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Abstract--Two numerical solution methods are developed for I-D time-dependent advection~liffusion 
problems on infinite and finite domains. Numerical solutions are compared with analytical results for constant 
coefficients and various boundary conditions. A finite-difference spectrum method is solved exactly in time for 
periodic boundary conditions by a matrix operator method and exhibits excellent accuracy compared with 
other methods, especially at late times, where it is also computationally more efficient. Finite-system solutions 
are determined from a conservational variational principle with cubic spatial trial functions and solved in time 
by a matrix operator method. Comparisons of problems with few nodes show excellent agreement with 
analytical solutions and exhibit the necessity of implementing Lagrangian conservational constraints for 
physically-correct solutions. 

INTRODUCTION 

Considerable investigation of efficient numerical 
calculational methods for advection and diffusion 
processes has occurred over the past several decades. 
These processes have been modeled by the initial-value 
problem 

,?~5/c?t + c~[ U(x)dp]/c~x -- ?[D(x)Odp/(?x]/dx 

+ E(x)ek = S(x), (1) 

where ~b is a field variable (e.g. isotope concentration), U 
is an advection velocity, D is a diffusion coefficient, Z is a 
decay constant or removal cross section and S is a 
source. Various limiting forms are applicable to the 
modeling of neutron diffusion, fission-product trans- 
port, conduction of thermally-induced waves, porous 
media mass transport, traffic flow on congested 
highways, viscous fluid flow, weather front propaga- 
tion and charged-particle diffusion in an electric field. 
Although analytic solutions are readily developed for 
constant coefficients, boundary conditions and simple 
initial conditions, problems with spatial-coefficient 
dependency and non-linear extensions are more 
difficult (or practically impossible) to obtain. These 
limitations provide a major stimulus for development 
of more accurate and efficient solution methods so that 
non-linear extensions can be considered. Significant 
numerical modeling difficulties still arise with many 
classical numerical schemes in determining the late- 
time solutions of the hyperbolic pure advection from 

Od~/dt + O[U(x)dp]/#x = 0. (2) 

Finite-difference (FD) and variational methods have 
been applied extensively to the advection~tiffusion 

problem. General reviews of low-order FD methods 
have been presented by Roach (1976) and Turkell 
(1980). A Taylor series approximation of the derivatives 
represents a straightforward approach. Numerous 
methods for the pure advection problem were 
compared by Stuhmiller and Ferguson (1979). 
Although implementation of low-order FD methods 
for equation (2) is relatively easy and seemingly requires 
minimal central processing unit (CPU) investment per 
time step, computational results frequently exhibit 
severe amplitude dispersion and phase errors at late 
times (> 100 At). This can be understood from avon  
Neumann stability analysis of the amplitude and phase 
error (Richtmeyer, 1957). Although lower amplitude 
errors apparently result in applications of low-order 
FD methods to equation (1) rather than to equation (2), 
this may be somewhat deceptive since a fictitious 
numerical diffusion in the advection term is not readily 
discernible. Reid (1980) reported studies of various 
explicit, implicit, single-level and multilevel FD 
methods applied to equation (2) with periodic 
boundary conditions and triangular initial conditions. 
The implicit and multilevel schemes generally were 
superior to the explicit and single-level schemes. 
Acceptable errors are obtained only with large numbers 
of nodes and small time steps. Considerable success was 
achieved by Reid (1980) in solving equation (2) with the 
"filter' method, where the interpolating function 
includes many nodes rather than just two. Applications 
of the method of characteristics to advection are 
described by Gardner et al. (1964). The classical Lax 
Wendroff (1960) approach was altered by Fromm 
(1968), who noted that major difficulties were caused by 
a severe phase lag for non-unity Courant numbers. 
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Although Fromm's modifications showed marked 
improvement in phase lag, the method still suffered 
from amplitude error and consequently gave poor late- 
time solutions. Shapiro (1975) extended the FD 
equations to fourth order in space and time. The 
second-order scheme exhibited significant improve- 
ment over the first-order Lax Wendroff method, but 
the fourth-order approximation was required for 
further improvement. Explicit schemes in that analysis 
failed at late times and implicit schemes tended to 
consume excessive computer time for acceptable 
accuracy. Cubic and quintic pseudo-upstream dif- 
ference equations were developed by Davies (1980) for 
convective-diffusion modeling. Predictable improve- 
ment in amplitude dispersion and phase error over FD 
methods was reported. Reduced storage requirements 
were achieved compared to more complicated FD 
methods. Chan (1978) developed some very promising 
implicit FD schemes for modeling pure advection 
based on the balance expansion technique (BETA). 
Although a relatively large CPU investment for 
accurate late-time solutions seems to be requisite, the 
BETA methods have been extended to solve the steady- 
state version of equation (1). 

Numerous investigations based on variational 
methods have been performed. Price et al. (1968) 
developed a Galerkin variational numerical solution to 
the advection-diffusion problem without sources or 
absorption. Linear, cubic and quintic trial functions 
were utilized. Linear trial functions yielded solutions 
accuracies comparable to the BETA FD methods. 
Further accuracy improvement occurs with cubic or 
quintic trial functions when used in conjunction with a 
moving node scheme. The method of Price et al. 
involves time discretization which made late-time 
solutions computationally costly to obtain. Guymon 
(1970) solved the same problem by transforming the 
advection diffusion problem to a diffusion expression 
with subsequent application of the Ritz method. He 
reported results for constant coefficients and linear trial 
functions. Apparently the transformations used 
produce erroneous results for large values of UL/D 
(Guymon, 1972). Kermadis (1980) developed a unified 
finite-element method (FEM) for solving equation (1) 
with linear and cubic trial functions. In agreement with 
Price et al., the Kermadis cubic model gave more 
accurate results than the linear mode for the same CPU 
investment. Hennart (1979) considered semidiscrete 
Galerkin techniques in conjunction with finite spatial 
elements to discretize the space-time reactor kinetics 
equations. Lee and Wilson (1981, 1984) developed a 
conservational variational approach for the time- 
dependent multicomponent diffusion equation, but 
neglected the advection term. Significantly improved 

computational speed was demonstrated for a specified 
accuracy over previous FD formulations by Apperson 
et al. (1979) in applications by Horton (1980) to fission- 
product release from pebble bed fuel elements. 

In this paper we develop two numerical solution 
methods. First, however, we outline the time- 
dependent analytic solutions which serve to bench- 
mark the schemes on infinite and finite spatial domains 
and allow direct pointwise relative error comparisons 
to be made. Then, we develop a high-order FD method 
for the advection and advection-diffusion problem on 
the infinite domain, and a conservational variation 
principle with advection and diffusion on finite 
domains. In both numerical methods only the spatial 
function is approximated either by FD or cubic trial 
functions. The time variable is maintained continuous, 
and the resulting matrix equations have the form 

dX/dt = AX + S, (3) 

where X and S are vectors (time-dependent nodal 
values) and & is a matrix. This equation is readily 
solved in exponential matrix form with the ASH 
program (Lee, 1980), when ~ is constant over the time 
interval considered. Consequently, numerical errors 
are predominantly due to spatial discretization and 
coