices to Hessenberg-bchur form. 

This reduction algorithm is the same one thai is used in most eigenvalue finding 

routines. Since a computer program is being constructed to perform closed loop 

RK analysis that uses such an eigenvalue routine, the implementation of a Sylvester 

equation solution into the program was considerably simplified. 

Using the pole placement algorithm discussed above, the loop can be closed 

using the state feedback law. 

U = \Fpi Fp2 Fp3 Fqi Fq 
Xp2 

Xp3 

91 

V 92 J 

(5.6) 

Note that the plant states have been divided into three parts: core neutron 

concentration, reflector concentrations and temperatures, and the unmeasureable 

precursor concentrations. The purpose for this division is made clear in the following 

section concerning precursor state estimation. The closed loop RK model using a 

state feedback controller would be complete if the precursor states, represented by 

element Xpz. were available from measurement. However, these precursor groups 

are fictitious in the sense that they exist only in order to describe observed groups 

of delayed neutrons having certain decay characteristics. Furthermore, even if each 

actual delayed neutron precursor were taken into account, it would be a formidable 

reactor instrumentation problem to measure such intricate particle densities. For 

these reaisons a state estimator (also often called an observer) must become an 

integral part of the closed loop RK equations. 

E. Observer Design 

The basic purpose of an observer is to develop equations that model measure-



able auxiliary states, say z. that asymptotically approach the states that are not 

measureable. These auxiliary states are then substituted for the unmeasureable 

ones in the state feedback control law. Consider the following dynamical equation. 

z = Sz ~ Lym - Gu. (5.7) 

where A", L. and G are unknown matrices. If the matrix V is chosen such that Vx 

represents the unmeasureable states, then the goal of the observer is to have. 

lim 5 - Vx = 0. (5.8) 

In order for this to happen, the error defined as. e = s - V'x, must be represented 

by a stable unforced dynamical equation. It follows directly from equation 5.7 that 

the error is given by, 

e = i - Vx = A'e + (AT' - VA ^ LC)x + (G - VB)u. (5.9) 

Since the V matrix is user specified, G can always be found directly as G = VB. 

The difficulty lies in finding an L matrix such that Â V — VA •+• LC — 0 and o'(A') is 

stable. In general this is a difficult task and has been approached in many diff"erent 

and complicated ways. When V is chosen to be the identity matrix, the observer is 

called an identity observer and all of the stales are being estimated. The solution 

of the identity observer problem is significantly easier than the general one, since 

equation 5.9 reduces to, 

V = / , G = B . A' = .4 - LC. (5.10) 

Equation 5.10 can be solved using the state feedback pole placement algorithm 

discussed in the previous section by finding L such that o{A-LC) is stable. Perhaps 



the most straight forward solution of the general observer problem is to somehow 

reduce it to an equivalent identity observer problem. This is the approach taken 

here. 

The first step is to divide the unaugmented system into two parts: measureable 

and unmeasureable. Since the observer is driven by the input and the output only, 

the partition is made such that the first m states are the outputs of the system. 

Normally this would involve a coordinate transformation: however, the output of 

most interest in the RK system is merely the core neutron concentration which is 

the first state. The partitioned system is therefore given by, 

ym = Aiiyrr, - Aio^u -^ Biu. (5.11a) 

Xu = A2\ym -^ A22^u ^ -BoU. (5.116) 

The identity observer reduction is done by taking A\2Xu as the output of the 

unmeasureable equation, and A2iym — B2y as the input. The motivation for maiking 

these definitions is as follows. The chosen input consists of the only terms not 

involving Xu in the unmeaisureable equation, and the chosen output consists of 

the only term involving Xu in the measureable equation. The observer dynamical 

equation is given by, 

z = {A22 - LA]2)z - LA-i2Xu T {A2}ym ~ B2U). (5.12) 

Equation 5.11b is used to eliminate the AioXu above to give, 

z = {A22 - LAi2)z - L{ym - Aii'yrn - Blu) ~ {A2iym -H B2U), (5.13) 

It is easily shown that the error between z and x^ is given by, 

{z - x*u) = (.422 - LAi2){z - Xu). (5.14) 



In order for z to estimate x-a then we choose L such that .422 - -̂ -412 is stable. As 

stated before, the spectrum of this matrix can be assigned arbitrarily using the pole 

placement algorithm. One more step must be done in order to integrate the observer 

dynamical equations and the RK plant equations. The variable u- = 2 — Lym is 

introduced into equation 5.13 in order to eliminate the t/rn term. The dynamical 

equations that are added to the system therefore are given by, 

u.' = (A22 - LA\2)v} -^ \{A22 - LA\2)L - LA\\ — 1̂21 Xm — {B2 - LBi)u. (5.15) 

At this point, two options are available. The first option is to use all of the 

estimated observer states in the state feedback law. This would be somewhat 

wasteful since only the precursor states are unavailable and the reflector neutron 

concentrations and the temperatures can be measured. This leaves the second choice 

of replacing only the precursor states with the observed ones the better option. 

This can be done because these are the only states that are truly not available for 

measurement. This brings forth the question of why the unused auxiliary states 

were included in the observer dynamical equations. The answer to this question is 

that the information provided by these states is necessary in order to observe the 

unmeasureable precursor states. In other words, the identity observer reduction 

method can only be done if we observe all of the states not included in the output, 

thereby making the minimum order of the observer equal to the order of the open 

loop system less the number of outputs. 

Now we have enough information to write the final closed loop equation. For 

simplicity the following definitions are made, 

Ac = A22 - LA12 

Bc = Bn- LBi (5.16) 

Dc = (A22 - LAi2)L - LAi] ~ A21 



and the observer is partitioned into the measureable (unused) auxiliary states and 

the unmeasureable (used) stales as follows. 

Wm = Ac}U:n, - Ac2tt'u - BdV ~ Dc\ (5.17a) 

'^u = AcZ'^'m + .4c4U'u - Bc2'U ~ Dc2- (5.176) 

The motivation behind the division of the plant into the three parts given by 

equation 5.3 are now evident since it is trivial to replace x,,3 with the measureable 

variable Zu = «-u -̂  LuXm in the state feedback control law. Once this is done, 

all of the states in the control law are measureable and the controller becomes 

legitimate. The feedback gains F are unchanged: however, now the closed loop 

system is much larger because it includes the observer dynamical equations. The 

final state feedback controlled system with arbitrary pole placement is written in 

matrix form eis, 

Xci = AciXci-BciR{t). (5.18) 

where details of the above matrices are given in Appendix A in block matrix form. 

The application of the state feedback controller developed above is simple and 

straight forward. However, the selection of the closed loop eigenvalues and the 

parameterizing G matrix is at best a trial and error process. Given the open loop 

plant and the R{t) tracking signal, one merely has to choose a desireable set of 

closed loop eigenvalues. This selection is made by the choice of the M matrix in 

the pole placement algorithm. The pole placement algorithm is utilized once to 

find the F state feedback gains and again to find the L observer gains. Once these 

two matrices are found, the Ad matrix can be constructed. This methodology was 

incorporated into the computer code RKSF (Reflected Kinetics State Feedback). 

The pole placement algorithm was adopted from a program originally written by 



Keep* The difficulty that arises in the use of RKSF is in choosing a suitable set of 

closed loop eigenvalues and the G parameterizing matrix. Some numerical results 

obtained from the RKSF code are presented in the next chapter. As the results 

will indicate, complete stability results in asymptotic tracking of step and ramp 

signals as desired. This demonstrates the application of the modern multivariable 

control techniques to the reflected kinetics approach of space nuclear reactor kinetics 

studies. The modal controller presented below avoids some of the limitations posed 

by the state feedback controller and still obtains cisymploiic tracking of the desired 

step and ramp reference signals. 

F. Modal Control Theory-

There are three primary motivations for the consideration of modal control 

(eigenstructure assignment). First, the open loop results given in chapter 6 will 

indicate the stability and rigidity of two of the eigenmodes of the RK system. 

Therefore, the decoupled assignment of chosen eigenmodes could provide a potential 

control advantage. Secondly, the modal method is based on output feedback 

which significally reduces the size of the closed loop system from that of the state 

feedback case. Finally, the modal method is desired in order to shape the transient 

response of the system by coupling or decoupling certain key eigenmodes. The 

transient response is dependent upon the eigenvectors as well as the eigenvalues 

of the system, and the state feedback G matrix parameterization is limited in the 

eissignability of such eigenvectors. Even though we sacrifice the assignability of 

all of the eigenvalues in the modal method, we gain the ability to assign as many 

eigenvalues and eigenvectors as there are measureable system outputs. 

Andry-^* utilized modal control to solve the aircraft stability problem. In order 
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to solve the servo problem with modal control, the integrators are taken to be 

measureable outputs. These additional outputs are needed in order to stabilize the 

closed loop system. The achievable eigenvector and the feedback gain computation 

algorithms are repeated here for the purpose of continuity. 

The derivation of the feedback matrix F needed to achieve the eigen

value/eigenvector pairs chosen must begin by identifying the eigenvectors that can 

be exactly achieved. As we will see. it is rarely possible to assign the exact desired 

eigenvectors if we require the exact assignment of the desired eigenvalues. We pro

ceed by assuming that the input matrix B has full rank. It is then assumed that 

none of the open loop eigenvalues match the eigenvalues that are to be assigned by 

the modal controller. Given the output control law with r outputs. 

u = Fy = FCx. (5.19) 

the task is to find F such that the closed loop matrix, A — BFC. zissigns the r 

eigenvalue/eigenvector pairs as desired. 

Suppose we have chosen a set of r desired eigenvalues and eigenvectors to 

assign using the modal method. These modes are denoted by A, and Vf, where the 

d superscript on the eigenvector denotes "desired". By definition, the closed loop 

eigenvectors of the system must satisfy the expression, 

{A - BFC)\\'' = X,l\\ (5.20) 

where V," is an exactly achievable eigenvector. It is important to realize that V̂ " will 

not be equal to V,"̂  in most cases. What this means is that the desired eigenvector 

most likely will not lie in the correct subspace thereby making it impossible to 

achieve under the chosen eigenvalue. However if we find the eigenvector in the 



achievable subspace that is closest to the desired one. then this is the best we can 

do. 

The achievable eigenvectors are found by projecting the desired eigenvectors 

onto the achievable subspace. When equation 5.20 is rewritten as. 

V," = LrFC\\\ L, = (AJ - A)-^B. (5.21) 

we see that the columns of the L, matrix span this subspace. Therefore, some 

vector, say z^. exists such that V',° = L^z,. This vector is found by minimizing the 

geometric norm between the desired and achievable eigenvectors with respect to 2,: 

J= YVf-L.z, \ (5.22) 

^ = -2Lj{Vf-L,z,)=Q. (5.23) 

The above equation is solved for 2, to give. 

Zi = {LjLr'LjVf. (5.24) 

This projection procedure transforms the desired eigenvalue eigenvector pairs into 

achievable ones. A slight modification of the projection equations is needed if one 

wishes to assign an eigenvector where some of the elements are unspecified. In this 

case we define a matrix P such that PVf strips off only the specified elements. 

Equation 5.24 is then modified by replacing L, with PL, and \\ with P\\. 

The achievable eigenvector calculation must be done for each of the modes that 

one wants to assign. This is necessary in order to exactly assign the eigenvalues. 

The F gains are then computed using the algorithm reviewed below. 

Since B was assumed to have full rank, then a transformation matrix, Tfc. exists 

such that, 

T^'B= (^J'). (5.25) 



.\ny matrix G that fills out Tf = [B G) in non singular fashion will give us 

the desired transformation. Now we perform a similarity transformation on the 

open loop equation by letting A' = ThXt. The achievable eigenvectors are also 

transformed as V," = TiV^^. These eigenvectors are broken into the first m rows 

and the bottom n - m rows as. 

r,? = (9:'tf,)^. (5.26) 

Recall that the eigenvalue, eigenvector pairs satisfy the relationship. 

(A,i - At)\\-, = BtFCt\\^, (5.27) 

regardless of the basis. Since the first m terms of the Bt matrix constitute the 

identity matrix, then the first m rows of equation 5.27 in the "t" basis gives, 

(Ait + FGt)V;? = Aig,. (5.28) 

where A\t denotes the first m rows of At. Since there are r assignable modes, 

we write the above equation once for each mode and collect them into one matrix 

expression that is easily solved for F as, 

Qt = (Ai9i---A,9,), (5.29a) 

{Au - FCt)\\^ = Qt. (5.296) 

F^{Qt-AuVt){CV'')-' (5.30) 

The CV^ matrix will not be invertible or will be ill conditioned if the measureable 

output has little influence on the achievable eigenvectors. Mathematically this is 

written as, 

/m(V') ^A-er(C) = 0. (5.31) 



In the RK system, where the output of interest is usually equal to the first state, 

this merely stipulates that the achievable eigenvector cannot have a zero component 

in the first row. 

While the modal assignment theory presented above is only for real eigenvalue 

and eigenvector assignments, Moore^*-' developed a transformation that avoids the 

need for complex arithmetic, thereby making equation 5.30 a general result. The F 

matrix computed using this approach will exactly assign r eigenvalues and will also 

assign the projection of r eigenvectors onto the achievable subspace. The application 

of this modal theory is simple in that one merely has to choose the r eigenmodes to 

assign. Perhaps more important than the assignment of the particular values in the 

eigenvectors is the power this method gives us to assign zeros to certain elements, 

thereby decoupling various modes from eax:h other. Again, the exact assignment 

of a zero may not be possible due to the necessity of the vectors inclusion in the 

achievable subspace. 

The application of this modal controller to the RK system was implemented in 

the FORTRAN computer code RKMODAL (see Appendix C). This code performs 

the achievable eigenvector calculation given a requested set of desireable eigen

value/eigenvector pairs. It then continues with the feedback gain computation and 

the construction of the closed loop matrix. Numerical examples are presented in 

the following chapter. 



CHAPTER VI 

NUMERICAL COMPUTATIONS AND RESULTS 

A. Introduction 

The numerical results and computations are divided into two primary cate

gories: manual (open loop) and automatic (closed loop). These numerical compu

tations are intended to provide valuable insight concerning the transient capabili

ties, dependencies, and limitations of the reflector and coolant flow controlled space 

reactor. The RK open loop analysis computer code (RKOPEN) is based on the 

modelling given in chapter II and chapter IV. and was developed for the specific 

purpose of performing the open loop computations. The scope of the RK model as 

discussed in chapter II is restricted to scoping feasibility studies. Furthermore the 

linearization assumptions as seen in chapter III limit the range of valid transients 

that can be considered. RKOPEN is first utilized to demonstrate the importance of 

the origin of the reactivity input in the transient behavior of such systems. Further

more, numerical computations axe also performed in order to qualitatively verify the 

correctness of RKOPEN from a physical standpoint. The validation of RKOPEN 

is extremely important in order for the automated systems to properly serve their 

function. This is due to the fact that the basic structure of RKOPEN is also an 

integral part of the two closed loop codes. A parameter sensitivity scoping study 

intended to determine which parameters should be the focus of detailed core design 

is also done. The parameters of primary interest are core neutron lifetime, tem

perature feedback coefficients, and heat transfer coefficient. Finally, the open loop 

computations will prepare us for the intelligent use of the two controllers in solving 

the RK tracking problem. 



The RK state feedback controlled system is described by the RKSF computer 

code. The RK modal controlled system is described by the RKMODAL code. These 

programs are the result of the integration of the control theory reviewed in chapter 

V and the RK plant model described in chapter II and chapter IV. The closed 

loop computations are intended to serve three purposes. First they are intended 

to demonstrate the success of the integration of the RK model and an automatic 

controller. Secondly, the capability to track arbitrary steps and ramps under both 

the state feedback and the modal controller will be demonstrated. These solutions 

of the servo problem permit the identification of the advantages and disadvantages 

of both forms of control as applied to the RK system. Finally, the control inputs are 

then used as approximate inputs to the RKOPEN code and the transient responses 

are found. This will illustrate the usefulness of autonomous control as opposed 

to unprecise manual methods. This exercise will also identify a potential form of 

control for dedicated space reactor missions. 

B. Open Loop Numerical Computations 

The transient behavior of the system is first considered as various system 

parameters are varied over appropriate ranges. While variations in the fuel, 

reflectors, and coolant (type and configuration) cannot be accounted for directly in 

a simplified point model such as RK, variations in the parameters that correspond 

to their selection can easily be done. In particular, reactor lifetime (fuel and 

reflector characteristics), reactivity feedback coefficients (fuel and coolant type), 

macroscopic fission cross section (fuel composition), and heat transfer coefficient 

(core/coolant interface) will be considered. The information provided by these open 

loop runs is valuable in determining which parameters should be the focus of more 



comprehensive space reactor core designs. The neutronic parameters of the reference 

system used in these computations was again based on the MURR facility. There 

are two motivations for using the MURR data. First, the neutron spectrum and the 

core geometry of the MURR facility are similar to most paper multi- megawatt space 

reactors under consideration. Secondly, since most of the data for such paper designs 

are classified, a deliberate attempt was made to use available data that could in no 

way be associated with such sensitive information. The thermal properties of the 

fuel and the coolant were taken to be the average values for Uranium-235 (U235) fuel 

and Helium (He) coolant in the estimated operating temperature range. Helium was 

considered as the coolant since many "paper" multi-megawatt space reactor designs 

involve a packed fuel bed design through which He coolant is usually a requirement. 

The parameters required as input to the RKOPEN code for the MURR reference 

system are given in Table V. 

The reflector reactivity input (6Pr) for the reference case corresponds to a 

reactivity ramp lasting for 32 seconds from zero to a value of 8p = 0.001. Beyond 32 

seconds, the reactivity equivalent is held at 0.001. The core neutron concentration 

and bulk core temperature are plotted in Fig. 5 and Fig. 6 respectively. Space 

limitations prevent the showing of the reflector and coolant temperatures. Also 

the precursor concentrations are presented only for the last two cases discussed 

later in this section. In all of the RKOPEN figures presented, the values represent 

the change above the initial value of that state. The initial values of the states 

for the reference problem are also given in Table V. The eigenvalues of the RK 

system matrix are given in TableVI. These eigenvalues are useful for the qualitative 

explanation of the transient reponse shown in Fig. 5 and Fig. 6. First, the 

fact that all of the eigenvalues are negative indicates that once perturbed by an 



Table V 

Material Properties and Other Pertinent Data 

for Open and Closed RK Calculations 

Core/Fuel Coolant/Thermal Reflector/Misc. 

I j , 5.7x10"^ 3 

Tf 0.3^695 s 

Pc 0.3^695 

ap 10-'* 

Cpp 52.668 B t u / f t ^ F 

Tfo U 7 8 . 9 °C 

n̂ jQ 1.0x10^ cm-^s"^ 

X 1.09M8 KW/n 

Vf 31.98 f t 3 

Tc 5.4059x10"^ s 

TL 7 . 0 6 7 ^ X 1 0 " ' * S 

hf 2M00 B t u / f t ^ - s 

ac 10-6 

Cpp 0.05566 B tu / f t ^F 

Tc i436.5 °C 

VQQ 15M8.0 Ibm/hr 

Ag 7577 f t ^ 

Vjj M9.06 f t ^ 

Ij, 2.83x10 

Pp 0.29868 

Ppp 1.0000 

-n 

<»E 10 -6 

Tin 323.0 

npQ 6.8065x10 cm 

Cio 3.5651x10"^ cm 

Zf 0.2469 cm"'' 

T a b l e VI 

Eigenvalue* Comparison for the Zero Temperature 
FeedbacX and Reduced Neutron Lifetime Case 

Reference Case Zero Temperature 
Feedback Case 

Reduced Neutron 
Lifetime Case 

-3.7345E*03 
-3.2665E*03 
-1.0576E*01 
-1.5552E-00 
-1.1867E-02 

-3.7345E*03 
-3.2665E*03 
-1.0844E-01 
-1.2991E+00 
1.3677E-15 

-4.3665E*03 
-3.2S65E-«-03 
-1.8243E*01 
-1.5390E---00 
-1.1893E-02 
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comprehensive space reactor core designs. The neutronic parameters of the reference 

system used in these computations was again based on the MURR facility. There 

are two motivations for using the MURR data. First, the neutron spectrum and the 

core geometry of the MURR facility are similar to most paper multi- megawatt space 

reactors under consideration. Secondly, since most of the data for such paper designs 

are classified, a deliberate attempt was made to use available data that could in no 

way be associated with such sensitive information. The thermal properties of the 

fuel and the coolant were taken to be the average values for Uranium-235 (U235) fuel 

and Helium (He) coolant in the estimated operating temperature range. Helium was 

considered as the coolant since many "paper" multi-megawatt space reactor designs 

involve a packed fuel bed design through which He coolant is usually a requirement. 

The parameters required as input to the RKOPEX code for the MURR reference 

system are given in Table V. 

The reflector reactivity input {SPr) for the reference case corresponds to a 

reactivity ramp lasting for 32 seconds from zero to a value oi 6p — 0.001. Beyond 32 

seconds, the reactivity equivalent is held at 0.001. The core neutron concentration 

and bulk core temperature are plotted in Fig. 5 and Fig. 6 respectively. Space 

limitations do not permit the showing of the reflector and coolant temperatures. 

Also the precursor concentrations are presented only for the last two cases discussed 

later in this section. In all of the RKOPEN figures presented, the values represent 

the change above the initial value of that state. The initial values of the states 

for- the reference problem are also given in Table V. The eigenvalues of the RK 

system matrix are given in Table VI. These eigenvalues are useful for the qualitative 

explanation of the transient response shown in Fig. 5 and Fig. 6. First, the 

fact that all of the eigenvalues are negative indicates that once perturbed by an 



external input, the system will eventually assume a new steady state configuration. 

This open loop stability is a direct result of the negative temperature feedback 

mechanisms. This stability is graphically visualized by noting that the temperature 

increase shown in Fig. 6 corresponds to the neutron density plateau shown in Fig. 

5. When Q / , ac, and ae are zero or positive, non negative eigenvalues should 

appear as an indication of the unstable system configuration. This behavior is 

verified in the first open loop parameter study. The two extremely large negative 

eigenvalues dictate the shape of the early transient response of the system. The 

result of extensive numerical experimentation gave rise to the conclusion that these 

eigenvalues are very weak functions of all plant parameters except the core and 

reflector lifetimes. 

Comparisons are made between the reference case and two other input scenarios 

as shown in Fig. 5 and Fig. 6. The first alternate input corresponds to an 

equivalent step reactivity insertion through an instantaneous change in the infinite 

multiplication constant. The equivalent change in K was found by backsolving 

equation 2.27 given 6p = 0.001. One should note that the step K and the reflector 

ramp input responses assymptotically approach each other beyond 200 seconds. 

This convergence occurs for both the neutron concentration and the fuel and coolant 

temperatures. However, at early times the transient responses are very diff"erent. 

The most evident difference is the prompt jump behavior of the step reactivity 

insertion responses. This prompt jump, stable period, behavior is characteristic for 

the response of a reactor to abrupt changes in reactivity. The physical difference 

between abrupt changes in K and gradual changes in the reflector is preserved 

in the RK model through the direct reflector reactivity input capability. The 

importance of this feature of the model is emphasized by the comparisons given 



in these figures. The remaining curve on these figures correspond to a transient 

induced by an increase in the coolant velocity. While it is impossible to determine 

what coolant velocity increase corresponds e> ictly to 8p — 0.001, an approximation 

was determined by trial and error for qualitative discussion purposes. The chosen 

insertion was a ramp lasting 32 seconds resulting in a 20 percent rise in the coolant 

flow rate. As shown in Fig. 6, the improved heat transfer caused by the increased 

flow induces a steady drop in the fuel temperature (and coolant temperature not 

shown). This decrease in fuel temperature provides the positive reactivity by virtue 

of the negative temperature feedback mechanisms that drives the transient. After 

32 seconds, the fuel and coolant temperatures are shown to rise as a result of the 

increased production in the core and reflector regions and the stabilization of the 

coolant flow. It is particularly informative to note that the core (and reflector) 

neutron concentrations do not show a prompt jump at all. rather they exhibit a 

gradual rise to an eventual higher steady state power level. This merely indicates 

that a 20 percent rise in coolant flow rate has more reactivity worth than bp — 0.001 

for this particular configuration. However, as expected, the increased coolant flow 

causes the final equilibrium temperatures to be lower than in the 6Pr input case. 

This computation demonstrates the fact that a large potential source of reactivity 

worth exists in the coolant velocity and therefore can be an effective means of 

reactivity control. Furthermore, the effect that this form of input has on the system 

is again different than that of control drum input. The additional reactivity control 

offered by flow rate variation is important in space reactor designs that are often 

restricted by control drum reactivity limitations. In the automatic operation mode, 

coolant flow will therefore be utilized to its full advantage. 

Variations of the parameters in the reference case input set were the subject of 
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numerous computations. In addition numerous computations were also performed 

with multiply reflected systems and the more rigorous six delayed neutron precursor 

group model. Unfortunately it is not possible to present all of the data gathered 

from this extensive sensitivity study. The six representative cases summarized below 

are therefore presented. Each of these cases are singly reflected since in chapter III 

it was shown that an equivalent singly reflected system can always be found. The 

generalized structure of the RK model and associated computer codes wais retained 

since future study may involve the modelling of individual core regions that are 

neutronically coupled to the nearest reflector. In such a model, the equivalent 

reflector reduction would no longer be valid. In the six representative test cases, 

only one parameter in the reference case data set will be considered. While the 

changing of a true design characteristic such as fuel enrichment or coolant type will 

certainly have an effect on more than one parameter in the RK model equations, 

the restriction to single parameter variations will avoid the confusion of which 

parameter is causing what observed effect to occur. Furthermore, this approach 

will more readily permit the qualitative validation of the RKOPEN code. The 

transient results for the six cases are given by Fig. 7 through Fig. 15. The reflector 

densities are not shown since they closely parallel the core response for each of these 

CcLses. In the flrst four cases, the precursor concentrations are also omitted in the 

interest of brevity. In the last two cases, the precursor concentrations will prove to 

be of particular interest due to the nature of the problem. 

The first case is the no temperature feedback case which is modelled by setting 

each feedback coefficient, a, to zero. The results are shown in Fig. 7. As 

previously stated, the absence of the negative temperature feedback safety shutdown 

tnechanisms gives rise to reactor instabilitj'. This instability is evident in Fig. 7 



where the response does not stabilize to a new value. The second curve shown 

in Fig. 7 is for a zero core loss feedback coefficient. The similarity between this 

response and the reference case indicates that the core loss coefficient must be much 

larger than 1x10"*^ in order for core loss temperature dependency to constitute an 

effective shutdown mechanism. It is also interesting to note that the eigenvalues of 

the RK plant matrix for the no feedback case all remained nearly the same except 

for the smallest one which went to zero (within the accuracy of the machine) as 

seen in Table VI. This suggests that the temperature feedback mode is relatively 

loosely coupled to the other modes in the RK system. The impact that the feedback 

coefficients have on the stability properties of the system should render its careful 

consideration in future detailed system designs. 

The second case involves two variations of the core lifetime by an order of 

magnitude. As evident in Fig. 8, the lifetime only has an effect on the early time 

response of the system. The curve representing the smaller lifetime shows a larger 

and faster "prompt jump" than the reference case. This is expected since shorter 

core lifetimes indicate the more rapid trasmission of information through the system. 

Likewise, longer lifetimes represent more sluggish transmissions of information 

through the system. The core lifetime therefore governs how fast our reactor can 

respond, which is an important consideration in military space nuclear applications. 

After one second, the three computations are basically indistiguishable. As stated 

earlier, this is mathematically explained by the observation that changing the core 

lifetime only has an appreciable effect on the large negative eigenvalue. The rigidity 

of this eigenmode will prove to be important from the point of view of modal control. 

The third case involes a 100 percent rise in the macroscopic fission cross 

section. Unlike one would normally expect, this causes the overall core neutron 
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concentration to be smaller than the reference case as shown in Fig. 9 and 10. 

This behavior is explained by the fact that even though S / has been modified in 

magnitude, other reactor parameters (such as K, Pc, and 3) that would accompany 

such a change in fuel characteristics are not accounted for. This illustrates the care 

that must be taken when developing an input deck for the RK model. Assuming 

that such a change in S / can be done, more energy will be produced in the core 

without the sacrifice of anything else. This results in an overall rise in the core 

temperature as shown in Fig. 10. The negative feedback mechanisms dictate the 

more rapid stabilization of the core density that is consequently at a lower level. 

In a thermoelectric energy conversion system, this increase in temperature would 

result in a rise in electric power output. From this point of view, the effect of the 

above E / variation is not totally unrealistic. The fourth case is similar in concept to 

the third except the temperature swings in the opposite direction. As seen in Fig. 

10, a 50 percent increase in the heat transfer coefficient causes the reactor to run 

cooler. This slows the approach to the new equilibrium state and therefore gives 

rise to higher core densities as shown in Fig. 9. Again, it is important to note that 

other data such as coolant density and heat capacity may accompany such a change 

in the heat transfer coefficient. These results indicate that the lumped parameter 

equations developed in chapter IV and the temperature feedback modelling are 

functioning as intended. 

The fifth case is the same as the reference case with six delayed neutron 

precursor groups. The different time responses of the precursors are shown in Fig. 

11. The effect that the different decay rates of each group have on the transient 

response of the core neutron density is shown in Fig. 12. The small difference 

that the six delayed neutron precursor group case makes in the overall response of 



the system leads to the conclusion that the additional array storage and processing 

time required is often not justified. The majority of the scoping calculations were 

therefore limited to the one delayed neutron precursor approximation. It is however 

noted that in more rigorous calculations, the use of six (or more) groups may be 

necessary. 

The final open loop computation is done to determine what will occur in the 

absence of energy removal from the core during the rapid insertion of reactivity. This 

mode of operation is appropriately called pulsing. In pulsing mode, the transient 

proceeds so rapidly that the heat does not have time to transport out to through 

the coolant. This unanswered rise in core temperature gives rise to a large negative 

reactivity insertion which quickly reverses the transient. The precursor time lag 

resulting from the delayed neutron effect in this type of transient is particularly 

evident since the core neutron reponse is extremely rapid. The pulsing phenomena 

described above was accurately reproduced by the RKOPEN code as shown in Fig. 

13 through Fig. 15. The reactivity input was SPr =• 0.01225. which corresponds to 

a 2 "dollar" (p = 2/3) reactivity insertion. 

C. State Feedback Numerical Computations 

For purposes of continuity, all numerical computations involved the use of the 

same reference system that was used in the open loop computations above (see Table 

V). As pointed out in chapter IV, the main difficulty that arises in the application 

of a state feedback controller to large systems is that the eigenvalue selection and G 

matrix parameterization is primarily a "blind" trial and error process. Numerous 

sets of eigenvalues were considered before a suitable set was found. It is not possible 

nor productive to present this multitude of information here. Six carefully chosen G 



Table VII 

Eigenvalue and G Matrix Selection 
for State Feedback Computations 

Eigenvalues of Closed Loop for Cases Gl through G6 

I -1.0 -0.5 -2.0 -3.0 -0.8 -0.1 -0.2 
I -5.0 -4.0 -3.0 -2.0 

Eigenvalues of Closed Loop for Arb i t r a ry Case 

» - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 
I - 5 . 0 - 5 . 0 - 5 . 0 - 5 . 0 

Parameterizing G Matrices for Case Gl Through G6 

Case 

Gl 

G2 

S3 

G4 

G5 

G£ 

1 
0 

0 
1 

1 
0 

0 
1 

1 
1 

1 
0 

0 
1 

1 
0 

1 
0 

0 
1 

1 
1 

1 
0 

G 

1 
0 

0 
1 

1 
0 

0 
1 

1 
1 

0 
1 

Matrix 

0 
1 

1 
0 

1 
0 

0 
1 

1 
1 

0 
1 

1 
0 

0 
1 

1 
0 

0 
1 

1 
1 

1 
0 

0 
1 

1 
0 

1 
1 

1 
1 

1 
1 

1 
1 

1 
0 

0 
1 

1 
1 

1 
1 

1 
1 

1 
1 
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matrices each producing different control scenarios are considered. The eigenvalues 

and G matrices are given in Table VII. The different G cases will be referred to 

as Gl through G6 for notational simplicity. Finally, an arbitrarily chosen stable 

eigenvalue set and G matrix are used to demonstrate the potential for disaster 

despite the stability and tracking behavior of the state feedback closed loop system. 

The first problem to be solved is the tracking of a moderate ramp to a 10 

percent increase in core neutron concentration in 32 seconds. The second problem 

is the tracking of a 10 percent step increase in the core density. These two reference 

signals were chosen because they bracket the range of desireable response times 

for mutili-megawatt space reactor applications. The limitations imposed by the 

linearization assumptions prevent the consideration of larger reference signals. In 

all of the figures presented below, the curves are relative with respect to the initial 

values given in Table V. Case Gl is first isolated for general discussion purposes. 

The ramp ccise is shown in Fig. 16a and the step case in Fig. 16b. It is stressed that 

the results shown in Fig. 16 are favorable only as a result of many hours working 

on the trial and error eigenvalue selection process. Even though care was taken 

in this selection, some overshoot is shown in Fig. 16a at the 32 second bend in 

the reference signal. This overshoot is more severe when the controller is requested 

to track an abrupt step signal as shown in Fig. 16b. It is also noted that the 

core and reflector responses are nearly identical for both cases. This is primarily 

due to the linear and point nature in which their coupling is treated in the RK 

model. On the other hand, the precursor response significantly lags that of the 

neutron densities due to the decay laws which it must obey. However, the relative 

value reached upon stabilization are essentially the same. The core and coolant 

temperature response shown in Fig. 16 is caused by the changes in the coolant flow 
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rate. It is this temperature drop which provides the primary reactivity insertion for 

the procession of the transient. The fact that the controller feedback gains are not 

unique for the multivariable c«Lse suggests that the primary driving force could just 

as well be the reflector transfer probabilities. It turns out that three of the six G 

cases gave rise to Pr dominated transients and the other three were V^ dominated. 

Before proceeding to discuss the diff"erences between these six cases, it is important 

to note that the output for each of the cases tracked the reference signal with near 

identical accuracy for the ramp tracking problem as shown in Fig. 17. 

The differences resulting from the "selection" of G matrices primarily appear 

in the temperature response and the inputs. The SPr reactivity inputs for each of 

the six cases are shown in Fig. 18a and Fig. 18b. The SVc/Vco inputs are given 

by Fig. 19a and Fig. 19b. Note that the results were grouped as shown in these 

three figures because each group exhibits the same basic control inputs with varying 

magnitudes. The input coolant flow in cases 1,2 and 4 assume the same basic shape 

of the reference signal. Rapid stability in these cases are achieved by an extremely 

large coolant flow rate change as seen in Fig. 19a. Also shown on this figure is 

the coolant flow increase for the step tracking problem. It is noted again that the 

shape is basically the same except it is sqeezed into a shorter time frame. Cases 

3, 5, and 6 exhibit much lower coolant flow rates and therefore in one sense solves 

the tracking problem more efficiently. It is particularly interesting to note that the 

Pr inputs for these cases, as seen in Fig. 18a, increases initially to instigate the 

ramp and then attains a negative slope beyond 32 seconds to stabilize the response. 

The diff"erences in these two groups of input scenarios readily explain the different 

temperature responses shown in Fig. 20a and Fig. 20b. The results presented above 

indicate the need for more intelligent and physically based methods of selecting G 
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matrices if state feedback is to be used in future RK automatic control applications. 

However, even such methods would not guarantee the favorable transient response 

nor would it aid in the selection of an adequate eigenvalue set. 

The dissadvantage of the state feedback control approach discussed above is 

demonstrated in this final computation. Fig. 21 shows what can happen when 

an unfavorable eigenvalue set and G matrix happens to be chosen. Even though 

our system is stable and aissymptotically tracks the desired reference signal, clearly 

the transient response of the system is unacceptable. The potential of this type of 

response occuring prohibited the use of RKSF with more that one delayed neutron 

precursor group. This is because when an additional precursor group is added, 

two more eigenvalues and two more columns of the G matrix must be specified. 

Further discouragement is given by the fact that the closed loop system grows by 

two states with the addition of each precursor group. On the other hand, the 

treatment of multiple precursor groups are readily treated in the modal control 

case. Additionally, the uncertainties associated with the selection of closed loop 

eigenvalues and parameterizing matrices are avoided in the modal control case as 

the results of the following secton will indicate. 

D. Modal Control Numerical Computations 

The two tracking problems solved under state feedback control in the previous 

section are now solved using modal control as discussed in chapter V. The numerical 

computations are done with the RKMODAL code (see Appendix C). This program 

was written so that the desired eigenvalues and eigenvectors could be interactively 

altered until a desireable set of closed loop eigenvalues resulted. This was necessary 

because the primary disadvantage of the modal approach is that closed loop 



column of the desired Vd attempts to force the first assignable eigenvalue to the 

bulk core temperature mode. Likewise, the second column attempts to capture the 

second eigenvalue for the coolant temperature mode. The ''x"s in the third and 

fourth row of these vectors gives the modes the freedom to couple the core and 

coolant temperatures if needed in order to achieve the remaining zeroes in these 

vectors. The preservation of near zeroes in the first and fifth rows of the first 

two columns is important since the open loop results told us that the core and 

precursor eigenvalues were insensitive to other plant information. Finally the third 

column couples the tracking integrators to the core density mode. This was chosen 

because the instability is caused by the presence of the integrators. The remaining 

'^"s that appear were added in order to improve the achievement of the remaining 

zeroes which were believed to be more important. 

The final step in the definition of the eigenmodes is the selection of the three 

eigenvalues. Three arbitrarily small values were chosen for each of the three modes. 

The selection wais found to not have much effect on the transient behavior of the 

system within the r«mge of 0 to -4.0 The values chosen were A] = -0 .2 , A2 = -2 .0 , 

and A3 = -4 .0 . 

The solution of the problem with the six delayed neutron precursor group 

model is a trivial extension in the modal controlled case. In this case, the fifth row 

of desireable eigenvector was repeated five times (once for each additonal group). 

Since the feedback law is based on measureable output, the multiple precursor 

case does not involve the specification of additional columns of Vd nor additional 

assignable eigenvalues. 

The solution of the ramp tracking problem with one and six delayed neutron 

groups is shown in Fig. 22a and Fig. 22b. The effect of the decoupling and the 
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retainment of the certain natural eigenmodes in the system are evident in these 

figures. The overshoot is so small that it is not discernable on these figures. Again 

we see the time lag that the precursors must exhibit. The precursors are not plotted 

for the six group case to avoid confusion. The similarity between these two responses 

is explained by the fact that the controller was intentionally decoupled from the 

precursor states. The inputs computed from the modal output control law are 

plotted in Fig. 23a and Fig. 23b. Note that the penalty for the excellent tracking 

is a more demanding coolant flow rate increase. The solution to the step tracking 

problem is given in Fig. 24- The overshoot shown is much smaller than in the state 

feedback case. Again. Fig. 23a and Fig. 23b show the penalties for such accurate 

and fast signal tracking. 

The final numerical computation is referred to as an intelligent manual control. 

Manually driven control drums or coolant flow rate could certainly not replicate the 

effect of either of the two control law inputs. The best one could ever hope to do 

would be linear approximations to these values. The inputs from the state feedback 

Gl case were broken into three portions and approximated by linear segments with 

a least square fitting algorithm with forced matching endpoints. The resulting 

response shown in Fig.25 illustrates two important points. First, since the internal 

model principle depends on output feedback principles which physically can not 

be done, the immediate usefullness of the control schemes presented above are 

limited. However, as seen in Fig. 25, such computations give valuable insight into 

more intelligent ways of manually controlling the system. Secondly, assuming that 

the transducer needed to link the controlled output and the measureable output 

is negligible, then the intelligent manual input mode of operation is shown to be 

inferior to the true automatically control cases. 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

A. Summary 

In chapter two, the RK model was conceived in order to model the effect of 

movable control drums external to the core in a point reactor environment. The 

reflected kinetics extension of the point kinetics equations has proven to be an 

attractive alternative to "equivalent bare point kinetics" in the analysis of space 

nuclear reactors. The RK structure was developed in order to treat control drums 

in a direct way. In chapter VI. it was shown that manipulation of the transfer 

probabilities do indeed drive the transient differently than the lumped insertion of 

equivalent reactivity amounts in the core. In chapter III, the RK equations were 

shown to limit properly to the point kinetics equation for a bare system. This 

limiting process was demonstrated in the time domain and in the comparison of 

the RK response function to that of the PK equations. Preliminary computations 

were performed in chapter III which identified the practical limit of the linearization 

assumptions. .\n analytic solution of the simplified RK case with constant reactivity 

inputs and no thermal effects was constructed by method of Laplace transforms. 

A general form of the step reactivity point kinetics analytic solution was also 

developed. The development of an extension to the ASH exponential operator 

method that allows for the solution of non constant sources W2is also presented in 

chapter III. This numerical technique wjis used to solve the linear RK equations as 

opposed to less efficient and less accurate finite difference methods. 

In chapter TV the lumped parameter approach was utilized in order to model 

the transport of heat from the core region to the coolant fluid. Modelling of the 



temperature feedback shutdown mechanisms were added to the RK equation set by 

using the bulk core and coolant temperatures and constant temperature feedback 

coeflBcients. The structure of the reactivity inputs in the RK model, unique from 

the PK approach, allowed for separation of core loss feedback effects and Doppler 

temperature feedback. The RKOPEN computer code shown in Appendix C was 

developed based on the modelling in chapter II and chapter IV. The first portion 

of chapter VI was dedicated to the testing of the validity of the RKOPEN code. 

These computations were also performed in order to draw conclusions regarding the 

importance of several system pzirameters and control inputs. The RKOPEN code 

provided the base structure for the two codes that implemented automatic control 

(RKSF and RKMODAL). 

In chapter V, two approaches to automatic control were considered. The theory 

found in the literature was reviewed for purposes of continuity. Advantages and 

disadvantages of the state feedback controller and the modal controller as applied 

to the RK model were identified. The last portion of chapter VI was dedicated 

to the solution of two servo mechanism problems under both forms of automatic 

control. Conclusions regarding future use of automated control in space reactor 

studies are made based on these results. 

B. Conclusions 

The linearization assumptions were found to be valid for responses deviating 

less than 10 percent from their nominal values. The linearized RK equations are 

therefore concluded to be useful in the analysis of nearly all non military space 

nuclear applications. Furthermore, the use of this linear model in the development 

of the automatic controllers is viable. To consider some of the transients that mav 



be of interest in military space nuclear applications, nonlinear analysis must be 

considered. 

The validity of the lumped parameter temperature model was verified in 

chapter VI where the open loop transient calculations resulting from the variation 

of physical system inputs qualitatively performed as expected. These computations 

also pointed out the importance of the ability to treat coolant flow rate as a 

control variable. The open loop computations also lead to the conclusion that the 

stability of the manual RK system is highly dependent on the sign and magnitude 

of the three temperature feedback coefficients. It was also discovered that zero 

temperature feedback coefficients render the RK system uncontrollable from an 

automatic control perspective. The implications that the temperature feedback 

coefficients have on system stability render them of primary concern in space reactor 

design. The transfer probability structure of reactivity input in the RK model 

played an important role in the realization of this conclusion. 

The primary purpose of any scoping study is to determine which aspects of 

more detailed designs should be emphasized. The numerical calculations presented 

in chapter VI indicated that often plant eigenmodes are rigidly fixed in the stable 

complex plane. This rigidity provided the initial motivation for the consideration 

of modal control as an alternative to state feedback in the solution of the servo 

problem. In the RK model, two such rigid eigenmodes were found to be dependent 

only on the core and reflector lifetimes. This information proved useful in the im

plementation of the modal control algorithms. Computations involving elementary 

variations in the heat transfer coefficient and the macroscopic fission cross section 

reinforced the conclusion that negative temperature feedback has a strong influence 

on the stability of space nuclear systems. This was further tested by calculating a 
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pulse with the RKOPEN code. Even though the peak of the pulse indicates a rather 

extreme violation of the linearization assumptions, the RK model reproduced the 

temperature shutdown phenomena that in reality truly occurs for such intentionally 

induced severe transients. 

The integration of automatic control principles and the RK model was readily 

accomplished as a result of the transfer probability reactivity input structure. The 

robust tracking of steps and ramps was demonstrated under the assumption of 

unity feedback. Comparisons between the state feedback controller and the modal 

controller indicated that modal control has the clear advantage in RK applications. 

The required placement of each system eigenvalue in the state feedback case proved 

to be wasteful due to the inherent stability exhibited by a nuclear system with 

negative temperature feedback. Furthermore, the lack of an intelligent eigenvalue 

selection process and the uncertainty associated with the selection of the G matrix 

limit the usefullness of state feedback control. One of the problems known to limit 

the use of modal control is the lack of a guarantee of system stability. This however 

is a mathematical limitation. In practice, it is trivial to check the stability of the 

closed loop system and alter the spectral assignment if an unstable configuration 

is found. This modelling incorporated into to RKMODAL code proved to offer a 

considerable advantages over the brute force state feedback approach. 

On the more computational side of the results, the RKOPEN and the RK

MODAL equations were solved with the ASH methodology. The extension discussed 

in chapter III was implemented into ASH in order to handle linear source terms. 

The results shown in chapter VI demonstrate the validity of this treatment of non 

constant sources in the ASH methodology. The ASH method proved to provide a 

computational advantage over Runge Kutta in solving the dynamical equations in 



these codes since the speed of the transient at early times dictates the use of ex

tremely small Runge Kutta time steps. For the same accuracy. ASH was found to 

require less than a factor of 10 in CPU time for the calculations presented. However, 

the size of the closed loop matrices and the favorable magnitude of the eigenvalues 

made Runge Kutta the advantageous numerical method in the state feedback case. 

Overall, the RK modelling approach is concluded to have a physical advantage 

over more implicit modelling of reflector controlled reactors. Additionally, the 

structure of the RK dynamical equations proved to permit the smooth transition 

to automatic control. The integration of modal control techniques and the RK 

dynamical model in conjunction with the computationally efficient ASH solution 

methodology has provided a useful tool for performing nuclear space reactor kinetic 

and control scoping studies. Furthermore the methodology and the computer 

analysis codes developed here have provided a solid foundation upon which more 

comprehensive kinetics and control models can be built. A few such suggestions of 

further work are given below. 

C. Suggestions for Further Work 

The most immediate work that can be done involves the use of actual space 

nuclear reactor input data. Preliminary criticality experiments will be necessary in 

order to identify such parameters as core lifetime and the initial transfer probability 

values. Another obstacle is the fact that much of this information is classified for 

purposes of national security. 

From a numerical standpoint, the most immediate need for future study 

involves the treatment of the nonlinear RK equations. While valuable insight was 

found using the linearized system, the range in which the linearization assumptions 



apply prevent the study of extremely deviate transients which could be of interest 

in military space nuclear applications. This study will require a numerical solution 

method that has the speed and accuracy of ASH. yet the flexibility of Runge 

Kutta. Further work in the nonlinear analysis should also include the study of 

linear automatic control applied to the nonlinear model. The study of the stability 

of the closed loop system will be necessary since stability in the nonlinear system in 

general cannot be not guaranteed by a controller that is derived from the linearized 

model. 

The consideration of more advanced nuclear modelling would only strengthen 

the argument against the use of state feedback control. This is the result of the 

eventual growth of the order of the dynamical equations with added complexity 

and phenomonology. This fact in addition to the conclusions drawn from chapter 

VI results indicate that future study should concentrate on lower order control 

methods. The overall stable structure of the RK equations resulting from the physics 

of nuclear kinetics are well suited for the modal control method. Further work in 

the development of a servo compensator that does not depend on unity feedback is 

also suggested. Alternatives to the internal model principle will therefore need to 

be considered. Such a study would be needed in order to make the transition to the 

development of a controller that can actually be constructed for use in automated 

nuclear space missions. Finally, more sophisticated control laws could be considered 

which would put constraints on the physical range of the inputs, thereby eliminating 

the mathematical calculation of unphysical results. 

With regard to the nuclear kinetics modelling, the use of Monte Carlo calcu

lations are suggested in order to refine the numerical values of the transfer proba

bilities. Work has allready begun in this area with the KENO computer code. The 



utilization of the information provided by KENO would require multiple energy 

group and a multiple core region modelling extensions. These considerations would 

also give rise to more accurate treatment of delayed and reflected neutrons in the 

system since they are typically at different energies than the average core neutron 

spectrum. Furthermore, the neutronic coupling of individual core regions to the 

control drums would bring forth the full advantage of the RK modelling approach. 
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APPENDIX A 

RK PLANT MATRIX STRUCTURE 
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APPENDIX B 

ASH METHODOLOGY 

A. INTRODUCTION 

Many problems of i n t e r e s t i n s c i e n c e and e n g i n e e r i n g can be 
expressed as a system of coupled l i n e a r time invar iant equations. Such a 
system can be wr i t t en as : 

__ - A (|> + S (B.I) 

dt 

where A and S are constant over the t ime in te rva l [ 0 , t ] . Conventional 
t e c h n i q u e s fo r n u m e r i c a l l y s o l v i n g e q u a t i o n B.I a re based on f i n i t e 
difference techniques such as e x p l i c i t and imp l i c i t Runga Kutta methods. 
However, i f A i s s t i f f or i l l conditioned and the solut ion ^ i s desired 
a t long t i m e s , t , t h e n t h e n e c e s s a r y sma l l t ime s t e p s r e q u i r e d fo r 
accuracy can r e s u l t i n a n o n - f e a s i b l e s o l u t i o n t i m e . An a l t e r n a t e 
approach i s p r e s e n t e d here based on t h e s imple a n a l y t i c s o l u t i o n t o 
eqiiation B.I. This method uses an exponential matrix operator and w i l l 
be r e f e r e d t o as t h e ASH method. The ASH method has proven to be near 
a n a l y t i c accuracy and computationally advantageous to use. 

B. THEORY 

Under t h e a s sumpt ion t h a t A and S a r e c o n s t a n t over [ O . t ] , t h e 
ana ly t i c so lu t ion i s r e ad i l y ve r i f i ed to be given by 

(fr(t) - {e^t} ^(0) + A"''( {e^t} - I )S. (B.2) 

The matrix opera tor , D(C), i s now defined as 

D(C) - C""" (e^ - I ) . (B.3) 

If we l e t C • At then equation B.2 reduces t o : 

(Kt) - [ I + C D(C)]<fr(0) + t D(C) S (B.4) 

Seve ra l t h i n g s a r e wor th n o t i n g about equa t ion B.M. F i r s t , i f we a re 
given an autonomous sys tem (S - 0) then the o p e r a t o r D(C) i s not r e 
quired; r a the r only the matr ix operator [ I + C D(C)]. Second, the matrix 
operator D(C) represen t s the de f in i t ion of the {e*^} matrix since expo
n e n t i a t i n g non diagonal matr ices i s not a s t ra ightforward ca lcu la t ion . 



F i n a l l y , i f the D(C) m a t r i x can be found then the problem i s solved 
e x a c t l y by e q u a t i o n B.M. D(C) i s found by us ing t h e s e r i e s r e p r e s e n t a 
t i o n of e^. 

e^ ~ I - I + Z - I + C Z (B.5) 
O n ! I n ! 0 (n+1)! 

Equation B.5 i s rearranged (subtract I and mult iply by C ^ to give, 

• C"̂  
D(C)- Z (B.6) 

0 (n+1)! 

The s e r i e s expression given by equation B.6 would prove computationally 
d i f f i c u l t to evaluate unless the eigenvalues of the C matrix were boun
ded by uni ty . This problem i s solved by defining a new matr ix , H, which 
i s a scaled down version of C. Consider the following def in i t ion 

H - 2"Pc , (B.7) 

where p i s chosen such t h a t t h e Euc l idean norm of H i s l e s s than 1/2 
( i . e . , II H II < 1/2). The value of p t h a t s a t i s f i e s t h i s c r i t e r i o n i s 
given by the following r e l a t i o n s h i p : 

l n ( t ) + 0.5 InC I A 2 . ^ ] 
i j ^J 

p > 1 + (B.8) 

m (2) 

Now we seek to find a computational expression for the D(H) opera
t o r . Th is i s e a s i l y done by t e r m i n a t i n g equa t ion B.6 a t M te rms such 
tha t the next term (M+1) gives a neg l ig ib le contr ibut ion to the s e r i e s . 
This i s a val id convergence c r i t e r i o n because the exponential sequence 
i s monotonically decreasing. 

M H"̂  

D(H) • Z (B.9) 
0 (n+D! 

where 

H ||M*1 
< e (B.10) 

(M+2)! 2M+I (M+2)! 



The value M must be de te rmined dynamica l ly for some s p e c i f i e d e from 
e q u a t i o n B.10 p r i o r t o the computa t ion of t h e s e r i e s . This i s r e q u i r e d 
because the s e r i e s i s performed backwards as i l l u s t r a t e d by the simple 
example below. 

f (x) - 1 + X + x^ + x3 + x'* - 1 + x(1 + x(1 + x(l + x) ) ) (B . l l ) 

Once t h e D(H) m a t r i x o p e r a t o r i s formed, t h e D(C) and the [ I + C 
D(C)] operators are formed by applying the two recursion re l a t ionsh ips 
below: 

D(2"H) - D ( 2 " " ' ' H ) [ I + 0 . 5 ( 2 ^ ~ ' ' H ) D ( 2 " " ' ' H ) ] (B.12) 

[ I + ( 2 " H ) D ( 2 " H ) ] - CI + (2'^-^H)D(2n-lH)]2 (B.I 3) 

Clearly equation B.12 and B.I 3 must be applied 'p' times until we have 
scaled back up to D(C) and [I + C D(C)] respectively. These recursion 
relations are proved in the following section. 

C. PROOF OF RECURSION RELATIONS 

Equation B.12 is first proved by transfinite induction. When p-0, 
then clearly C - H and D(C) - D(H). When p-1, then C - 2H and D(C) -
D(2H) - (2H)""'(e2" - I). This factors into: 

D(2H) - H~''(e"-I) « 0.5(e" + I) - D(H) * 0.5(e" + I) (B.U) 

Substituting e^ - H D(H) + I gives 

0.5(e" + I) - 0.5(H D(H) + I + I) - I + 0.5 H D(H). (B.15) 

Therefore we have, 

D(2H) - D(H) [I + 0.5 H D(H)] . (B.l6) 

If this is true for p-0 and p-1 then by induction it is true for all 
values of n (0 < n < p). 

D(2'̂ H) - D(2"~"'H) CI + 0.5 (2'̂ ~''H) D(2'^"''H)] (B.17) 

The proof of equation B.13 follows in a s imi la r manner. If p-1 then, C -
2H and [ l + C D(C)) - ( l + 2H D(2H)). S u b s t i t u t i n g in the r e s u l t s from 
the previous proof at p-1 for D(2H) gives 
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I + C D(C) - I + 2 H D(H)C I + 0.5 H D(H) ] 
- I + 2H D(H) + H D(H) H D(H) 

- C I + H D(H) ]2 . (B.18) 

Again by induction we may deduce in general 

I + (2"H) D(2"H) - C I + (2"~''H) D(2"""'H) ]2 . (B.19) 



APPENDIX C 

CODE LISTINGS 

PROGRAM RKO 
C-
C- Op>en l o o p a n a l y s i s program 
C-

IMPLICIT REAL»8 (A-H,0 -Z) 
REkL*h Rit 
CHARACTER FILE1*8 
DIMENSION Z(2001) 
DATA IZMAX / 2 0 0 0 / 

10 CONTINUE 
CALL A S K C F i l e name e x t e n s i o n ' , U , R 4 , R 8 , 1 , F I L E D 
0PEN(UNIT-1 ,FILE-FILEI/ /MNP' .STATUS-'OLD' ,ERR-10) 
0PEN(UNIT-2,FILE-FILEI// ' .OUT',STATUS-'NEW,ERR-1 0) 
0PEN(UNIT-3,FILE-FILEI/ / ' .PRN',STATUS-'NEW,ERR-10) 

15 CONTINUE 
READ (1 ,101 ,ERR-99 ,END-99) NREF,NGRP,NPD,NSOL 
IF (NREF.LT.O .OR. NGRP.LT.O .OR. NPD.LE.O) GO TO 99 

C-
C- Calculate the size of the matrix from the number of reflectors, etc 
C- the 3 comes frc«n the core equation plus the two temperatures 
C- The additional 1 comes from the simulated time variable 
C-

+ 3 + 1 NC -
NADD 
NPNS 
N1 -
N2 -
N? -
N4 -N5 -
N6 -

K J : 
N9 -
N10 
Ni l . 
N12 . 
N13 • 

NREF + NGRP 
- NC»NC 
- NPD»NSOL 
1 
N1 + 
N2 + 

N5 + 

N6 + 

N8 • 
- N9 • 
- NIG 
- Nil 
- N12 

NADD 
NADD 
NADD 
NADD 
NADD 
NADD 
NC*NPNS 
NC 

•• NC 
+ NPNS 
+ NC 
+ NC 

NLAST - N13 + NC 
NVECT - NLAST - 1 

c-
WRITE ( » , 1 0 2 ) NVECT 
IF (NVECT.GT.IZMAX .OR. NGRP.GT.6 .OR. NREF.GT.9) 

1 GO TO 99 
DO 30 1-1,NVECT 

z T l ) - O.ODO 
30 CONTINUE 

C-
C- C a l l t h e main r o u t i n e 
C-

CALL GORES(NREF,NGRP,NC,NPD,NSOL,NPNS, 
1 z T N i y , Z ( N 2 ) , Z ( N 3 ) , Z ( N i » ) , Z ( N 5 ) , Z ( N 6 ) , Z ( N 7 ) , 
2 Z ( N 8 ) , Z ( N 9 ) , Z ( N 1 0 ) , Z ( N 1 1 ) , Z ( N 1 2 ) , Z ( N 1 3 ) ) 

GO TO 15 
99 CONTINUE 

CLOSE(UNIT-1) 



CLOSE(UNIT-2) 
CL0SE(UNIT-3) 
STOP 

101 F0RMAT(5IM) 
102 FORMAT(/,' This calculation requires, ',I6, 

1 ' Array elements',/) 
END 
SUBROUTINE GORES(NREF,NGRP,NC,NPD,NSOL,NPNS, 

1 A,B,C,D,E,F,POUT,P,SV,TIMES, 
2 WR,WI,SCALE) 

IMPLICIT REAL*8 (A-H,0-Z) 
REAL*4 Ril 
CHARACTER ANS»1,TITLE»70 
COMMON/INFO/ S0RC0(20,10),S0RC1(20,1 0) 
DIMENSION A(NC,NC),B(NC,NC),C(NC,NC),D(NC,NC),E(NC,NC), 

1 F(NC,NC),POUT(NC,NPNS),P(NC).SV(NC),TIMES(NPNS), 
2 WR(NC),WI(NC),SCALE(NC),INTG(20) 

C-
C- See RESM and RESC code for documentation. Also see S0LVE2 
C-

NDIM - NC 
NCM1 - NC - 1 
NB - NREF + 2 
NSV - 1 

C-
C- Read in the t i t l e and some prel iminary integer f l a g s 
C-

READ (1,103,ERR-99,END-99) TITLE 
IF (TITLE(1:3) .EQ. 'END') GO TO 99 
READ (1,102,ERR-99) NEPS,MMAX,IPRT,IEIG,IPLOT 
WRITE (2 .214) TITLE 
WRITE ( * , 2 U ) TITLE 

C-
C- Input the source s t o r e temporari ly i n C(J , I ) 
C- F i r s t entry i s K ext next are dPr for r-1,NGRP followed by coolant 
C-

WRITE (2 ,210) 
WRITE (» ,210) 
DO 16 INSOL-I.NSOL 

READ (1 ,101) TIMES(NPD*INSOL) 
WRITE (2 ,212) TIMES(NPD*INSOL) 
WRITE (» ,212) TIMES(NPD*INSOL) 
DO 15 J-1,NB 

READ (1 ,101) C(J,INSOL),D(J,INSOL) 
WRITE (2 ,211) J,crj,INSOL),D(J,INSOL) 
WRITE (* ,211) J,C(J,INSOL),D(J,INSOL) 

15 CONTINUE 
16 CONTINUE 

C-
C- Get the A matrix and B matrices 
C- B ash used as temp space for B source 
C-

CALL MAKEAB2(NDIM,NREF,NGRP,NC,NB,A,B,IPRT) 
C-
C- I n i t i a l i z e Source t o zero and f i x up t var iable i n i t i a l condi t ion 
C-

DO 11 1-1 ,NCM1 
DO 10 J-1,NS0L 

S0RC0(I,J) - O.ODO 
S0RC1(I,J) - O.ODO 

10 CONTINUE 
P(I) - O.ODO 

11 CONTINUE 
P(NC) - 1.ODO 

C-
C- Multiply B * U to get source vector 
C-

DO 31 INSOL-1,NSOL 
DO 30 I-1,NCM1 



DO 20 J-1,NB 
SORCO(I,INSOL) - SORCOd.INSOL) + B( I , J) *C( J, INSOL) 
S0RC1(I,INS0L) - SORC1(1,INSOL) + B(I,J)*D(J,INSOL) 

20 CONTINUE 
30 CONTINUE 
31 CONTINUE 

C-
C- Set A and SV for the first loop (not really needed) 
C-

INSOL - 1 
CALL ASV(A,SV,INSOL,NDIM,NC) 

C-
C- Print A and B matrices (not inc luding t var iab le ) 
C-

IF (IPRT.GE.3) THEN 
CALL PRMAT(NDIM,NCM1,NCM1,A,'A Plant matrix') 
CALL PRMAT(NDIM,NCM1,NB,B,'B Plant matrix') 

END IF 
C-
C- Find the eigenvalues of the matrix (not including t variable) 
C-

IF (lEIG.GT.O) THEN 
CALL EQUAL(A,F,NDIM,NCM1) 
CALL RG(NDIM,NCM1,F,WR,WI,E,INTO,SCALE,IERR,0) 
IF (lERR.NE.O) THEN 
WRITE (2,206) 
IF (IPRT.GE.1) WRITE (»,206) 

ELSE 
IF (IPRT.GE.1) WRITE (*,208) 
WRITE (2,208) 
DO 45 I-1,NCM1 

IF (IPRT.GE.1) WRITE (*,209) WR(I),WI(I) 
WRITE (2,209) WR(I),WI(I) 

45 CONTINUE 
END IF 
IF (IPRT.GE.1) THEN 
CALL ASK('Proceed with calculation [Y] ' ,4,R4,R8,I,ANS) 
IF (ANS.EQ.'N' .OR. ANS.EQ.'n') RETURN 

END IF 
END IF 

C-
C- Get solution using ASH SOLVER 
C-

IF (IPRT.GE.1) WRITE (*,») 'Calling SOLVER for answer' 
CALL S0LVE2(A,B,C,D,E,F,NDIM,NC,NSV,SV,P,TIMES, 
1 POUT,NPD,NSOL,NPNS,NEPS,MMAX,IPRT) 

C-
C- Write the plot output file, note that IPLOT dictates 
C- how many of the states are included in the PLOT.INP file 
C-

IF (IPLOT .GT. 0) THEN 
IF (IPLOT .GT. NCM1) IPLOT - NCM1 
WRITE (3,102) NPNS,IPLOT 
DO 70 1-1,NPNS 
WRITE (3,201) TIMES(I),(P0UT(J,I),J-1,IPL0T) 

70 CONTINUE 
END IF 

C-
C- Output resul ts 
C-

IL - 0 
40 CONTINUE 

JB - 5*IL+1 
JE - JB + 4 
IF (JE .GE. NPNS) JE - NPNS 
WRITE (2 ,202) (TIMES(J),J-JB,JE) 
WRITE (2 ,213) 
WRITE (2 ,203) (P0UT(1,J),J-JB,JE) 
DO 50 1-1,NREF 



,(P0UT(NREF+2,J),J-JB,JE) 
'C',(P0UT(NREF+3,J),J-JB,JE) 

WRITE (2,204) I,(P0UT(I+1,J),J-JB,JE) 
50 CONTINUE 

WRITE (2,207) 'F' 
WRITE (2,207) 
DO 60 1-1.NGRP 
WRITE (2,205) I,(P0UT(I+NREF+3,J).J-JB,JE) 

60 CONTINUE 
IL - IL + 1 
IF (JE .LT. NPNS) GO TO 40 

Thats all 
C-
C-
C-

RETURN 
99 CONTINUE 

CLOSE(UNIT-1 
CL0SE(UNIT-2 
CLOSE(UNIT-3 
STOP 

101 FORMAT 
102 FORMAT 
103 FORMAT 
201 FORMAT 
202 FORMAT 
203 FORMAT 
204 FORMAT 
205 FORMAT 
206 FORMAT 
207 FORMAT 
208 FORMAT 
209 FORMAT 
210 FORMAT 
211 FORMAT 
212 FORMAT 
213 FORMAT 
214 FORMAT 

END 
SUBROUTINE MAKEAB2(NDIM.NREF,NGRP,NC,NB,A,B,IPRT) 
IMPLICIT REAL*8 (A-H,0-Z) 
DIMENSION A(NDIM,NDIM),B(NDIM,NB), 
1 BETA(6),XL(6),PFR(9),XLR(9).PR0(9) 
DATA C0NVF1,C0NVF2 / 1.4022D-06,6.7050D-05 / 

8D10.4) 
614) 
A) 
8(1X,E9.3)) 
/ / / , T 2 , 'Time',T10,5(1PD12.4)) 
T2,'NC',T10,5(1PD12.4)) 
T 2 , ' N r ( ' , I 1 , ' ) ' , T 1 0 , 5 ( 1 P D 1 2 . 4 ) ) 
T 2 , ' C ( ' , I 1 , ' ) ' , T 1 0 , 5 ( 1 P D 1 2 . 4 ) ) 
/ / , T 2 , ' * « * Error in RG eigenvalue finder « * * ' , / / ) 
T2,'T',A1,T10,5(1PD12.4)) 
//,T5,'System eigenvalues ',/,T5,l8('-'),//) 
T5,1PD12.4,' + j (',1PD12.4,')') 
/,T5,'Inputs to the open loop system',/,T5,35('-'),/) 
T5,'U(',I2,') - ',1PD12.4,' + •,1PD12.4,' t') 
T5,'Destination time - ',1PD12.4) 
T 2 , 7 5 ( ' - ' ) , / / ) 
/ / , 1 X , A , / / ) 

C-
C-
C-
C-
C-
C-
C-
C-
C-
C-
C-
C-
C-
C-
C-

The in ten t of t h i s subroutine i s to read in a l l 
information and then ca l cu la t e the system A and 
for an averaged core region and coolant channel 
r e f l ec t ed point k i n e t i c s model developed for 
the a i r force research con t r ac t . 

ge r t inen t 
matrices 

for the 

This version was modified in tha t the precursor s t a t e s were 
placed at the end in order t o simplify the process of designing 
a minimum order con t ro l l e r for the unreachable concentrations 

Also the external K eff was r e inse r t ed into the B matrix 

I n i t i a l i z e matrix t o zero 

DO 20 I. 
DO 10 

10 
A(J. I ) 

CONTINUE 
DO 11 J-1 

B ( J , I ) 
CONTINUE 

CONTINUE 

1,NC 
J-1,NC 

O.ODO 

,NB 
« O.ODO 11 

20 
C-
C- Read in and wr i t e out the problem information 
C-
C- Core 
C-



C- PHIO - Initial core flux - XNCO * VEL 
C- XNCO - Initial neutron distribution 
C- XKINF K - Infinity for the core initially 
C- XLC Inverse of core lifetime 
C- PCO Initial prob of neutrons staying in the core 
C- ENERGY Energy or the neutron spectrum in Kev 
C-

IF (IPRT.GE.1) WRITE (»,») 'Core input' 
READ (1,200) XNCO,XLC,PCO,ENERGY 
IF (ENERGY .LE. O.ODO) ENERGY - 10.ODO 

C-
C- Reflectors 
C-

IF (IPRT.GE.1) WRITE (»,*) 'Reflector input' 
SUMR - O.ODO 
IF (NREF.EQ.O) THEN 
XKINF - 1.ODO/PCO 
WRITE (2,201) XNCO,XKINF,XLC,PCO,ENERGY 
WRITE (2,211) 

ELSE 
DO 30 N-1,NREF 
READ (1,200) PFR(N),XLR(N),PRO(N) 
SUMR - SUMR + PFR(N)*PRO(N) 

30 CONTINUE 
XKINF - 1.ODO/(PCO + (1.0D0-PC0)»SUMR) 
WRITE (2,201) XNCO,XKINF,XLC,PCO,ENERGY 
WRITE (2,202) NREF 
DO 31 N-1,NREF 
XNRO - PFR(N)*(1.0DO-PCO)»XKINF»XNCO*XLC/XLR(N) 
WRITE (2,203) XNRO,PFR(N),XLR(N),PRO(N) 

31 CONTINUE 
END IF 

C-
C- Precursors 
C-
C- BETA Delayed neutron fraction for group i 
C- XL The decay constant for group i 
C-

IF (IPRT.GE.1) WRITE (*,*) 'Precursor input' 
BEFF - O.ODO 
WRITE (2,204) NGRP 
DO 40 1-1.NGRP 
READ (1,200) BETA(I),XL(I) 
BEFF - BEFF + BETA(I) 
CIO - BETA(I)*XKINF*XNCO»XLC/XL(I) 
WRITE (2,203) CIO,BETA(I),XL(I) 

40 CONTINUE 
WRITE (2,205) BEFF 

C-
C- Temperature equations in fuel and coolant - temperature feedback 
C-
C- CPRF Cp » Rho in the fuel region in BTU/(ft3-F) 
C- t h i s i s changed to KW-sec/(cm3-C) 
C- CPRC Cp * Rho in the coolant region in BTU/(ft3-F) 
C-
C- HF newton cooling coef f ic ien t at wall 
C-
C- SIGF Macroscopic f i s s i o n cossection in region in 1/cm 
C- CHI Power produced per neutron in the core in KW/neutron 
C- CHI - SIGFission * sqr t (E) * Constants 
C- C0NVF1 Conversion fac tor for CHI to KW/neutron 
C- C0NVF2 Conversion fac tor for CP * Rho to KW-sec/Cm3-C 
c-
C- ALPHAF Feedback coef f ic ien t for fuel temperature (doppler) 
C- ALPHAC Feedback coef f ic ien t for coolant temperatiire 
C- ALPHAE Feedback coef f ic ien t for Pc, could be pos or neg 
C-
C- TFO Average i n i t i a l core temperature (deg C) 
C- TOO Average I n i t i a l coolant temperature (TOO > TINP) 



119 

TINP Coolant i n l e t temperature 

IF (IPRT.GE.1) WRITE (*,*) 'Temperature parameters input ' 
READ (1 ,200) ASURF,VOLF,VOLC 
READ (1,200) RHOF.CPF,ALPHAF,SIGF 
READ (1 ,200) RHOCCPC,ALPHAC,HF 
READ (1,200) VCO,ALPHAE 
READ (1 ,200) TFO,TOO,TINP 

Calculate the needed parameters from the physical ones 

CHI - SIGF * DSQRT(ENERGY) * C0NVF1 
CPRF - CPF « RHOF 
CPRC - CPC » RHOC 

The term in brackets below i s the surface area t o volume 
r a t i o for the fue l and coolant reg ions r e s p e c t i v e l y 
TAU values are heat time c o n s t a n t s . See der ivat ion for d e t a i l s 

TAUF - CPRF » VOLF / (HF * ASURF) * 3600.0dO 
TAUC - CPRC * VOLC / (HF » ASURF) * 3600.OdO 
TAUL - RHOC * VOLC / (2.ODO * VCO) 
WRITE (2 ,212) VCO,TFO,TCO,TINP 
WRITE (2 ,206) 
WRITE (2 ,207) TAUF,TAUC 
WRITE (2 ,209) 
WRITE ( 2 , 2 0 7 ) CPRF,CPRC 
WRITE (2 ,208) TAUL,CHI 
WRITE (2 ,210) ALPHAF,ALPHAC,ALPHAE 

Create the array e n t r i e s 

IF (IPRT.GE.1) WRITE (* ,») 'Creating A and B' 

Core t o i t s e l f coupl ing term and K external to core 

A(1 ,1) - (PC0*(1.0D0-BEFF)*XKINF - 1.0D0)»XLC 
B(1 ,1) - PC0«(1.0D0-BEFF)*XNC0*XLC 
SAV1 - (1.0D0-PC0)*(1.0D0-BEFF)*XLC 
SAV2 - XKINF»XNCO»XLC 
SAV3 - (1.0D0-PC0)*SAV2 

Loop through the number of r e f l e c t o r s 

DO 60 J-1,NREF 

IF (NREF .EQ. 0) GO TO 60 

Core t o r e f l e c t o r 

A(1+J,1) - PFR(J)*XKINF»SAV1 

Ref lec tor t o core 

A(1,1+J) - PRO(J)»XLR(J) 

Ref lector t o r e f l e c t o r 

A(1+J,1+J) - -XLR(J) 

Temperature t o r e f l e c t o r terms v i a k i n f i n i t y and Pc 
A(1+J,1+NREF+1) - - PFR(J) « (SAV1*XNCO»ALPHAF -

1 SAV2*ALPHAE) 
A(1+J,1+NREF+2) - - PFR(J) » SAV1»XNCO*ALPHAC 

Input de l ta Pr term to core 

B(1,J+1) - PFR(J)*SAV3 



C- External K to reflectors 
C-

B(1+J,1) - PFR(J)*SAV1*XNC0 
C-
C- Precursors to reflectors 
C-

DO 50 1-1,NGRP 
A(1+J,1+NREF+2+I) - PFR(J)*(1.0D0-PC0)*XL(I) 

50 CONTINUE 
C-
C- Done looping through number of r e f l e c t o r s 

60 CONTINUE 
C-
C- Loop through number of precursor groups 
C-

DO 70 1-1,NGRP 
C-
C- Precursors to the core 
C-

A(1,1+NREF+2+I) - PCO«XL(I) 
C-
C- Core t o precursors 
C-

A(1+NREF+2-fI,1) - BETA(I)*XKINF*XLC 
C-
C- Precursors t o precursors 

A(1+NREF+2+I,1+NREF+2+I) - -XL(I) 
C-
C- Fuel and coolant temperature t o precursors 
C-

A(1+NREF+2+I,1+NREF+1) - - BETA(I)»XNCO»XLC*ALPHAF 
A(1+NREF+2+I,1+NREF+2) - - BETA(l)*XNCO*XLC*ALPHAC 
B(1+NREF+2+I,1) - BETA(I)*XNCO*XLC 

C-
C- Done with the precursors 

70 CONTINUE 
C-
C- Do the f u e l and coolant temperature terms 
C-

NTEMP - 1 + NREF 
C-
C- Core t o temperature 

A(NTEMP+1,1) - CHI/(CPRF * C0NVF2) 
C-
C- Temperature t o core 
C-

A(1,NTEMP+1) - - PCO»(1.0D0-BEFF)*XNC0*XLC*ALPHAF - SAV2*ALPHAE 
A(1,NTEMP+2) - - PC0*(1.0D0-BEFF)*XNC0*XLC*ALPHAC 

C-
C- Do temp t o fue l temp coupl ing 
C-

A(NTEMP+1,NTEMP+1) - - 1.0D0/TAUF 
A(NTEMP+1,NTEMP+2) - 1.0D0/TAUF 

C-
C- Do temp t o coolant temp coupl ing 
C-

A(NTEMP+2,NTEMP+2) - - (1.ODO/TAUC) - (1.ODO/TAUL) 
A(NTEMP+2,NTEMP+1) - 1.0D0/TAUC 

C-
C- Coolant v e l o c i t y input t o the coolant temperature 

B(NTEMP+2,1+NREF+1) - (TINP - TCO) / TAUL 
C-
C- Done 
C-



RETURN 
200 FORMAT(8(F10.4)) 
201 FORMAT(/,T5,'Core input information',/,T5.22('-'),/,T11 ,'NcO', 

1 T23, 'K-inf (0) ' ,T39, '1 /LC ,T56, 'Pc(O) ' .Tb7, 'E-n(KeV) ',//, 
2 T5,1PD12.4,T2O,1PD12.4,T35,1PD12.4,T50,0PF12.6,T65,1PD12.4) 

202 F0RMAT(/,T5,'Reflector input information for ',11,' reflectors', 
1 / , T 5 , 4 6 ( ' - ' ) , / , T i l , ' N r O ' , 
2 T 2 4 , ' P F r ( 0 ) ' , T 3 9 , ' 1 / L r ' , T 5 6 , ' P r ( 0 ) ' , / / ) 

203 FORMAT(T5,1PD12.4,T2O,1PD12.4,T35,1PD12.4,T50,0PF12.6) 
204 F0RMAT(/,T5,I1,' Group delayed neutron precuser i n f o r m a t i o n ' , / , 

1 T 5 , 4 4 ( ' - ' ) , / , T 1 0 , ' C i ( 0 ) ' , T 2 3 , ' B e t a ( i ) ' , T 3 7 . ' L a m b d a ( i ) ' , / / ) 
205 FORMAT(/ ,T5 .44( ' - ' ) , / ,T5 , ' Beta - e f f ' , T 2 0 , n 0 . 5 ) 
206 F0RMAT(/,T5,'Tau V a l u e s ' , / , T 5 , I O C - ' ) ) 
207 FORMAT(T5,'Fuel ' ,1PD12.4,T40, 'Coolant ' ,1PD12.4) 
208 FORMAT(/,T5,'TAUL ',1PD12.4,T40,'CHI-Fuel ' , 1 P D 1 2 . 4 , / ) 
209 F0RMAT(/,T5,'Cp»Rho V a l u e s ' , / , T 5 , 1 3 ( ' - ' ) ) 
210 F0RMAT(/,T5,'Temperature Feedback C o e f i c i e n t s ' , / , T 5 , 3 2 ( ' - ' ) , / , 

1 T5,'Alpha - F - • ,1PD12.4 , / ,T5 , 'Alpha - C - ' ,1PD12.4, 
1 / ,T5 , 'Alpha - E - ' ,1PD12.4) 

211 FORMAT(/,T5,'No r e f l e c t o r s t h i s run. Controlled by Vc o n l y ' , / ) 212 FORMAT(/,T5,'Initial coolant v e l o c i t y (VcO) 
1 T 5 , ' I n i t i a l fue l temperature (TfO) 
2 T 5 , ' I n i t i a l coolant temp (TcO) 
3 T 5 , ' I n l e t channel temp (Tinp) 

END 
SUBROUTINE ASV(A,SV,INSOL,NDIM,NC) 
IMPLICIT REAL*8 (A-H,0-Z) 
COMMON/INFO/ S0RC0(20,10).SORCI(20,10) 
DIMENSION A(NDIM,NC),SV(NC) 

C-
C- This sets up A and SV for doing linear source terms 
C- within the ASH methodology. We could also update the 
C- inner NCM1 block of A and SV if we wanted to here. 

1PD12.4,/, 
',1PD12.4,/, 
',1PD12.4,/, 
'.1PD12.4,/) 

C-
NCM1 - NC - 1 
DO 10 I-1,NCM1 

A(NC,I) - O.ODO 
A(I,NC) - SORCI(I,INSOL) 
SV(I) - SORCO(I.INSOL) 

10 CONTINUE 
SV(NC) - 1.0D0 
A(NC,NC) - O.ODO 
RETURN 
END 



Program RKSF 

Research program by Ken Washington 

IMPLICIT REAL*8 (A-H,0-Z) 
DIMENSION Z(5001) 
CHARACTER FNAME*12 
DATA NMAX / 5 0 0 0 / 

Driver rout ine 

GO TO 6 
CONTINUE 
WRITE (*,*) 'Input f i l e not found or Error in name . . . t ry a g a i n . ' 
CLOSE(UNIT-1) 
CL0SE(UNIT-2) 
CL0SE(UNIT-3) 
CLOSE(UNIT-4) 
CONTINUE 
WRITE (*,103) 
READ (»,104,ERR-5,END-5) FNAME 
OPEN (UNIT-1,FILE-FNAME//'.INP',STATUS-'OLD',ERR-5) 
OPEN (UNIT-2,FILE-FNAME//'.OUT',STATUS-'NEW,ERR-5) 
OPEN (UNIT-3,FILE-FNAME//'.PRN',STATUS-'NEW',ERR-5) 
OPEN (UNIT-4,FILE-'U'//FNAME//'.PRN',STATUS-'NEW,ERR-5) 

I CONTINUE 
READ (1,101,ERR-99,END-99) NREF,NGRP,NPD,NSOL 
IF (NREF.LT.O .OR. NGRP.LT.O .OR. NPD.LT.O) GO TO 99 

Calculate the s i z e of the matrix from the number of r e f l e c t o r s , e t c 

NA - NREF + NGRP + 3 
NB - NREF + 1 
NC - NA - 1 
NF - NA + 2 
NCL - 2«NC + 3 
NWORK - NCL + 1 
NA2 - NA*NA 
NW2 - NWORK»NWORK 
NPNS - NPD*NSOL 
N1 - 1 
N2 - N1 + NA2 
N3 - N2 + NA*NB 
N4 - N3 + NB*NF 
N5 - N4 + NC 
Nb - N5 + NA*NF 
N7 - N6 + NCL»NCL 
N8 - N7 + NW2 
N9 - N8 + NW2 
N10 - N9 + NW2 
Ni l - N10 + NW2 
N12 - Ni l + NW2 
NI3 - N12 + NW2 
N14 - NI3 + NW2 
N15 - N14 + NWORK»NPNS 
NI6 - N15 + NWORK 
N17 - N16 + NWORK 
NI8 - N17 + NWORK 
NI9 - NI8 + NWORK 
N20 - NI9 + NA*NPNS 
NLAST - N20 + NPNS 
NVECT - NLAST - 1 
IF (NLAST .GT. NMAX) THEN 
WRITE (*,*) 'System selected is too big, sorry...' 
GO TO 99 

END IF 

Initialize all vectors to zero 



DO 30 1-1,NVECT 
Z(I ) - O.ODO 

30 CONTINUE 
Z(NLAST) - 999.999D0 

C-
C- Here we go 
C-

CALL GORKSF( 
1 NREF,NGRP,NA,NB,NC.NF,NCL,NWORK,NPD,NSOL,NPNS, 
' Z(N1) ,Z(N2) ,Z(N3) ,Z(N4) ,Z(N5) ,Z(N6) , 
Z(N7 ,Z(N8) ,Z(N9) ,Z(N10) ,Z(N11 ) ,Z(N12) ,Z(N13), 
Z(N1 4), Z(N1 5), Z(N1 6), Z(N1 7) ,Z(N1 8), Z(N1 9) ,Z(N20)) 

C-
C- Write the next element of Z 
C-

GO TO 10 
99 CONTINUE 

WRITE (2,102) NVECT,Z(NLAST) 
CLOSE(UNIT-1 
CLOSE(UNIT-2; 
CLOSE(UNIT-
CLOSE (UNIT-4) 
STOP 

101 FORMAT(514) 
102 FORMAT(//.T5,'There were ',I8,' Array elements used'./, 

1 T5,'Next available storage register - '.F10.3./, 
2 T5,'Should be 999.999',/T 

103 FORMAT('$File name prefix ? ') 
104 FORMAT(A) 

END 
SUBROUTINE GORKSF( 
1 NREF,NGRP,NA,NB,NC,NF,NCL,NWORK,NPD,NSOL,NPNS, 
2 AP,BP,F,XL,BPF,ACL,AWORK,BWORK,CWORK,DWORK, 
3 EWORK,FWORK,GWORK,POUT,P,SV,WR,WI,TIMES,OUTVEC) 
IMPLICIT REAL*8 (A-H,0-Z) 
EXTERNAL UT 
COMMON/INFO/ INSOL,SORC0(10),SORCI(10) 
DIMENSION AP(NA,NA),BP(NA,NB),F(NB,NF),XL(NC), 
2 BPF(NA,NF),ACL(NCL,NCL),GWORK(NWORK,NWORK), 
3 AWORK(NWORK,NWORK),BWORK(NWORK,NWORK) ,CWORK(NWORK,NWORK) , 
4 DWORK (NWORK, NWORK) .EWORK (NWORK, NWORK), FWORK (NWORK, NWORK), 
5 POUT(NWORK,NPNS) ,P(NWORK) ,SV(NWORK) ,WR(NWORK) ,WI(NWORK) , 
6 TIMES(NPNS),WORK(5000),IPR(200) ,C0EF(10,2),OUTVEC(NA,NPNS) 
CHARACTER ANS*1,TITLE*70 

C-
C- lASH i s a f lag for the type of so lu t ion , 0-Runga Kutta, e l se ASH 
C-
C- IPRT.JPRT are p r in t f lag - use as follows: 
C- 0 - No p r in t ing except for output 
C- 1 - Data pr inted and output and eigenvalues 
C- 2 - More complete t r a n s i e n t p r in t 
C- 3 - All pe r t inen t matr ices pr inted - input,working,output 
C- JPRT - IPRT - 1 p r i n t l eve l i s reduced one for subroutines 
C-
C- IPLOT i s a plot f l a g , grea ter than zero plots that many s t a t e s 
C- a maximum of seven are pr inted to the p lo t f i l e . The 
C- format i s 1X,E9.3 
C-
C- IFORM i s a f lag for the form of the Q matrix used in POLES 
C- for the a r b i t r a r y eigenvalue assignment. 
C- 1-Companion, 2-Diagonal See POLES for more d e t a i l s 
C-
C- NEPS is an accuracy parameter - see SOLVER documentation 
C- MMAX is the maximum number of terms kept in ASH - see SOLVER 
C-

READ (1,103) TITLE 
READ (1,102) lASH,IPRT,IPLOT,IFORM 
READ (1,102) NEPS,MMAX 
WRITE (2,214) TITLE 
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IF (IPRT.GE.1) WRITE (*,214) TITLE 
JPRT - IPRT - 1 
IF (JPRT.LT.O) JPRT - 0 
IF (IPLOT .GT. NA) IPLOT - NA 
IF (IPLOT .GT. 6) IPLOT - 6 
IF (lASH.EQ.O) THEN 
WRITE (2,221) 
IF (IPRT.GE.1) WRITE (*,221) 

ELSE 
WRITE (2,222) 
IF (IPRT.GE.1) WRITE (*,222) 

END IF 
DO 360 1-1,NSOL 
READ (1,101,END-99,ERR-99) (COEF(I,J),J-1,2),SORC0(I),S0RC1 (I) 
TIMES(NPD*I) - C0EF(I,2) 
WRITE (2.219) I,(C0EF(I,J),J-1,2) 
WRITE (2,220) SORCO(I),S0RC1(I) 
IF (IPRT.GE.1) THEN 
WRITE (*,219) I,(C0EF(I,J),J-1,2) 
WRITE (*,220) SORC0(I),SORC1(I) 

END IF 
360 CONTINUE 
C-
C- Here we go 
C- Get the AP matrix and BP matrices 
C-

CALL MAKEAB(NA,NREF,NGRP.NA,NB,AP,BP,JPRT) 
C-
C- Print the created A matrix 
C-

IF (IPRT.GE.3) THEN 
CALL PRMAT(NA,NA,NA,AP, 'P lant A matr ix ' ) 
CALL PRMAT(NA,NA,NB,BP,'Plant B matr ix ' ) 

END IF 
C-
C- Read in the des ired e igenva lues for the plant matrix and 
C- s e t up the work matr ices for POLES subroutine 
C-

DO 55 J-1,NWORK 
DO 55 1-1,NWORK 

AWORK(I,J) - O.ODO 
BWORKCI.J) - O.ODO 
CWORK(I,J) - O.ODO 
DWORKCI.J) - O.ODO 
EWORK(I,J) - O.ODO 
FWORKCI.J) - O.ODO 
GWORK(I.J) - O.ODO 

55 CONTINUE 
DO 70 1-1,NA 
READ (1,101) WR(I),WI(I) 
DO 75 J-1,NA 
AWORK(I,J) - AP(I,J) 
IF (J.LE.NB) BWORK(I,J) - BP(I,J) 

75 CONTINUE 
70 CONTINUE 

READ (1,101) WR(NA+1),WI(NA+1) 
READ (1,101) WR(NA+2),WI(NA+2) 

C-
C- Set the i n t e g r a t o r s 
C- This program w i l l only track the f i r s t s t a t e . . . 
C-

AW0RK(NA+1,NA+2) - 1.0D0 
AW0RK(NA+2,1) - -1 .0D0 

C-
C- Read the G matrix 
C-

DO 80 1-1,NB 
READ (1 ,101) (GW0RK(I,J),J-1,NF) 

80 CONTINUE 
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C-
C- get the F matrix using POLES 
C-

CALL POLES(AWORK,BWORK,GWORK,DWORK, FWORK,EWORK.CWORK, 
1 WR,WI,P,WORK,IPR,NWORK,NF,NWORK,NB, 
2 IFORM,JPRT.IERR) 

IF (lERR .NE. 0) GO TO 99 
C-
C- Set the F matrix equal to FWORK found above 
C-

DO 85 1-1,NB 
DO 85 J-1.NF 

F ( I , J ) - FWORK(I,J) 
85 CONTINUE 

IF (IPRT .GE. 1) WRITE (* ,») 'Done f inding F' 
C-
C- Now prepare the work matrices for POLE in the observer case 
C- t h i s invo lve s transpos ing A22, and A12 as A and B. 
C-

DO 90 J-1.NWORK 
P(J) - O.ODO 
DO 90 1-1,NWORK 

AWORK(I,J) - O.ODO 
BWORK(I,J) - O.ODO 
CWORK(I,J) - O.ODO 
DWORK(I,J) - O.ODO 
EWORK(I,J) - O.ODO 
FWORKCI.J) - O.ODO 
GWORK(I,J) - O.ODO 

90 CONTINUE 
DO 115 1-1 ,NC 

READ (1 ,101) WR(I),WI(I) 
DO 95 J-1,NC 

AWORKd.J) - AP(J+1,I+1) 
95 CONTINUE 

BWORKd.D - -AP( 1,1+1) 
115 CONTINUE 

C-
C- Read in the G matrix for the observer 
C-

READ (1 ,101) (GWORK(1,J),J-1,NC) 
C-
C- Get the L gains 
C-

MPOLE - 1 
CALL POLES(AWORK,BWORK.GWORK,DWORK,FWORK,EWORK,CWORK, 

1 WR,WI,P,WORK,IPR,NWORK,NC.NWORK.MPOLE, 
2 IFORM,JPRT,lERR) 
IF (lERR .NE. 0) GO TO 99 

C-
C- Set L equal to FWORK found above 
C-

DO 120 1-1, NC 
XL(I) - FW0RK(1,I) 

120 CONTINUE 
IF (IPRT .GE. 1) WRITE (*,*) 'Done finding L' 

C-
C- Close the loop with the observer 
C- and define the ACL matrix 
C-

CALL MACL(ACL,AP,BP,F,XL.BPF.NREF,NGRP,NA,NB,NC,NF,NCL) 
IF (IPRT.GE.3) 

1 CALL PRMAT(NCL,NCL,NCL,ACL,'Closed loop Acl') 
C-
C- Calculate the eigenvalues of the closed loop matrix 

DO 125 1-1,NCL 
DO 125 J-1,NCL 
AWORK(J,I) - ACL(J,I) 



125 CONTINUE 
CALL RG(NWORK,NCL,AWORK,WR,WI, EWORK,IPR,P,IERR,0) 
IF (lERR .NE. 0) THEN 
IF (IPRT.GE.1) WRITE (*,218) 
WRITE (2,218) 
GO TO 99 

END IF 
IF (IPRT.GE.1) WRITE («,208) 
WRITE (2,208) 
DO 130 1-1, NCL 
IF (IPRT.GE.1) WRITE (*,209) WR(I),WI(I) 
WRITE (2,209) WR(I),WI(I) 

130 CONTINUE 
IF (IPRT.GE.2) CALL PRMAT(NCL,NCL,NCL,EWORK, 

1 'Eigenvectors of Acl') 
IF (IPRT.GE.1) THEN 
WRITE (*,215) 
READ (*,216) ANS 
IF (ANS.EQ.'N' .OR. ANS.EQ.'n') GO TO 99 

END IF 
C-
C- Set the source vector so that the source enters the l a s t in tegrator 
C- and f i x up matrix so t h a t ASH c a l c u l a t e s time and uses that t o 
C- incorporate a l i n e a r source term. Note that the work matrices used 
C- by ash are of one more dimension than the c losed loop system 
C-
C-
C- Input i n i t i a l condi t ions 
C-

DO 10 1-1.NWORK 
SV(I) - O.ODO 
DO 10 J-1,NWORK 

AWORK(J,I) - O.ODO 
BWORK(J,I) - O.ODO 
CWORK(J,I) - O.ODO 
DWORK(J,l) - O.ODO 
EWORK(J,I) - O.ODO 
F W O R K U . I ) - O.ODO 
GWORK(J,I) - O.ODO 

10 CONTINUE 
DO 30 1-1,NCL 

DO 20 J-1,NCL 
AW0RK(J,I) - ACL(J,I) 

20 CONTINUE 
READ (1 ,101) P(I) 

30 CONTINUE 
BW0RK(NCL,1) - 1.0D0 

C-
C- Perform a runga kutta s o l u t i o n i f lASH i s zero 
C-

IF (lASH .EQ. 0) THEN 
IF (IPRT.GE.1) WRITE (*,*) 'Cal l ing DERK for answer' 
IP - 1 
TIMESd) - O.ODO 
DO 370 I-1,NCALC 

P0UT(I,1) - P(I) 
370 CONTINUE 

C-
C- F i r s t determine the t imes where the r e s u l t s w i l l 
C- be printed o u t . 
C-

DO 311 J-1,NSOL 
IF (J.EQ.1) THEN 

NPDM1 - NPD - 1 
DT - C0EF(J,2)/DBLE(NPDM1) 
PREVT - O.ODO 

ELSE 
NPDM1 - NPD 
DT - (C0EF(J,2)-C0EF(J-1,2))/DBLE(NPDM1) 



PREVT - C0EF(J-1,2) 
END IF 
DO 310 I-1,NPDM1 

IP - IP+1 
TIMES(IP) - PREVT + DT*DBLE(I) 

310 CONTINUE 
311 CONTINUE 

C-
C- Note that SV is being used as Pdot in RK routine 
C- and the input is gotten from the UT external function 
C- Modified on 8/7/85 to do variable time steps and ramps 
C-

NSV - 1 
NCALC - NCL 
IP - 2 
TIME - O.ODO 
DO 330 IC0EF-1,NS0L 

DT - C0EF(IC0EF,1) 
TIMAX - C0EF(IC0EF.2) 
INSOL - ICOEF 

320 CONTINUE 
CALL LDDERK (UT.NWORK,NCALC,NSV,P,SV,TIME,DT,AWORK,BWORK) 
TEST - DABS(TIMES(IP) - TIME) / DT 
IF (TEST .LT. 0.9D0) THEN 

TIMES(IP) - TIME 
IF (IPRT.GE.1) THEN 

WRITE (* ,202) TIME 
WRITE (* .217) 1,P(1) 

END IF 
DO 3^0 1-1,NCALC 

POUT(I,IP) - P(I) 
340 CONTINUE 

IP - IP+1 
END IF 
IF (TIME.LT.TIMAX .AND. IP.LE.NPNS) GO TO 320 

330 CONTINUE 
ELSE 

C-
C- Get s o l u t i o n using ASH SOLVER. "The rout ine ASV must be present i 
C- vers ion s i n c e i t s o l v e s the l i n e a r source problem. 
C-

NCALC - NCL + 1 
P(NCALC) - O.ODO 
SV(NCALC) - 1.0D0 
SV(NCL) - SORCOd) 
AWORK(NCL,NCALC) - SORCI(1) 
NSV - 1 
IF (IPRT.GE.1) WRITE (*,*) 'Calling ASH for answer' 
CALL S0LVE2(AWORK,BWORK ,CWORK,DWORK,EWORK,FWORK, 

1 NWORK,NCALC,NSV,SV,P,TIMES,POUT, 
2 NPD,NSOL,NPNS,NEPS,MMAX,JPRT) 

IF (IPRT.GE.1) WRITE (»,») 'Done with ASH' 
END IF 

C-
C- Calculate the new internally found inputs store in CWORK 
C- note that the exact R(t) is also put in CWORK 
C-

K - 0 
DO 380 IC0EF-1.NS0L 
INSOL - ICOEF 
DO 380 KK-1,NPD 

K-K+1 
OUTVECd.K) - UT(TIMES(K),1) 
DO 63 1-1,NB 

OUTVECd+l ,K) - O.ODO 
DO 62 J-1,NF 

0UTVEC(I+1,K) - 0UTVEC(I+1,K) + F( I,J)»POUT(J,K) 
62 CONTINUE 
63 CONTINUE 



380 CONTINUE 
C-
C- Write the p lo t output f i l e , note that IPLOT d i c t a t e s 
C- how many of the s t a t e s are included in the PLOT.PRN f i l e 
C- a l s o i t automat ica l ly pr int s the desired R(t) funct ion 
C- in the f i r s t column. 
C-

IF (IPLOT .GT. 0) THEN 
IP2 - IPLOT + 1 
WRITE (3 ,102) NPNS,IP2 
WRITE (4 ,102) NPNS,NB 
DO 35 1-1,NPNS 

WRITE (3 ,201) TIMESd),OUTVECd,I),(POUT(J,I),J-1,IPLOT) 
WRITE (4 ,201) TIMESd), (OUTVEC ( J + 1 , 1 ) . J - 1 , NB) 

35 CONTINUE 
END IF 

64 CONTINUE 
C-
C- Output the answers to the disk f i l e 
C- This was modified on 8 / 8 / 8 5 to print the des ired R(t ) and 
C- the control inputs through time as s p e c i f i e d by U - FX 
C- Also the c o n t r o l l e r s t a t e s are not printed u n l e s s IPRT >- 2 
C-

IL - 0 
IF (IPRT.GE.1) WRITE (*,*) 'Outputting answers' 

40 CONTINUE• 
JB - 5*IL+1 
JE - JB + 4 
IF (JE .GE. NPNS) JE - NPNS 
WRITE (2 ,202) (TIMES(J),J-JB,JE) 
WRITE (2 ,211) 
WRITE (2 ,212) (0UTVEC(1,J).J-JB.JE) 
WRITE (2 ,203) (P0UT(1.J).J-JB,JE) 
DO 50 1-1,NREF 

IF (NREF.EQ.O) GO TO 50 
WRITE (2 ,204) I . (P0UT(I+1,J) ,J-JB.JE) 

50 CONTINUE 
WRITE (2 .207) 'F',(P0UT(NREF+2,J),J-JB,JE) 
WRITE (2 ,207) ' C ,(P0UT(NREF+3, J ) , J-JB, JE) 
DO 60 1-1.NGRP 

WRITE (2 ,205) I,(P0UT(I+NREF+3,J),J-JB.JE) 
60 CONTINUE 

DO 390 1-1.NB 
WRITE (2 ,213) I.(0UTVEC(I+1.J).J-JB,JE) 

390 CONTINUE 
IF (IPRT .GE. 2) THEN 

NCON - NA + 1 
DO 61 I-NCON.NCALC 
WRITE (2,217) I,(POUT(I,J),J-JB,JE) 

61 CONTINUE 
END IF 
IL - IL + 1 
IF (JE .LT. NPNS) GO TO 40 

C-
99 CONTINUE 
C-
C- Thats all 
C-

IF (lERR .NE. 0) THEN 
IF (IPRT.GE.1) 

1 WRITE (*,*) 'Run aborted due to internal error #',IERR 
WRITE (2,») 'Run aborted due to internal error #',IERR 

END IF 
RETURN 

101 F 0 R M A T ( 8 F 1 0 . 4 ) 
102 F0RMAT(8I4) 
103 FORMAT(A) 
201 F 0 R M A T ( 8 ( 1 X , E 9 . 3 ) ) 
202 F 0 R M A T ( / , T 2 . ' T i m e ' , T 1 0 , 5 ( 1 P D I 2 . 4 , I X ) ) 



203 F 0 R M A T ( T 2 , ' N C ' , T 1 0 , 5 ( 1 P D 1 2 . 4 , 1 X ) ) 
204 F0RMAT(T2, 'Nr ( ' , II , ') ' , T1 0 , 5 ( 1 PDI 2 . 4 , IX)) 
205 F 0 R M A T ( T 2 , ' C ( ' , I 1 . ' ) ' , T 1 0 , 5 ( 1 P D 1 2 . 4 , 1 X ) ) 
207 F0RMAT(T2, ' T ' , A 1 ,T1 0 , 5 ( 1 PDI 2 . 4 , IX)) 
208 FORMAT(//,T7,'Closed loop e i g e n v a l u e s ' , / , T 7 , 2 3 ( ' - ' ) ) 
209 F 0 R M A T ( T 5 , 1 P D 1 2 . 4 , ' + j ' ,1PDI2.4) 
211 F0RMAT(T2,73('- ') , / ) 
212 F0RMAT(T2, ' R ( t ) ' ,T1 0 ,5(1 PD12.4,1X)) 
213 F0RMAT(T2. 'U(' ,I2 , ' ) ' ,T10,5(1PD12.4,1X)) 
214 FORMATU,' • , A 7 0 , / ) 
215 FORMAT('$Continue with calculation ? ') 
216 FORMAT (A1) 
217 F0RMAT(T2,'X(',I2, ') ' ,T10,5(1 PDI 2 .4 ,1X)) 
218 FORMATC' »** ERROR »** i n RG eigenvalue f i n d e r ' , / ) 
219 FORMATCT2,'Step ' . 1 2 , ' : Internal Dt - ' , D 1 2 . 4 . ' t o Time - ' , F 1 0 . 4 ) 
220 F0RMAT(T2,'Source - ' , 1 P D I 2 . 4 . ' + ' , 1PDI2 .4 , ' t ' ) 
221 FORMAT(T2,'RUNGA KUTTA 4th order s o l u t i o n method' , / ) 
222 F0RMAT(T2,'ASH EXP OPERATOR s o l u t i o n method' , / ) 

END 
FUNCTION UT(TIME,I) 
IMPLICIT REAL*8 (A-H,0-Z) 
COMMON/INFO/ INSOL,SORCO(10),SORCI(10) 

C-
C- This l i t t l e short rout ine i s a user suppl ied funct ion that 
C- goes t o the Runga Kutta s o l u t i o n s o l v e r . This one i s a modified l i n 
C- source input but can be changed t o anything. Also note that 
C- there i s only one input i n t h i s problan so I i s ignored. This 
C- i s not true for the open loop problem s ince I represents the 
C- input t h a t i s being re turned . 

UT - SORCO(INSOL) + SORCI(INSOL)*TIME 
RETURN 
END 
SUBROUTINE ASV(A,SV,INSOL,NDIM,NC) 
IMPLICIT REAL*8 (A-H,0-Z) 
COMMON/INFO/ IDUM,SORC0(10),S0RC1(10) 
DIMENSION A(NDIM,NC).SV(NC) 

C-
C- This i s the equiva lent of UT for ASH. I t j u s t updates 
C- t h e SV and A matr ices for doing d i f f eren t ramps and s t e p s . 
C-

A(NC-1,NC) - SORCI(INSOL) 
SV(NC-I) - SORCO(INSOL) 
A(NC.NC) - O.ODO 
SV(NC) - l.ODO 
RETURN 
END 

SUBROUTINE MAKEAB(NDIM,NREF.NGRP,NC.NB,A,B,IPRT) 
IMPLICIT REAL*8 (A-H,0-Z) 
DIMENSION A(NDIM,NDIM),B(NDIM,NB), 

1 BETA(6),XL(6),PFR(9),XLR(9),PRO(9) 
DATA C0NVF1,C0NVF2 / 1.4022D-06,6.7050D-05 / 

C-
C- The i n t e n t of t h i s subroutine i s t o read in a l l pert inent 
C- information and then c a l c u l a t e the system A and B matrices 
C- for an averaged core reg ion and coolant channel for the 
C- r e f l e c t e d point k i n e t i c s model developed for 
C- the a i r force research c o n t r a c t . 
C-
C- This vers ion was modified in that the precursor s t a t e s were 
C- placed at the end i n order t o s impl i fy the process of des igning 
C- a minimum order ciontrollor for the unreachable concentrat ions 
C-
C- I n i t i a l i z e matrix t o zero 
C-

DO 20 1-1,NDIM 
DO 10 J-1,NDIM 

A(J , I ) - O.ODO 



IF ( I .LE. NB) B(J , I ) - O.ODO 
10 CONTINUE 
20 CONTINUE 

C-
C- Road in and w r i t e out the problem information 
C-
C- Core 
C-
C- PHIO - I n i t i a l core f l u x - XNCO * VEL 
C- XNCO - I n i t i a l neutron d i s t r i b u t i o n 
C- XKINF K - I n f i n i t y for the core i n i t i a l l y 
C- t h i s i s now c a l c u l a t e d from the c r i t i c a l condi t ion s ince 
C- i t was assumed that the core was i n i t i a l l y c r i t i c a l . 
C- the K i n f i n i t y value i s not an independent t h i n g . I t i s a 
C- funct ion of the t rans fer p r o b a b i l i t i e s . 
C- XLC Inverse of core l i f e t i m e 
C- PCO I n i t i a l prob of neutrons s tay ing in the core 
C- ENERGY Energy or the neutron spectrum i n Kev 

IF (IPRT.GE.1) WRITE (*,*) 'Core input ' 
READ (1 ,200) PHIO,XLC,PCO,ENERGY 

C-
C- Calculate the v e l o c i t y from the energy and use to get XNCO 
C- or v ice versa i f energy i s input as zero (defaul t s t o 10 KeV) 

IF (ENERGY .EQ. O.ODO) THEN 
ENERGY - 1O.ODO 
VEL - DSQRT(2.0D0*ENERGY/9.395493D5) * 3.0D+10 
XNCO - PHIO 
PHIO - XNCO « VEL 

ELSE 
VEL - DSQRT(2.0D0*ENERGY/9.395493D5) » 3.0D+10 
XNCO - PHIO / VEL 

END IF 
C-
C- Reflectors 
C-

IF (IPRT.GE.1) WRITE (*,«) 'Reflector input' 
IF (NREF.EQ.O) THEN 
XKINF - l.ODO / PCO 
WRITE (2,201) XNCO,XKINF,XLC,PCO.ENERGY 
WRITE (2,211) 

ELSE 
SUMR - O.ODO 
DO 30 N-1,NREF 
READ (1,200) PFR(N),XLR(N),PRO(N) 
SUMR - SUMR + PFR(N)*PRO(N) 

30 CONTINUE 
XKINF - l.ODO / (PCO + (1.0D0-PC0)»SUMR) 
WRITE (2 ,201 ) XNCO,XKINF,XLC,PCO.ENERGY 
WRITE (2 .202) NREF 
DO 31 N-1,NREF 
XNRO - PFR(N)»(1.0DO-PC0)*XKINF*XNC0*XLC/XLR(N) 
WRITE (2,203) XNRO,PFR(N),XLR(N),PRO(N) 

31 CONTINUE 
END IF 

C-
C- Precursors 
C-
C- BETA Delayed neutron fraction for group i 
C- XL The decay constant for group I 
C-

IF (IPRT.GE.1) WRITE (*,*) 'Precursor input' 
BEFF - O.ODO 
WRITE (2 ,204) NGRP 
DO 40 1-1,NGRP 

READ (1,200) BETA(I),XL(I) 
BEFF - BEFF + BETA(I) 
CIO - BETA(I)»XKINF»XNCO*XLC/XL(I) 



131 

WRITE (2,203) CIO,BETA(I),XL(I) 
40 CONTINUE 

WRITE (2,205) BEFF 
C-
C- Temperature equations i n fue l and coolant - temperature feedback 
C-

Cp * Rho i n the fue l region in BTU/(ft3-F) 
t h i s i s changed t o KW-sec/(cm3-C) 
Cp * Rho in the coolant region in BTU/(ft3-F) 

C- CPRF 
C-
C- CPRC 
C-
C- HF 
C-
C- SIGF 
C- CHI 
C-
C- C0NVF1 
C- C0NVF2 
c-
C- ALPHAF 
C- ALPHAC 
C- ALPHAE 
C-
C- TFO 
C- TCO 
C- TINP 

newton coo l ing c o e f f i c i e n t at wall 

Macroscopic f i s s i o n c o s s e c t i o n in region in 1/cm 
Power produced per neutron in the core in KW/neutron 
CHI - SIGFission * sqrt(E) * Constants 
Conversion f a c t o r for CHI t o KW/neutron 
Conversion fac tor for CP * Rho t o KW-sec/Cm3-C 

Feedback c o e f f i c i e n t for fue l temperature (doppler) 
Feedback c o e f f i c i e n t for coolant temperature 
Feedback c o e f f i c i e n t for Pc, could be pos or neg 

Average i n i t i a l core temperature (deg C) 
Average I n i t i a l coolant temperature (TCO > TINP) 
Coolant i n l e t temperature 

READ 
READ 
READ 
READ 
READ 

C-
IF (IPRT.GE.1) WRITE ( * , * ) 'Temperature parameters i n p u t ' 

" , 2 0 0 ) ASURF,VOLF,VOLC 
,200) RHOF.CPF.ALPHAF.SIGF 

RHOC,CPC,ALPHAC.HF 
VCO,ALPHAE 
TFO,TCO,TINP 

C-
C- Calculate the needed parameters from the physical ones 
C-

CHI - SIGF * DSQRT(ENERGY) * C0NVF1 
CPRF - CPF » RHOF 
CPRC - CPC » RHOC 

C-
C- The term in brackets below i s the surface area t o volume 
C- r a t i o f o r the f u e l and coolant reg ions r e s p e c t i v e l y 
C- TAU values are heat time c o n s t a n t s . See der ivat ion for d e t a i l s 
C-

TAUF - CPRF * VOLF / (HF * ASURF) * 3600.0dO 
TAUC - CPRC « VOLC / (HF » ASURF) * 3600.OdO 
TAUL - RHOC * VOLC / (2.ODO * VCO) 

WRITE (2 ,212) VCO,TFO,TCO.TINP 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 

2,206 
2,207 
2.209 

,2 ,207 

TAUF,TAUC 

CPRF,CPRC 
, TAUL,CHI 

210) ALPHAF,ALPHAC,ALPHAE 
(2,208) TAUL,CHI 

C- Create the array entries 
C-

IF (IPRT.GE.1) WRITE (*,») 'Creating A and B' 
C-
C- Core to itself coupling term 
C-

Ad.l) - (PC0«(1.0D0-BEFF)»XKINF - 1.0D0)*XLC 
SAV1 - (1.0D0-PC0)*(1.0D0-BEFF)»XLC 
SAV2 - XKINF*XNCO*XLC 
SAV3 - (1.0D0-PC0)*SAV2 

C-
C- Loop through the number of reflectors 
C-

DO 60 J-1,NREF 
IF (NREF .EQ. 0) GO TO 60 



c-
C- Core t o r e f l e c t o r 
C-

A(1+J,1) - PFR(J)*XKINF*SAV1 
C-
C- Ref lector t o cjoro 
C-

A(1,1+J) - PRO(J)*XLR(J) 
C-
C- Ref lector t o r e f l e c t o r 
C-

A(1+J,1+J) - -XLR(J) 
C-
C- Temperature t o r e f l e c t o r terms v ia k i n f i n i t y and Pc 
C-

A(1+J,1+NREF+1) - - PFR(J) « (SAV1»XNCO*ALPHAF -
1 SAV2»ALPHAE) 

A(1+J,1+NREF+2) - - PFR(J) * SAV1*XNCO*ALPHAC 
C-
C- Input d e l t a Pr term to core 

B(1,J) - PFR(J)*SAV3 
C-
C- Precursors to reflectors 
C-

DO 50 1-1,NGRP 
A(1+J,1+NREF+2+I) - PFR(J)*(1.0D0-PC0)*XL(I) 

50 CONTINUE 
C-
C- Done looping through number of r e f l e c t o r s 
C-

60 CONTINUE 
C-
C- Loop t h r o u ^ number of precursor groups 
C-

DO 70 1-1,NGRP 
C-
C- Precursors t o the core 
C-

A(1,1+NREF+2+I) - PCO*XL(I) 
C-
C- Core t o precursors 
C-

A(1+NREF+2+I,1) - BETA(I)*XKINF»XLC 
C-
C- Precursors t o precursors 
C-

A(1+NREF+2+I,1+NREF+2+I) - -XL(I) 
C-
C- Fuel and coolant temperature t o precursors 
C-

A(1+NREF+2+I,1+NREF+1) - - BETA(I)*XNCO*XLC*ALPHAF 
A(1+NREF+2+I,1+NREF+2) - - BETACI)«XNCO*XLC*ALPHAC 

C-
C- Done wi th the precursors 
C-

70 CONTINUE 
C-
C- Do the fue l and coolant temperature terms 
C-

NTEMP - 1 + NREF 
C-
C- Core t o temperature 
C-

A(NTEMP+1,1) - CHI/(CPRF * C0NVF2) 
C-
C- Temperature t o core 
C-

A(1,NTEMP+1) - - PCO*(1.0D0-BEFF)*XNC0*XLC*ALPHAF - SAV2»ALPHAE 



A(1,NTEMP+2) - - PC0*(1.0D0-BEFF)»XNC0*XLC*ALPHAC 
C-
C- Do temp to fuel temp coupling 
C-

A(NTEMP+1,NTEMP+1) - - l-ODO/TAUF 
A(NTEMP+1,NTEMP+2) - 1.0D0/TAUF 

C-
C- Do temp t o coo lan t temp c o u p l i n g 
C-

A(NTEMP+2,NTEMP+2) - - (l.ODO/TAUC) - (l.ODO/TAUL) 
A(NTEMP+2,NTEMP+1) - 1.ODO/TAUC 

C-
C- Coolant v e l o c i t y i n p u t t o t h e coo lan t t empera tu re 

B(NTEMP+2,NREF+1) - (TINP - TCO) / TAUL 
C-
C- Done 
C-

RETURN 
200 F0RMAT(8(F10.4)) 
201 FORMAT(/,T5,'Core i n p u t i n f o r m a t i o n ' . / , T 5 , 2 2 ( ' - ' ) , / , T 1 1 , ' N c O ' , 

1 T 2 3 . ' K - i n f ( 0 ) ' . T 3 9 . ' 1 / L c ' , T 5 6 . • P c ( 0 ) ' . T 5 7 , • E - n ( K o V ) ' , / / , 
2 T5,1PD12.4.T20,1PD12.4,T35,1PD12.4,T50,0PF12.6.T65,1PD12.4) 

202 FORMAT(/,T5, 'Reflector i n p u t i n fo rma t ion f o r ' , 1 1 . ' r e f l e c t o r s ' , 
1 / , T 5 , 4 6 ( ' - ' ) , / , T i l , ' N r O ' , 
2 T24 ' P F r ( 0 ) ' , T 3 9 , ' 1 / L r ' , T 5 6 , ' P r ( 0 ) ' , / / ) 

203 F0RMAT(T5,1PD12.4,T20,1PD12.4,T35,1PD12.4,T50,0PF12.6) 
204 F0RMAT(/ ,T5,I1 , ' Group de layed n e u t r o n p r ecuse r i n f o r m a t i o n ' , / , 

1 T 5 , 4 4 ( ' - ' ) , / , T 1 0 , ' C i ( 6 ) ' , T 2 3 . ' B e t a ( i ) ' , T 3 7 . ' L a m b d a ( i ) ' . / / ) 
205 F 0 R M A T ( / , T 5 , 4 4 ( ' - ' ) , / , T 5 . ' Beta - e f f ' ,T20,F1 0 .5) 
206 FORMATC/,T5,'Tau V a l u e s ' , / , T 5 , 1 0 ( • - ' ) ) 
207 F0RMAT(T5,'Fuel ' , 1 P D 1 2 . 4 . T 4 0 , ' C o o l a n t •,1PD12.4) 
206 FORMAT(/,T5,'TAUL ' , 1PDI2 .4 ,T40 , 'CHI -Fue l ' . 1 P D 1 2 . 4 , / ) 
209 FORMAT(/,T5,'Cp*Rho V a l u e s ' , / , T 5 . 1 3 ( ' - ' ) ) 
210 F0RMAT(/,T5, 'Temperature Feedback C o e f i c i e n t s ' , / , T 5 , 3 2 ( ' - ' ) , / , 

1 T5 . 'A lpha - F - ' . 1 P D 1 2 . 4 . / , T 5 , ' A l p h a - C - ' . 1PD12.4 , 
1 / , T 5 , ' A l p h a - E - ' ,1PD12.4) 

211 FORMAT(/,T5,'No r e f l e c t o r s t h i s r u n . Con t ro l l ed by Vc o n l y ' , / ) 
' , 1 P D 1 2 . 4 , / , 
' , 1 P D 1 2 . 4 , / , 
' , 1 P D 1 2 . 4 , / , 
' , 1 P D 1 2 . 4 , / ) 

212 FORMAT(/ ,T5 , ' In i t i a l c o o l a n t v e l o c i t y (VcO) 
1 T 5 , ' I n i t i a l f u e l t e m p e r a t u r e (TfO) 
2 T 5 , ' I n i t i a l coo l an t temp (TcO) 
3 T 5 . ' I n l e t channel temp (Tinp) 

END 
SUBROUTINE MACL(ACL,AP.BP.F.L.BPF, 

1 NREF,NGRP,NA,NB,NC,NF,NCL) 
IMPLICIT REAL*8 (A-H.O-Z) 
REAL«8 L 
DIMENSION ACL(NCL,NCL),AP(NA.NA),BP(NA,NB).F(NB,NF),L(NC), 

1 BPF(NA,NF) 
C-
C- NA i s the p l a n t dimension - n r e f + ngrp + 3 
C- t h e 3 comes from 1 core and 2 t e m p e r a t u r e s 
C-
C- NB i s the number of i n p u t s - n re f + 1 ( coo lan t v e l o c i t y ) 
C-
C- NC i s the dimension of the p l a n t minus number of o u t p u t s 
C- t h i s i s t h e dimension of t h e e s t i m a t o r - n re f + ngrp + 2 
C-
C- NF i s the dimension of the p l a n t p lus 2 i n t e g r a t o r s 
C- - 1 + n r e f + ngrp + 2 + 2 - n re f + ngrp + 5 
C-
C- NCL the f i n a l c lo sed loop dimension t h a t i n c l u d e s : 
C- t h e c o r e , r e f l e c t o r s , t e m p e r a t u r e s , e s t i m a t o r , and 
C- two i n t e g r a t o r s t o a l low t r a c k i n g of ramps 
C- NCL - 1 + 2* (n re f + ngrp + 2) + 2 
C-
C- n o t e t h a t oven though a l l but core power i s e s t i m a t e d , on ly the 
C- p r e c u r s o r e s t i m a t i o n i s used i n t h e feedback law. The o t h e r s wore 
C- on ly done t o o b t a i n enough in fo rma t ion t o be a b l e t o observe the 
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C- precursor s t a t e s . I f the o b s e r v a b i l i t y index had been smal ler , 
C- I may have boon able t o reduce the s i z e of the observer some. 
C-
C- Set some pointer values 
C-

NP2 - NREF + 2 
NP3 - NP2 + 1 
NP4 - NP3 + 1 
NPG - NP2 + NGRP 

C-
C- F i r s t copy Aplant t o the upper l e f t corner of ACL and sot the 
C- r e s t t o zero 
C-

DO 10 1-1 , NCL 
DO 20 J-1,NCL 

ACL(I,J) - O.ODO 
IF (I.LE.NA .AND. J.LE.NA) ACL(I,J) - AP(I,J) 

20 CONTINUE 
10 CONTINUE 

C-
C- Now mul t ip ly BP * F and keep temporarily i n a matrix 
C-

DO 30 1-1,NA 
DO 40 J-1,NF 

TEMP - O.ODO 
DO 50 K-1.NB 

TEMP - TEMP + BP(I,K) * F(K,J) 
50 CONTINUE 

BPF(I,J) - TEMP 
40 CONTINUE 
30 CONTINUE 

C-
C- Now mul t ip ly Lu on the r i g h t s ide of Fp3 and add t o upper l e f t 
C- corner of the c lo sed loop matrix 
C-

DO 60 1-1,NA 
DO 70 J-2,NP3 

ACLd.J) - ACL(I,J) + BPF(I,J) 
70 CONTINUE 

DO 80 J-NP4,NF 
ACL(I,NPG+J) - BPF(I,J) 

80 CONTINUE 
TEMP - O.ODO 
DO 90 J-1,NGRP 

TEMP - TEMP + BPF(I,NP3+J)*L(NP2+J) 
90 CONTINUE 

ACL(I,1) - ACL(I,1) + B P F d . D + TEMP 
60 CONTINUE 

C-
C- make the Ac matrix - A22 - L*A12 and the Dc vector 
C-

DO 15 1-1 .NC 
TEMP - O.ODO 
DO 25 J-1,NC 

ACL(NA+I,NA+J) - AP(1+I,1+J) - L(I)*AP(1,1+J) 
TEMP - TEMP + ACL(NA+I,NA+J)*L(J) 

25 CONTINUE 
C-
C- Below i s Dc vector 
C-

ACL(NA+I,1) - TEMP - L(I)*AP(1,1) + AP(1+I,1) 
15 CONTINUE 

C-
C- make Be * F from Bp * F and put i n Acl 
C-

DO 35 1-1,NC 
C-
C- f i r s t column : Bc*(Fp1 + Fp3*Lu) 
C-



TEMP - O.ODO 
DO 45 J-1,NGRP 

TEMP - TEMP + ( BPF(1+I,NP3+J)-L(I)«BPF(1,NP3+J) ) * L(NP2+J) 
45 CONTINUE 

ACL(NA+I,1) - ACL(NA+I,1) + ( BPF(1+1,1)-L(I)»BPF(1,1) ) + TEMP 
C-
C- next get r e f l e c t o r s and temp terms in the observer 

DO 55 J-2,NP3 
ACL(NA+I,J) - BPF(1+I,J) - L(I)*BPF(1,J) 

55 CONTINUE 
C-
C- precursors and the two i n t e g r a t o r s in the observer 

DO 65 J-NP4,NF 
ACL(NA+I,NPG+J) - ACL(NA+I,NPG+J) + 

1 ( BPF(1+I,J)-L(I)*BPF(1,J) ) 
65 CONTINUE 
35 CONTINUE 

C-
C- F i n a l l y , add on the one and negat ive one for the integrator 
C-

ACL(NA+NC+1,NA+NC+2) - l.ODO 
ACL(NA+NC+2,1) - -l.ODO 

C-
C- done 
C-

RETURN 
END 

SUBROUTINE POLES(A,B,G,Q ,F,X ,V,WR,WI,ORT, 
1 WORK,IPR,NDIM,N,MDIM,M,IFORM,IPRT.lERR) 

IMPLICIT REAL»8(A-H,0-Z) 
DIMENSION A(NDIM,N),B(NDIM,M),G(MDIM,N),Q(NDIM,N), 

1 F ( M D I M , N ) , X ( N D I M , N ) , V ( N D I M , N ) , W R ( N ) , W I ( N ) , 
2 0 R T ( N ) , W 0 R K ( 1 ) , I P R ( 1 ) 

C POLE ASSIGNMENT PROGRAM 
C 
C AUTHOR : LEE H. KEEL modified by Ken Washington 
C 
C TEXAS A i M UNIVERSITY 
C 
C PARAMETER DESCRIPTIONS 
C N D I M . M D I M : DEFINED DIMENSION SIZES IN MAIN PROGRAM 
C N : NUMBER OF STATUS OF GIVEN PLANT 
C M : NUMBER OF INPUT OF GIVEN PUNT 
C A (NxN) : GIVEN PLANT 
C B (NxM) : GIVEN PLANT INPUT 
C Q (NxN) : THIS MATRIX CONTAINS DESIRED POLES 
C : USER MUST PREPARE Q or have MAKEQ do i t from WR.WI 
C V (NxN) : Working a r r a y f o r H o s s e n b e r g s c h u r 
C G (MxN) : THIS MATRIX WILL BE FREELY CHOSEN BY USER, BUT IF 
C MAKES SOLUTION MATRIX X SINGULAR, USER SHOULD CHOOSE 
C X (NxN) : SOLUTION OF MATRIX EQUATION AX - XQ - -BG 
C F (MxN) : SOLUTION OF MATRIX EQUATION FX-G 
C 
C OTHER ARRAIES : WORKING AREA FOR SUBROUTINES 
C 
C ORT : WORKING VECTOR FOR HESSENBERG-SCHUR PACKAGE 
C DIMENSIONED AT LEAST MAX(M,N) 
C WORK : WORKING AREA FOR HESSENBERG-SCHUR PACKAGE 
C THIS AREA MUST BE PREPARED BIGGER THAN 2M«*2+7M 
C ONE DIMENSION ARRAY 
C IPR : WORKING AREA FOR HESSENBERG-SCHUR PACKAGE 
C THIS AREA MUST BE PREPARED BIGGER THAN 5N 
C ONE DIMENSION AREA 
C NOTE : IPR I S AN INTEGER AREA 
C 
C INPUT : A , B . Q . A N D G 
C OUTPUT : F 
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c 
C ATTENTION : A.B.AND AT WILL BE DESTROIED AFTER COMPLETION 
C IF lERR IS NOT ZERO. OBTAINED SOLUTION FROM THIS SUB" 
C MAY NOT BE USEFUL. 
C 
C SUBROUTINE CALLS 
C 
C AXXBC : THIS SUBROUTINE IS NAMED HESSENBERG-SCHUR METHOD TO 
C THE MATRIX EQUATION AX+XB-C. 
C THE ORIGINAL AUTHOR OF THIS PROGRAM IS STEPHEN NASH, 
C MATHMATICAL SCIENCE DEPARTMENT, THE JOHNS HOPKINS 
C 
C RGKEEL,ORTHES,ORTRAN,HQR,TRANSF,NSOLVE, 
C HESOLV.BACKSB.IROWI,N2S0LV,H2SL0V,BACKS2 
C IR0W2,LR0W2 
C CWULT : MATRIX MULTIPLICATION 
C INVDET : CALCULATE INVERSE OF MATRIX 
C-
C- Print the input matr ices i f asked 
C-

IF (IPRT .GT. 1) THEN 
CALL PRMAT(NDIM,N,N,A,'A Plant matrix 
CALL PRMAT(NDIM,N.M.B,'B Plant matrix 
CALL PRMAT(MDIM.M,N,G,'G param matrix ') 

END IF 
C-
C- Error tolerance setting 

EPS-1.0D-16 
C-
C- Make the Q matrix from the passed e igenvalues depending on IFORM 
C-

CALL MAKEQ(NDIM,N,Q,WR.WI,IFORM) 
C-
C- Calculate BG s t o r e i t in X 
C-

CALL GMULT(X,B.G,NDIM,NDIM.MDIM,N,M,N) 
IF (IPRT .GT. 2) THEN 
CALL PRMAT(NDIM,N,N,X,'B»G matrix ') 
CALL PRMAT(NDIM,N,N,Q,'Q Desired eig Matrix') 

END IF 
C-
C- Take the negat ive of Q and B*G 
C-

DO 10 1-1.N 
DO 10 J-1.N 

Q d . J ) — Q d . J ) 
X ( I , J ) - - X ( I , J ) 

10 CONTINUE 
C-
C- SOLVE THE MATRIX EQUATION AX-XQ—BG 
C- This w i l l g ive us an x t h a t FX-G and A X - X Q - -BG 
C- or in other words, (A+BF)X - XQ, or A+BF - X Q X'^-l 
C- so that the spectrum of A+BF i s the same as that of Q 
C- s ince the X merely provides a s i m i l a r i t y transformation 
C-

lERR - 0 
MODE - 1 
CALL AXXBC(MODE,NDIM,N,NDIM,N,A,V,Q,X ,WR,WI, 

1 ORT,WORK,IPR,EPS,IERR) 
IF (IPRT .GT. 2) 

1 CALL PRMAT( NDIM, N.N.X,'Sol X to AX-XQ—BG ' ) 
IF (lERR.NE.O) GO TO 60 

C-
C- Solve the equation F X « G by transposing two times 
C-

CALL TRAN(A.X,NDIM,NDIM,N,N) 
CALL TRAN(B,G,NDIM,MDIM,N,M) 
CALL SIMEQ(A,B,NDIM,N,M,IERR) 



IF (lERR .NE. 0) GO TO 60 
CALL TRAN(F,B,MDIM,NDIM,M.N) 
IF (IPRT .GT. 1) 

1 CALL PRMAT(MDIM,M,N.F.'F Gain matrix ' ) 
60 CONTINUE 

RETURN 
END 
SUBROUTINE MAKEQ(NDIM,N,Q,WR,WI,IFORM) 
IMPLICIT REAL*8 (A-H,0-Z) 
DIMENSION Q(NDIM,N),WR(N),WI(N) 

C-
C- The purpose of t h i s subroutine i s to c a l c u l a t e e i ther 
C- a ccMipanion or phase var iab le form matrix Q that has the 
C- e igenvalues passed i n the vec tors WR and WI being the 
C- r e a l and imaginary parts of the des ired e igenvalues 
C-
C- IFORM - 0 : ignore imaginary components and force diagonal 
C- IFORM - 1 : companion form (the recommended form) 
C- IFORM - 2 : phase var iab le form 
C- IFORM - 3 : user decided form 
C- IFORM <0 >3 : no a c t i o n on Q 
C-
C- Zero the array 
C-

IF (IFORM.LT.O .OR. IFORM.GT.3) RETURN 
DO 10 1-1,N 
DO 10 J-1,N 

Q(J , I ) - O.ODO 
10 CONTINUE 

C-
C- Forced diagonal 
C-

IF (IFORM.EQ.O) THEN 
DO 15 1-1,N 

Q ( I , I ) - WR(I) 
WId) - O.ODO 

15 CONTINUE 
C-
C- Companion form ( t h i s i s the recommended form) 
C-

ELSE IF (IFORM.EQ.1) THEN 
I - 1 

20 CONTINUE 
C-
C- Add a r e a l polo or l a s t one which must be a l l rea l 
C-

IF (WI(I).EQ.O.ODO .OR. I.EQ.N) THEN 
Q d . I ) - WRd) 
WId) - O.ODO 
I - 1+1 

ELSE 
C-
C- This i s the s e c t i o n t o add a conjugate pair 
C-

Q d , I + 1 ) - l.ODO 
Q(I+1,I+1) - 2.0D0*WR(I) 
Q d + 1 , I ) - - WR(I)*WR(I) - WI(I)*WId) 
WRd+1) - WRd) 
w i ( i + i ) - - W I d ) 
I - 1+2 

END IF 
IF (I.LE.N) GO TO 20 

C-
C- Phase v a r i a b l e form 
C-

ELSE IF (IFORM.EQ.2) THEN 
I - 1 

30 CONTINUE 
C-



C- Check for a l l rea l pole or l a s t one which must bo a l l real 
C-

IF (WId).EQ.O.ODO .OR. I.EQ.N) THEN 
Q(N,I) - l.ODO 
WId) - O.ODO 
IF (I .EQ.1) GO TO 50 
DO 40 JBACK-2,1 

J - I - JBACK + 2 
Q(N,J) - -WR(I)*Q(N.J) + Q(N,J-1) 

40 CONTINUE 
50 CONTINUE 

Q(N,1) - -WRd) * Q(N.1) 
I - 1+1 

ELSE 
C-
C- t h i s i s the s e c t i o n t o add a conjugate pair 

C0N1 - -2.0D0*WR(I) 
C0N2 - WR(I)*WR(I) + WI(I)*WI(I) 
Q(N,I) - l.ODO 
Q(N,I+1) - O.ODO 
IF (I .EQ.1) GO TO 70 

DO 60 JBACK-2,1 
J - I - JBACK + 3 
Q(N,J) - C0N2*Q(N,J) + C0N1»Q(N,J-1) + Q(N,J-2) 

60 CONTINUE 
70 CONTINUE 

Q(N,2) - C0N2*Q(N,2) + C0N1*Q(N,1) 
Q(N,1) - C0N2*Q(N,1) 
I - 1+2 

END IF 
IF (I.LE.N) GO TO 30 

C-
C- F i l l in the r e s t of the companion matrix and take 
C- the negat ive of the l a s t row 
C-

DO 80 J-1,N 
IF (J.LT.N) Q(J,J+1) - l.ODO 
Q(N,J) - -Q(N.J) 

80 CONTINUE 
C-
C- User i n t e r a c t i v e input Q 
C-

ELSE IF (IFORM.EQ.3) THEN 
CALL MATIN(NDIM.N,N,Q,'Enter the Q matrix from POLES') 

END IF 
RETURN 
END 



PROGRAM RKMODAL 
C-
C- R e f l e c t e d K i n e t i c s Modal C o n t r o l program by Ken Washington 
C-

IMPLICIT REAL»8 (A-H,0 -Z) 
COMMON/SIZES/ NA.NCL.NUMT 
DIMENSION Z(3001) 
CHARACTER FNAME«8 
DATA NMAX / 3 0 0 0 / 

C-
C- Driver rout ine 
C-

5 CONTINUE 
WRITE (» ,103) 
READ (» ,105) FNAME 
OPEN (UNIT-1,FILE-FNAME//'.INP',STATUS-'OLD',ERR-5) 
OPEN (UNIT-2,FILE-FNAME//'.OUT'.STATUS-'NEW',ERR-5) 
OPEN (UNIT-3,FILE-FNAME//'.PRN'.STATUS-'NEW' ,ERR-5) 
OPEN (UNIT-5,FILE-'U'//FNAME//'.PRN'.STATUS-'NEW',ERR-5) 

10 CONTINUE 
READ (1,101 ,ERR-ilO.END-MO) NGRP,NUMT,NM,NPD,NSOL 
NPNS - NPD*NSOL 
IF (NGRP.LT.O) GO TO MO 
NREF - 1 

C-
C- Calculate the s i z e of the matrix from the number of r e f l e c t o r s , e t c 
C-

NA - NREF + NGRP + 3 
NB - NREF + 1 
IF (NB.GT.NA .OR. NC.GT.NA .OR. NGRP.GT.6) THEN 

WRITE (*,*) ' I n v a l i d system s i z e o p t i o n s ' 
WRITE ( » , » ) ' S o r r y . ' 
GO TO MO 

END IF 
C-
C- Fix up the s i z e s t o accomodate in terna l model 
C-
C- NUMT - niimber of outputs to track 
C- NM - dimension of the measureable output 
C- NC - s i z e of the feedback output matrix (with internal model) 
C-

IF (NUMT .GT. NM) NUMT - NM 
NCL - NA + 2*NUMT 
NC - NM + 2*NUMT 
NWORK - NCL + 1 
NW2 - NWORK*NWORK 
N1 - 1 
N2 - N1 + NCL* NCL 
N3 - N2 + NCL»NB 
NM - N3 + NB*NC 
N6 - NM + NC*NCL 
N7 - N6 + NCL* NCL 
N8 - N7 + NW2 
N9 - N8 + NW2 
NIG - N9 + NW2 
Ni l - NIG + NW2 
N12 - N i l + NW2 
NI3 - N12 + NW2 
N1M - NI3 + NW2 
NI5 - N1M + NWORK*NPNS 
N16 - N15 + NWORK 
N17 - N16 + NWORK 
N18 - NI7 + NWORK 
NVD - N18 + NWORK 
NVA - NVD + NCL»NC 
NI9 - NVA + NCL»NC 
NLAST - N19 + NPNS 
NVECT - NLAST - 1 
IF (NLAST .GT. NMAX) THEN 



c-
c-
c-

WRITE (*,*) 'System s e l e c t e d i s too b i g . ' 
WRITE (*.*) 'Modify i n p u t f i l e and t r y a g a i n ' 
GO TO MO 

END IF 

I n i t i a l i z e a l l v e c t o r s t o zero 

DO 

30 

30 1-1.NVECT 
ill) - O.ODO 

CONTINUE 
Z( NLAST) 

C-
C- Here we 
C-

999.999DO 

go 

CALL GORESM(NREF,NGRP,NA.NB.NC,NUMT,NM,NCL,NWORK,NPD. 
1 NS0L,NPNS,Z(N1),Z(N2),Z(N3),Z(NM),Z(N6), 
2 Z T N 7 ) , Z ( N 8 ) . Z ( N 9 ) , Z ( N 1 0 ) , Z ( N 1 1 ) . Z ( N 1 2 ) , Z ( N 1 3 ) , 

Z N1M),Z(N15),Z(N16),Z(N17),Z(N18). 
Z ( N V D ) , Z ( N V A ) , Z ( N 1 9 ) ) C-

C- go back and get ano the r s e t 
C-

GO TO 10 
C -
C- and 
C-

MO 

:l 

CONTINUE 
C L 0 S E ( U N I T - 1 
CLOSE(UNIT-2; 
CLOSE(UNIT-; 
CLOSE(UNIT" 
STOP 

101 F0RMAT(5IM) 
103 FORMATl'$Input f i l e r o o t name ? ' ) 
105 FORMAT(A) 

END 
SUBROUTINE GORESM(NREF.NGRP,NA.NB.NC,NUMT,NM,NCL.NWORK,NPD, 
1 NSOL,NPNS,AP.BP.F.CP,ACL,AWORK,BWORK,CWORK,DWORK, 
2 EWORK,FWORK,GWORK.POUT,P, SV .WR,WI,VD,VACH.TIMES) 
IMPLICIT REAL*8 (A-H,0-Z) 
REAL»M RM 
COMMON/INFO/ SORCO(IO).SORCI(10) 
DIMENSION AP(NCL,NCL).BP(NCL,NB),F(NB.NC),VD(NCL,NC) , 

2 CP(NC,NCL),ACL(NCL,NCL),GWORK(NWORK,NWORK), 
3 AW0RK( NWORK, NWORK) ,BWORK( NWORK, NWORK) ,C WORK (NWORK, NWORK) , 
M DWORK (NWORK, NWORK ) , EWORK (NWORK, NWORK), FWORK (NWORK, NWORK), 
5 POUT(NWORK,NPNS),P(NWORK),SV(NWORK),WR(NWORK),WI(NWORK), 
6 TIMES (NPNS), IP R( 2 0 0 ) , VACH (NCL, NC) 

CHARACTER ANS*1,TITLE*M0.FNAME»12 
C-
C- lASH i s a f l a g fo r t h e t ype of s o l u t i o n , 0-Runga K u t t a , e l s e ASH 
C-

IPRT,JPRT a r e p r i n t f l a g - use as f o l l o w s : 
0 - No p r i n t i n g excep t fo r o u t p u t 
1 - Data p r i n t e d and o u t p u t and e i g e n v a l u e s 
2 - More complete t r a n s i e n t p r i n t 
3 _ - All p e r t i n e n t m a t r i c e s p r i n t e d - i n p u t , w o r k i n g , o u t p u t 

C-
C-
C-
C-
C-
C- JPRT 
C-

IPLOT i s 

IPRT - 1 p r i n t l e v e l i s reduced one f o r s u b r o u t i n e s 

C-
C-
c-
c-
c-
c-
c-
c-
C- NEPS 
C- MMAX 

a p l o t f l a g , g r e a t e r than zero p l o t s t h a t many s t a t e s 
a maximum of seven a re p r i n t e d t o the p l o t f i l e . The 
format i s 1X,E9.3 

IFORM i s a f l a g for t h e form of the Q m a t r i x used i n POLES 
f o r t h e a r b i t r a r y e igehva lue a s s ignment . 
1-Companion, 2»Diagonal See POLES for more d e t a i l s 

i s an accuracy parameter - see SOLVER documentat ion 
i s t h e maximum number of terms kept i n ASH - s e e SOLVER 



c-
C- TIMAX is the maximum solution time, other times printed in 
C- powers of two down from TIMAX for the ASH solution 
C-
C- Return point for reading another s e t 
C-
1 CONTINUE 

C-
C- Input initial conditions 
C-

READ (1,103,END-99,ERR-99) TITLE 
IF (TITLE(1:3) .EQ. 'END') GO TO 99 
WRITE (2,21Mj TITLE 
WRITE (»,21M) TITLE 
READ (1,102,END-99,ERR-99) IPRT.IPLOT 
JPRT - IPRT - 1 
IF (JPRT.LT.1) JPRT - 1 
WRITE (2 ,222) 
WRITE (* .222) 
READ (1.102,END-99,ERR-99) NEPS.MMAX 
DO M50 1-1,NPNS 

TIMES(I) - O.ODO 
M50 CONTINUE 

DO M60 INS0L-1.NS0L 
J - (INS0L-1)»NUMT 
K - NPD»INSOL 
DO 360 1-1 .NUMT 

READ (1,101 ,END-99,ERR-99) SORC0(J+I).SORCI(J+I) WRITE lk,2}b) I .SbRCd(j+i),S6RCi(J+l) 
WRITE (* ,219) I . r - -. _,SORCO(J+I),SORCI(J+Ij 

360 CONTINUE 
READ (1 ,101) TIMES(K) 
WRITE (2 ,220) TIMES(K) 
WRITE (*,220) TIMES(K) 

M60 CONTINUE 
C-
C* H6r*6 W6 SCO 
C- Get the AP matrix and BP matrices 
C-

CALL MAKEAB(NCL.NREF,NGRP,NA.NB.AP.BP,JPRT) 
C-
C- Now make the CP matrix which i s j u s t as many outputs 
C- taken as s t a t e s i n d i v i d u a l l y . U s u a l l y , there i s only one output 
C- which i s s t a t e number one. But we can t ry track any combination 
C- of the s t a t e s which i s s p e c i f i e d i n f i r s t row of CP below 
C-

DO 315 1-1 , NCL 
DO 316 J-1,NM 

IF (I .EQ.J) THEN 
CP(J,I) - 1.0D0 

ELSE 
CP(J,I) - O.ODO 

END IF 
316 CONTINUE 
315 CONTINUE 

C-
C- Make the two i n t e g r a t o r s outputs for modal s t a b i l i z a t i o n 
C-

NUMT2 - NUMT*2 
DO 503 1-1.NUMT2 

CP(NM+I,NA+I) - 1.0D0 
503 CONTINUE 

C-
C- one chance t o change the output matrix 
C-

CALL MATIN(NC.NC,NCL,CP,'Plant CP matrix') 
C-
C- Set the two i n t e g r a t o r s for the tracking problem 
C- for each of the output v a r i a b l e s we want t o track 



C- n o t e , the number of tracking outputs must be l e s s than 
C- or equal t o the number of measureable outputs for feedback 
C-

DO 502 J-1,NUMT 
AP(NA+NUMT+J.NA+J) - 1 .ODO 
DO 502 1-1,NCL 
AP(NA+J.I) - -CP(J.I) 

502 CONTINUE 
C-
C- Calculate the e igenva lues of the open loop matrix 
C- and use t h i s as the d e f a u l t s e t t i n g s for STRUCT 
C-

LBAL - 0 
DO 325 1-1.NCL 

DO 325 J-1,NCL 
AWORK(J.I) - AP(J,I) 

325 CONTINUE 
CALL RG(NWORK.NCL.AWORK.WR.WI.GWORK.IPR,P,lERR,LBAL) 
WRITE (*,228) 
WRITE (2,228) 
DO 326 1-1,NCL 

WRITE (» .209) WR(I).WI(I) 
WRITE (2 ,209 ) WR(I),WI(I) 

C-
C- Read in the des ired e i g e n v e c t o r s , x are given by - 9 9 9 . 0 
C-

READ (1 ,101) (VD(I .J) ,J-1 ,NC) 
326 CONTINUE 

IF (IPRT.GE.3) CALL PRMAT(NWORK,NCL,NCL,GWORK, 
1 'Eigenvectors of AP ') 
IF (IPRT.GE.1) WRITE (*,*) 'Done with MAKEAB and CPlant' 

C-
C- Print the created A matrix 
C-

IF (IPRT.GE.3) THEN 
CALL PRMATCNCL,NCL.NCL,AP.'Plant A matr ix ' ) 
CALL PRMAT(NCL.NCL,NB,BP,'Plant B matr ix ' ) 
CALL PRMAT(NC,NC.NCL.CP.'Plant C matrix ' ) 

END IF 
C-
C- begin i n t e r a c t i v e loop 
C-

MOO CONTINUE 
C-
C- The Acl i s s e t equal to AP here in case we want to 
C- do an open loop a n a l y s i s we answer the proceed question (N)o 
C- a l s o r e s e t working arrays to zero j u s t in case 
C-

DO 55 J - 1 . NCL 
DO 55 1-1,NCL 

ACLd.J) - AP(I.J) 
AWORKCI.J) - O.ODO 

- O.ODO 
O.ODO 
O.ODO 
O.ODO 
O.ODO 
O.ODO 

BWORKCI.J 
CWORK(l,J) 
DWORK(I,J 
EWORK(I,J 
FWORK(I,J 
GWORK(I,J) 

55 CONTINUE 
WRITE (*,*) 'Acl current ly s e t as open loop system' 
WRITE (*,226) NC 
CALL ASK('Proceed with MODAL control',M,RM,R8.I,ANS) 
IF (ANS.EQ.'N' .OR. ANS.EQ.'n') GO TO Ml 0 

C-
C- Read in the des ired e igenva lues and e igenvectors 
C- for the c lo sed loop plant matrix modal output control law 
C- The number of outputs (NC) governs how many aire assigned 
C-

CALL MATIN(NCL.NC.1.WR,'Real ass ignable e ignva lue ' ) 



CALL MATIN(NCL.NCL,NC.VD.'Assignable e i g e n v e c t o r s ' ) 
C-
C- se t the de fau l t transformation matrix t o best guess and 
C- the achievable e igenvector t o the desired before project ion 
C-

DO 317 1-1 . NCL 
DO 319 J-1,NC 

VACH(I.J) - VD(I.J) 
319 CONTINUE 

DO 317 K-1.NCL 
IF (K.LE.NB) THEN 

ACL(I.K) - BP(I.K) 
ELSE 

ACL(I.K) - O.ODO 
END IF 

317 CONTINUE 
K - 0 
NAMNB - NB + 1 
DO 318 I-NAMNB,NCL 

K - K + 1 
IF (K.EQ.1 .OR. K.EQ.M) K - K + 1 
ACL(K.I) - 1.0D0 

318 CONTINUE 
C-
C- chance t o change the T matrix t o transform B into ( I 0) 
C-
C CALL MATIN (NCL, NCL, NCL, ACL,'B Transformation matrix , T') 
C-
C- Calculate the F gains using the STRUCT rout ine 
C- t h i s a l s o c r e a t e s ACL for you and s t o r e s i t 
C- in the ACL matr ix . F i r s t we have t o c a l c u l a t e the achievable Va 
C-

CALL VA(AP,BP,VACH,WR,AW0RK.BW0RK.CW0RK,DWORK. 
1 NCL.NCL,NB.NC.NWORK,IPRT,lERR) 

IF (lERR.NE.O) THEN 
WRITE (*,*) 'Error i n VA r o u t i n e ' 
GO TO MOO 

END IF 
CALL STRUCT(AP,BP.F.CP,ACL.WR, VACH,AWORK,BWORK,CWORK, 

1 NCL, NB,NC.NCL.NB,NC,NCL,NWORK,IPRT,lERR) 
IF (lERR.NE.O) THEN 

WRITE (* ,» ) 'Error in STRUCT r o u t i n e ' 
GO TO MOO 

END IF 
C-
C- whew, we made i t now do some c leaning up 
C- Calcu la te the e igenva lues of the c losed loop matrix 
C-

DO 125 1-1 , NCL 
DO 125 J-1,NCL 

AWORK(J,I) - ACL(J,I) 
125 CONTINUE 

CALL RG(NWORK,NCL,AWORK,WR,WI,GWORK,IPR,P,IERR,LBAL) 
IF (lERR .NE. 0) THEN 

WRITE (* .218) 
GO TO MOO 

END IF 
WRITE (*.208) 
DO 130 1-1.NCL 
WRITE (*,209) WR(I),WI(I) 

130 CONTINUE 
Ml 0 CONTINUE 

CALL ASK('Satisfied (Y/N) or e(X)it',M,RM.R8,I,ANS) 
IF TANS.EQ.'N' .OR. ANS.EQ.'n') GO TO MOO 
IF (ANS.EQ.'X' .OR. ANS.EQ.'x') GO TO 99 
WRITE (2.208) 
DO 1M5 1-1, NCL 
WRITE (2.209) WR(I),WI(I) 

1M5 CONTINUE 



IF (IPRT.GE.3) CALL PRMAT(NWORK.NCL,NCL.GWORK. 
1 'Eigenvectors of Ac l ' ) 

C-
C- Set the source vector so that the source enters the l a s t integrator 
C- and f i x up matrix so t h a t ASH c a l c u l a t e s time and uses that t o 
C- incorporate a l i n e a r source term. Note that the work matrices used 
C- by ash are of one more dimension than the c losed loop system 
C-
C-
C- Input i n i t i a l condi t ions and zero working arrays again 
C-

DO 10 1-1.NWORK 
SV(I) - O.ODO 
DO 10 J - 1 . NWORK 

AWORK(J.I) - O.ODO 
BWORK(J.I) - O.ODO 
CWORKIJ.I) - O.ODO 
DWORKU.I) - O.ODO 
EW0RK(J,I) - O.ODO 
FWORK(J,I) - O.ODO 
GWORK(J,I) - O.ODO 

10 CONTINUE 
DO 30 1-1,NCL 

DO 20 J-1,NCL 
AW0RK(J,I) - ACL(J,I) 

20 CONTINUE 
READ (1 .101) P(I) 

30 CONTINUE 
C-
C- Get s o l u t i o n us ing ASH SOLVER 
C-

NCALC - NCL + 1 
SV(NCALC) - 1.0D0 
P(NCALC) - O.ODO 
DO 501 1-1.NUMT 

AW0RK(NA+I.NCL+1) - SORCKl) 
SV(NA+I) - SORCO(I) 

501 CONTINUE 
IF (IPRT.GE.1) WRITE (*,*) 'Cal l ing ASH for answer' 
NSV - 1 
CALL S0LVE2(AWORK,BWORK,CWORK ,DWORK.EWORK.FWORK. 

1 NWORK.NCALC.NSV.SV,P,TIMES,POUT, 
2 NPD,NSOL,NPNS,NEPS.MMAX.JPRT) 

IF (IPRT.GE.1) WRITE (*.*) 'Done with ASH' 
C-
C- Calculate the new internally found inputs store in CWORK 
C- note that the exact R(t) is also put in CWORK 
C-

K - 0 
DO 383 INS0L-1.NS0L 
DO 382 KK-1.NPD 

K - K + 1 
DO 381 J-1,NUMT 

JJ - (INS0L-1)*NUMT + J 
CWORK(J,K) - SORCO(JJ) + SORCI(JJ)*TIMES(K) 

381 CONTINUE 
382 CONTINUE 
383 CONTINUE 

DO 380 K-1.NPNS 
DO 63 1-1,NB 

CWORK(1+NUMT,K) - O.ODO 
DO 62 J-1 .NC 
DO 62 M-1.NCL 

CWORK(1+NUMT.K) - CWORK(1+NUMT,K) + 
1 F(I.J)«CP(J,M)»POUT(M,K) 

62 CONTINUE 
62 CONTINUE 
380 CONTINUE 

C-
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C- Write the plot output file, note that IPLOT dictates 
C- how many of the states are included in the PLOT.PRN file 
C- also it automatically prints the desired R(t) function 
C- in the first column. Also a file called INPUTS.PRN is 
C- produced that holds the inputs through time for plotting 
C-

I - IPLOT + NUMT 
WRITE (3 .102) NPNS,I_ 
WRITE (M.102) NPNS.NB 
DO 35 1-1.NPNS 

WRITE (3 ,201) TIMES(I),(CW0RK(J,I),J-1,NUMT), 
1 (POUT(J,I),J-1,IPL0T) 

WRITE (M,201) TIMES(I),(CW0RK(J+NUMT.I),J-1.NB) 
35 CONTINUE 
bM CONTINUE 

C-
C- Output the answers to the disk f i l e 
C- This was modified on 8 / 8 / 8 5 to print the des ired R(t) and 
C- the contro l inputs through time as s p e c i f i e d by U « FX 
C-

IL - 0 
MO CONTINUE 

JB - 5*IL+1 
JE - JB + M 
IF (JE .GE. NPNS) JE - NPNS 
WRITE (2 ,202) (TIMES(J),J-JB,JE) 
WRITE (2 ,211) 
DO 509 1-1,NUMT 

WRITE (2 ,212) I,(CWORK(I,J),J-JB,JE) 
509 CONTINUE 

WRITE (2 .203) (P0UT(1.J),J-JB,JE) 
DO 50 1-1,NREF 

IF (NREF.EQ.O) GO TO 50 
WRITE (2,20M) I . (P0UT(I+1,J) ,J-JB,JE) 

50 CONTINUE 
WRITE (2 ,207) 'F',(P0UT(NREF+2.J).J-JB.JE) 
WRITE (2 ,207) ' C .(P0UT(NREF+3, J ) , J-JB, JE) 
DO 50 1-1,NGRP 

WRITE (2 ,205) I,(P0UT(I+NREF+3,J),J-JB.JE) 
60 CONTINUE 

DO 390 1-1 , NB 
WRITE (2 ,213) I,(CWORK(I+NUMT,J),J-JB.JE) 

390 CONTINUE 
IF (NCALC.GT.NA) THEN 

NCON - NA + 1 
DO 61 I-NCON.NCALC 
WRITE (2,217) I,(POUT(I.J).J-JB.JE) 

61 CONTINUE 
END IF 
IL - IL t- 1 
IF (JE .LT. NPNS) GO TO MO 

99 CONTINUE 
C-
C- Thats a l l 
C-

IF (lERR .NE. 0) THEN 
WRITE (*,*) 'Program aborted due t o an internal error' 
WRITE ( 2 , * ) 'Program aborted due to an in terna l error" 

END IF 
RETURN 

101 F0RMAT(8F10.M) 
102 F0RMAT(8lM) 
103 FORMAT(AM0) 
201 FORMAT(8(1X,E9.3)) 
202 FORMATS/,T2,'Time'.T1 0 ,5( 1 PD1 2 . M, IX)) 
203 FORMAT(T2.'NC'.T10,5(1PD12.M,1X)) 
20M F0RMAT(T2,'Nr(',II, ') ' ,T10,5(1PD1 2.M,IX)) 
205 F0RMAT(T2,•C(' ,H.') ' ,T1 0.5(1 PD1 2.M. IX)) 
207 F0RMAT(T2,'T',A1 ,T10.5(1PD12.M,IX)) 



208 F0RMAT(//,T7,'Closed loop e i g e n v a l u e s ' , / , T 7 , 2 3 ( ' - ' ) ) 
209 F0RMAT(T5,1PD12.M,' + j ',1PD12.M) 
211 FORMAT(T2,73('-•),/) 
212 FORMAT(T2,'R',I1,'(t)' ,T10,5(1PD12.M,1X)) 
213 F0RMAT(T2,'U(' ,I2. ') ' .T10.5(1PD12.M,1X)) 
21M F0RMAT(/,' '.AMO,/) 
215 F0RMAT(5(1PD12.M)) 
216 FORMAT (A1) 
217 F0RMAT(T2,'X('.I2, •) ' ,T10.5(1PD12.M.1X)) 
2ld FORMATt' *** ERROR ««« i n RG eigenvalue f i n d e r ' , / ) 
219 F0RMAT(T2,'R('.I2.') - ' ,1PD12.M.' + T* -'.1PD12.M) 
220 F0RMAT(T2.'Time - '.1PD12.M) 
221 F0RMAT(T2.'RUNGA KUTTA Mth order s o l u t i o n method' , / ) 
222 F0RMAT(T2,'ASH EXP OPERATOR s o l u t i o n method' , / ) 
22M FORMAT(//,'$Enter Lambda( ' ,12 , ' ) ? ') 
225 FORMATC'$Mode ( ' , 1 2 , ' ) , Row ( ' , 1 2 , ' ) ? ') 
226 FORMAT(//,' I n t e r a c t i v e eigenspectrum assignment ' , / , 

1 ' For ' , 1 2 , ' m o d e s ' , / / ) 
227 F0RMAT(T5,'Eigenvector m a t r i x ' , / , T 5 , 1 8 ( ' - ' ) , / ) 
228 FORMAT(//,T7,^0pen loop e i g e n v a l u e s ' , / . T 7 , 2 1 ( ' - ' ) ) 

END 
SUBROUTINE ASV(A,SV,INSOL,NDIM,NC) 
IMPLICIT REAL*8 (A-H.O-Z) 
COMMON/INFO/ SORCO(10).SORCI(10) 
COMMON/SIZES/ NA.NCL.NUMT 
DIMENSION A(NDIM.NC).SV(NC) 
J - (INS0L-1)*NUMT 
DO 10 1-1 . NUMT 

A(NA+I,NCL+1) - SORCI(J+I) 
SV(NA+I) - SORCO(J+I) 

10 CONTINUE 
RETURN 
END 
SUBROUTINE STRUCT(AP.BP,F.CP.T.WR.V,AWORK.CWORK,EWORK. 

1 NDIM.LDIM .MDIM,NP,NIN.NOUT,NCL,NWORK,IPRT.lERR) 
IMPLICIT REAL*8 (A-H,0-Z) 
DIMENSION AP(NDIM.NP),BP(NDIM.NIN),CP(MDIM,NP).T(NCL.NP). 

1 V(NDIM.NOUT),F(LDIM.NOUT),WR(NOUT). 
2 AWORK(NWORK.NP).CWORK(NWORK,NP).EWORK(NWORK,NP) 

C-
C- NDIM - row dimension of AP, BP. and V in main (max # states) 
C- MDIM - row dimension of CP in main (max # outputs) 
C- LDIM - row dimension of F in main (max # inputs) 
C- NCL - row dimension of T in main (max size of closed loop) 
C- this is different than AP because the user may 
C- want to have some integrators thrown in later 
C-
C- A : NP X NP 
C- B : NP X NIN 
C- C : NOUT X NP 
C- T : NP X NP (also used as a work matrix) 
C- on input it is the transformation matrix 
C- on return it is Acl closed loop. It can later 
C- be enlarged to NCL x NCL since the col dim is passed here 
C- V : NP X NOUT (passed as a working array with col dim - nwork) 
C- F : NIN X NOUT 
C- A1: NIN X NP (never r e a l l y computed rather kept in T) 

C- This rout ine c a l c u l a t e s the F matrix for output feedback 
C- and the c lo sed loop matrix and s t o r e s i t in T. 
C- e igenva lue / e igenvec tor s t r u c t u r e assignment problem 
C- The input t o the subrout ine i s the plant matrices AP.BP.CP 
C- and the des ired e i g e n v e c t o r s V and e igenvalues WR 
C- Also the T matrix must be provided such that Tinverse * B 
C- has the i d e n t i t y matrix on the top NIN rows and zero on the bottom 
C- Note that T must be i n v e r t i b l e . 
C-
C- on output: T contains the c lo sed loop matrix ACL 
C-
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C- This vers ion on ly handles real e igenvalues r i ^ t now 
C-
C- F i r s t transform AP and CP in the system using the T matrix 
C-

lERR - 0 
IF (IPRT.GE.M) CALL PRMAT(NCL.NP,NP,T. 

1 'Transformation mat ') 
CALL Q<ULT(CWORK.CP,T,NWORK.MDIM.NCL,NOUT,NP.NP) 
CALL GMULT(EWORK,AP.T,NWORK,NDIM.NCL.NP,NP.NP) 
CALL INVDET(NCL,NP,T,1.0D0,DET,DTRM) 
IF (IPRT.GE.2) WRITE (* ,201) DET 
WRITE (2 .201) DET 
IF (DET.EQ.O.ODO) THEN 

IF (IPRT.GE.1) WRITE (*.*) 'Singular T matrix' 
lERR - 1 
RETURN 

END IF 
CALL CMULT(AWORK.T,EWORK.NWORK.NCL.NWORK.NP,NP,NP) 
CALL GMULT(EWORK.T,V.NWORK,NCL.NDIM,NP.NP,NOUT) 
IF (IPRT.GE.M) THEN 

CALL PRMAT(NWORK,NP,NP,AWORK,'Plant transformed Ap ' ) 
CALL PRMAT(NWORK,NOUT,NP,CWORK.'Plant transformed Cp ') 
CALL PRMAT(NWORK,NP.NOUT.EWORK.'Transformed V matrix ' ) 

END IF 
C-
C- AWORK - has in i t the transformed Ap matrix 
C- CWORK - has i n i t the transformed Cp matrix 
C- EWORK - has in i t the transformed des ired e igenvectors 
C-
C- note that we are done with T as a transformation matrix so we 
C- can use i t t o s t o r e t h i n g s temporari ly 
C-
C- Now make the Z - A1*V matrix and s t o r e in T temporarily 
C-

DO 10 J - 1 . NOUT 
DO 20 1-1.NIN 

T d . J ) - EWORKd.J) * WR(J) 
DO 30 K-1.NP 

T ( I . J ) - T ( I . J ) - AWORKd.K) * EWORK(K,J) 
30 CONTINUE 
20 CONTINUE 
10 CONTINUE 

IF (IPRT.GE.M) CALL PRMAT(NCL,NIN,NOUT,T. 
1 'Z - A1*V matrix •) 

C-
C- We are a l l done with AWORK so use i t now as a s torage array 
C- Now make CV ( s t o r e in AWORK) and inver t i t 
C-

CALL GMULT(AWORK .CWORK. EWORK,NWORK.NWORK .NWORK,NOUT. NP, NOUT) 
CALL INVDET(NW0RK,N0UT,AW0RK,1.ODO.DET.DTRM) 
IF (IPRT.GE.1) WRITE ( * . 2 0 2 ) DET 
WRITE ( 2 . 2 0 2 ) DET 
IF (DET.EQ.O.ODO) THEN 

lERR - 2 
RETURN 

END IF 
IF (IPRT.GE.M) CALL PRMAT(NWORK.NOUT.NOUT,AWORK. 

1 ' I n v e r s e o f C*V mat ' ) 
C-
C- Now m u l t i p y t h e i n v e r s e on t h e r i r i i t hand s i d e o f Z - A1 *V t o g e t F 
C- note t h a t T i s used t o s t o r e Z-A1*V 
C-

CALL GMULT(F.T.AWORK,LDIM,NCL.NWORK.NIN,NOUT.NOUT) 
C-
C- now we are done with CWORK and EWORK so use as s torage arrays 
C- Now mult ip ly B»F*C ( s t o r e FC i n CWORK, BFC in EWORK) and add 
C- i t to Ap to get ACL the c lo sed loop matrix returned in T as ACL. 
C-

CALL GMULT(CWORK,F,CP.NWORK,LDIM.MDIM,NIN,NOUT,NP) 



CALL GMULT(EWORK,BP,CWORK,NWORK,NDIM,NWORK,NP.NIN,NP) 
DO MO 1-1 ,NP 

DO MO J-1,NP 
T ( J , I ) - AP(J,I) + EWORK(J,I) 

MO CONTINUE 
IF (IPRT.GE.2) THEN 

CALL PRMAT(LDIM,NIN,NOUT,F,'F Gains for feedback') 
CALL PRMAT(NCL,NP,NP.T. 'Acl - A + BFC matr ix ' ) 

END IF 
C-
C- Done 
C-

RETURN 
201 FORMAT(/.T5.'Determinant of T transorm matrix - ' .1PD12.M./) 
202 FORMAT(/.T5,'Determinant of CV matrix - ' .1PD12.M./) 

END 
SUBROUTINE VA(AP.BP.VD.WR,AWORK.BWORK.CWORK.DWORK. 

1 NDIM.NA.NB,NC.NWORK.IPRT.lERR) 
IMPLICIT REAL*8 (A-H,0-Z) 
DIMENSION AP(NDIM.NA).BP(NDIM.NB).VD(NDIM,NC).WR(NC). 

1 AWORK(NWORK.NA).BWORK(NWORK,NA), 
2 CWORK(NWORK,NA),DWORK(NWORK.NA) 

C-
C- This rout ine takes the des ired e igenvec tors and turns 
C- them i n t o ach ievable o n e s . An entry which i s unspec i f i ed 
C- must be entered as -999.ODO and then w i l l be t reated as 
C- such l e a v i n g the other components as more a c h i e v a b l e . 
C- This may take a long time t o compute e s p e c i a l l y i f there 
C- are a l o t of outputs s o NC i s l a r g e . (Note that NC i s a l so 
C- equal to the numiser of a s s ignab le e igenvalue /vector pa ir s ) 
C-

lERR - 0 
IF (IPRT.GE.2) THEN 
CALL PRMAT(NC.NC,1,WR, 'Desired real eigvals') 
CALL PRMAT(NDIM,NA.NCVD.'Desired eigenvecs ') 

END IF 
DO NEIG-1,NC 

IF (IPRT.GE.1) THEN 
WRITE (*,*) 'Process ing mode ',NEIG 
WRITE ( 2 , * ) 'Process ing mode ',NEIG 

END IF 
C-
C- F i r s t compute the inv(lambda*I - A ) * B matrix 
C-

DO 1-1.NA 
DO J-1.NA 

AWORKd.J) - - A P d . J ) 
END DO 
AWORKd.I) - AWORKd.I) + WR(NEIG) 

END DO 
CALL INVDET(NWORK,NA.AWORK.1.ODO,DET,DTNRM) 
IF (DET.EQ.O.ODO) THEN 

WRITE ( 2 , * ) 'Dupl icate eigenvalue of system found' 
WRITE (*,*) 'Dupl icate e igenvalue of system found' 
WRITE ( 2 , * ) 'Routine aborted on mode # ',NEIG 
WRITE (*,*) 'Routine aborted on mode # ',NEIG 
lERR - -NEIG 
GO TO 99 

END IF 
CALL (MJLT (BWORK, AWORK, BP, NWORK. NWORK, NDIM. NA. NA. NB) 
DO 1-1,NB 

DO J-1,NA 
AWORK(J,I) - BWORK(J,I) 

END DO 
END DO 
IF (IPRT.GE.3) CALL PRMAT(NWORK,NA.NA,AWORK, 

1 'inverse(Lam*I - A)*B') 
C-
C- Now go through the desired eigenvector see if we need to 
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C- reorder the rows due to not specifying certain entr ies . 
C-

LDIM - 0 
DO 1-1,NA 
TESTX - DABS(VDd,NEIG) + 999.ODO) 
IF (TESTX .GT. 0.5D0) THEN 
LDIM - LDIM • 1 
CWORK(LDIM.I) - VDd,NEIG) 
DO J-1,NB 
BWORK(LDIM,J) - AWORK(I,J) 

END DO 
ELSE 

CWORK(NA-I+LDIM+1,1) - 1 .0D0 
DO J-1 ,NB 

BW0RK(NA-I+LDIM+1,J) - AWORK(I,J) 
END DO 

END IF 
END DO 
DO J-1 ,NA 
VD(J,NEIG) - CW0RK(J,1) 

END DO 
C-
C- Now compute the zi based on the size of LDIM 
C-

CALL TRAN(CWORK,BWORK.NWORK,NWORK.NB,LDIM) 
IF (LDIM.GE.NB) THEN 
CALL 01ULT(DWORK,CWORK,BWORK,NWORK,NWORK,NWORK,NB,LDIM,NB) 
CALL SIMEQ(DWORK.CWORK.NWORK,NB,LDIM, lERR) 
IF (IPRT.GE.1) THEN 
WRITE (»,201) 
WRITE (2,201) 

END IF 
ELSE 
CALL 0!ULT(DWORK,BWORK,CW0RK,NWORK,NWORK,NWORK,LDIM, NB, LDIM) 
CALL TRAN(CWORK,DWORK,NWORK,NWORK,LDIM,LDIM) 
CALL SIMEQ(CWORK,BWORK,NWORK,LDIM,NB,IERR) 
CALL TRAN(CWORK,BWORK,NWORK,NWORK,NB,LDIM) 
IF (IPRT.GE.1) THEN 
WRITE (*,202) 
WRITE (2,202) 

END IF 
END IF 
IF (lERR.NE.O) GO TO 99 

201 FORMAT(' The # of specified modes is >- number of inputs', 
1 /,' Calculating Achievable eigenvectors by method 1',/) 

202 FORMAT(• The # of specified modes is < number of inputs', 
1 /,' Calculating Achievable eigenvectors by method 2',/) 

C-
C- Note that both ways gives rise to the NB x LDIM matrix CWORK 
C- which used to the the Li transformed matrix 
C-
C- Now multiply th i s matrix by the l i vector on the r i ^ t and the 
C- result ing vector by the original Li matrix on the l e f t 
C-

CALL GMULT(BWORK,AWORK,CWORK,NWORK.NWORK,NWORK.NA.NB.LDIM) 
DO 1-1.LDIM 
DO J-1,NA 

IF ( I . E Q . 1 ) DW0RK(J,1) - O.ODO 
DW0RK(J,1) - DW0RK(J,1) + BWORK(J,I)*VD(I,NEIG) 

END DO 
END DO 
EVMAX - O.ODO 
DO J-1 ,NA 

IF (DABS(DW0RK(J,1)).GT.EVMAX) EVMAX - DABS(DWORK(J, 1 ) ) 
END DO 
IF (EVMAX.EQ.O.ODO) EVMAX - 1.0D0 
DO J-1,NA 

VD(J,NEIG) - DWORK(J,1)/EVMAX 
END DO 
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C-
C- Done with t h i s eigenvector 
C-

END DO 
99 CONTINUE 

IF (IPRT.GE.M) THEN 
IF (lERR.NE.O) WRITE (2,«) 

1 ' Eigenvectors below may be useless due t o lERR' 
CALL PRMAT(NDIM,NA,NC.VD,'Achievable eigenvecs ' ) 

END IF 
RETURN 
END 

SUBROUTINE S0LVE2(A,B,C,D,E,F,NDIM,NC,NSV,SV, 
1 P,TIMES,POUT,NPD,NSOL,NPNS,NEPS,MMAX.IPRT) 

IMPLICIT REAL*8 (A-H,0-Z) 
DIMENSION A(NDIM.NC),B(NDIM,NC),C(NDIM,NC),D(NDIM,NC), 

1 E(NDIM,NC),F(NDIM,NC),SV(NC),P(NC), 
2 TIMES(NPNS),POUT(NDIM.NPNS) 

C-
C- purpose: give the so lu t ion t o xdot - Ax • S 
C- where A and S are time invar ian t matr ices 
C- and the i n i t i a l condit ion XO i s supplied 
C-
C- This version modified 1/86 t o handle mult iple 
C- time s teps spec i f ied every NPD elements in TIMES array 
C- I t was a lso forced t o take as many powers of two as i t 
C- needs to give the r e s u l t s . 
C-
C- v a r i a b l e s : 
C-
C- A, SV input system matrix and source respec t ive ly 
C- B,C,D,E,F on input : work matrices 
C- on output: E - I + CD(C) F - t D ( C ) 
C- such that x - E«x(0) + F*SV (see POUT) 
C-
C- NC s ize of the system A (NCxNC) matrix 
C- NSV f lag for SV (-0 if a l l SV-0 t h i s saves time) 
C- otherwise NSV - 1 for the general case 
C- P i n i t i a l condit ion a t time - 0 
C- NPD t h i s i s an important integer va r i ab le : 
C- - number of so lu t ion at powers of two desired 
C- for example: if only the answer at time - t 
C- i s wanted then NPD - 2 . one i s added because 
C- the i n i t i a l condi t ion i s always included in the r e s 
C- t h i s i s only done for the f i r s t time group 
C- For successive ones , the i n i t i a l condition i s not 
C- r epea ted . 
C- NSOL Number of time so lu t ions that are des i red . 
C- The times are held in TIMES at every NPD grouping 
C- Recall tha t NPD « NP2 for a l l but the f i r s t group 
C- NPNS This i s the product of NPD and NSOL used to dimension 
C- the TIMES and POUT a r r a y s . 
C- POUT the answers a re s tored in t h i s matr ix . Note t ha t the 
C- second dimension i s NPNS. P0UT(i,1) - P the i n i t i a l c 
C- The r e s t of the e n t r i e s of P0UT(i,2..NPD) contain the 
C- answers to xdot - Ax + SV x(0) - P. The l a s t entry 
C- POUT(i,NPD) i s the r e s u l t a t time - t NPD t imes . 
C- Thats the way i t works on the f i r s t INSOL loop 
C- from then on i t s t o r e s P0UT(i,1..NPD) s t ra ightforward 
C- POUT i s ca lcula ted as E*x(0) • F*SV 
C- i - 1..NC 
C-
C- TIMES t h i s var iab le contains the time information. 
C- on input: t - times(NPD), times(NPD*2), ... 
C- on output: times(1) - 0.0 
C- times(npd)-tl times(npd-1)-t1/2 ... times(2)-t1/2*p 
C- times(npd«2) - t2 . times(npd»2-1)-t2/2 ... 
C- note also that the array times has the dimension NPNS 
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i f the p c a l c u l a t e d t o make norm(H)<1/2 i s smaller 
than NP2 then P i s adjusted according ly . 

NEPS t h i s s p e c i f i e s the e p s i l o n in the s e r i e s s o l u t i o n of 
D(H) where eps - 10~-NEPS. 
the bigger NEPS, then the bigger the code w i l l determ 
M must be in the s e r i e s , where M - number of terms. 

MMAX t h i s i s the maximum al lowable value of M that you want 
the code to ever determine for c a l c u l a t i n g the s e r i e s 

IPRT print f l a g : 0-no p r i n t i n g , 1-print p,M, 2-print mat 

Determine M dynamical ly , the maximum i s MMAX 

y - DBLE(NEPS)*DLOG(10.0DO) 
TLOG - DLOG(2.0DO) 
FACT - 2.ODO 
M - 1 
IF (MMAX .EQ. 1) GO TO 2 
IF (MMAX .LE. 0) MMAX - 2M 

DO 1 M-1.MMAX 
FACT - FACT*(M+2) 
X - DBLE(M+1)*TL0G + DLOG(FACT) 
IF (X .GT. Y) GO TO 2 

CONTINUE 
CONTINUE 
TIMESd) - O.ODO 
PREVT - O.ODO 
IP - 1 
DO 1000 INSOL-1.NSOL 
POSTT - TIMES(INSOL*NPD) 
TIME - POSTT - PREVT 
IF dPRT.GE.D WRITE (* ,» ) 'Process to T - ',POSTT 

Adjust the matrix and the source 
for t h i s i t e r a t i o n 

CALL ASV(A.SV, INSOL,NDIM,NC) 
SUM - O.ODO 

Create the sum of the squares 
DO M 1-1,NC 

DO 3 J-1,NC 
SUM - SUM + A ( J , I ) * A ( J , I ) 

CONTINUE 
IF (INSOL.EQ.1) POUTd.D - P(I ) 

CONTINUE 
NP2 - NPD 
IF (INSOL.EQ.1 .AND. NP2.GT.1) NP2 - NPD - 1 

Calculate NP power of 2 s c a l i n g 

PP - (0.5D0»DL0G(SUM) + DLOG(TIME))/TLOG 
NP - PP + 1 
IF (NP .LT. NP2) NP - NP2 
IF (NP .LT. 1) NP - 1 
IF (IPRT.GT.1) WRITE (2 ,100) INSOL,M,NP,SUM 
TWON - 1.0D0 
DO 5 1-1, NP 

TWON - TWON * 2.ODO 
CONTINUE 
T - TIME / TWON 
CALL SCALAR(A,T,C.NDIM,NC) 
IF (IPRT.GT.2) CALL PRMAT(NDIM,NC,NC,C,'C - AT Matrix (ASH)') 

Use t a y l o r s e r i e s in s p e c i a l form 
CALL GENID(D,NDIM,NC) 
DO 7 1-1 ,M 
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FM - 1.0D0/ (2.ODO + DBLE(M-I)) 
CALL SCALAR(D.FM.F.NDIM,NC) 
CALL MULTI(C,F,D,NDIM,NC) 
DO 6 J-1,NC 

D(J.J) - D(J,J) + 1.0D0 
6 CONTINUE 
7 CONTINUE 

CALL MULTI(C,D,E,NDIM.NC) 
DO 8 1-1,NC 

E d , I ) - E d , I ) + 1.0D0 
8 CONTINUE 

C-
C- Rescale using recurs ion r e l a t i o n and keep NP2 powers of 2 s o l u t i o n s 
C-

CALL GENID(C,NDIM,NC) 
SP - 1.ODO 
DO 10 1-1.NP 

NN - NP-I 
SP - SP/2.0D0 
T - T*2.0D0 

C- Create the I + A*D(A) Matrix 
CALL EQUAL(E,F,NDIM,NC) 
CALL MULTI(E,F,B,NDIM,NC) 
CALL EQUAL(B,E,NDIM,NC) 
IF (NSV .EQ. 0) GO TO 12 

C- Skip over source i f NSV - 0 
DO 11 ID-1,NC 

F(ID,ID) - FdD.ID) + 1.0D0 
11 CONTINUE 

CALL MULTI(C.F.B,NDIM.NC) 
CALL EQUAL(B.C.NDIM,NC) 

12 CONTINUE 
C- Skip over r e s t i f NP2 i s not wi th in range 

IF (NN .GE. NP2) GO TO 10 
IF (NSV .EQ. 0) GO TO 13 

C- Compute the D(C) matrix 
CALL SCALAR(D,SP,F,NDIM,NC) 
CALL MULTI(F,C,B,NDIM,NC) 
CALL SCAUR(B,T,F,NDIM,NC) 

13 CONTINUE 
IP - IP + 1 
TIMES(IP) - T + PREVT 

C- Compute the POUT s o l u t i o n a t t i m e - t 
C- POUT - E*P + F*SV 

CALL MVMUL3(E,F.P,SV,POUT,IP.NDIM.NC.NPNS) 
10 CONTINUE 

PREVT - TIMES(IP) 
DO 1001 1-1 .NC 

P(I ) - POUTd.IP) 
1001 CONTINUE 

IF (IPRT.GT.2) THEN 
CALL PRMAT(NDIM.NC.NC,E,'E matrix (ASH)') 
IF (NSV.NE.O) CALL PRMAT(NDIM,NC,NC,F.'F matrix (ASH)') 

END IF 
1000 CONTINUE 

C- End of ash so lver r o u t i n e 
RETURN 

100 FORMAT(/.' Loop ' ,IM. 
1 / . • M - ' . IM.5X. ' (# terms in sum)' , 
1 / . ' NP - ' . IM.5X, ' (# times sca led by 2 ) ' , 
2 / . ' SUM - ' .1PDl6.6.5X,' (Sum of squares of A ) ' . / ) 

END 
SUBROUTINE SCALAR(A.S.B.NDIM.NC) 
IMPLICIT REAL»8 (A-H.O-Z) 
DIMENSION A(NDIM,NC).B(NDIM,NC) ^ 

C- M u l t i p l i e s B - A * S (S i s a s c a l a r ) 
DO 20 J-1.NC 

DO 10 JJ-1.NC 
B(JJ,J) - A(JJ,J) * S 



10 CONTINUE 
20 CONTINUE 

RETURN 
END 
SUBROUTINE EQUAL(A,B,NDIM,NC) 
IMPLICIT REAL*8 (A-H,0-Z) 
DIMENSION A(NDIM,NC),B(NDIM,NC) 

C- Equates B t o A 
DO 20 J-1.NC 

DO 10 JJ-1,NC 
B(JJ,J) - A(JJ,J) 

10 CONTINUE 
20 CONTINUE 

RETURN 
END 
SUBROUTINE GENID(A.NDIM,NC) 
IMPLICIT REAL*8 (A-H.O-Z) 
DIMENSION A(NDIM.NC) 

C- Creates the i d e n t i t y matrix in A 
DO 20 J-1.NC 

DO 10 JJ-1.NC 
A(JJ,J) - O.ODO 

10 CONTINUE 
A(J,J) - 1.0D0 

20 CONTINUE 
RETURN 
END 
SUBROUTINE MULTI(A,B.C.NDIM.NC) 
IMPLICIT REAL*8 (A-H.O-Z) 
DIMENSION A(NDIM.NC).B(NDIM,NC),C(NDIM,NC) 

C-
C- M u l t i p l i e s two square matr ices C - A*B 
C- Modified on 7 /26 /85 to not page f a u l t t o speed th ings up some 
C-

DO 30 K-1,NC 
DO 20 1-1,NC 

C d . K ) - O.ODO 
DO 10 J-1,NC 

C(I,K) - C(I,K) + A d , J ) * B ( J , K ) 
10 CONTINUE 
20 CONTINUE 
30 CONTINUE 

RETURN 
END 
SUBROUTINE MVMUL3(AM,BM,AV,BV,C.IT.NDIM.NC.NPNS) 
IMPLICIT REAL*8 (A-H,0-Z) 
DIMENSION AM(NDIM,NC),BM(NDIM,NC),AV(NC),BV(NC),C (NDIM,NPNS) 

C-
C- Mult ip les P ( i t ) - AM*AV + BM*BV 
C- and s t o r e s r e s u l t i n IT th column of C matrix 
C- Modified on 7/26/85 t o not page f a u l t 
C-

DO 5 1-1,NC 
C(J,IT) - O.ODO 

5 CONTINUE 
DO 20 K-1,NC 
DO 10 J-1,NC 
C(J,IT) - C(J,IT) + AM(J,K)*AV(K) + BM(J.K)»BV(K) 

10 CONTINUE 
20 CONTINUE 

RETURN 
END 
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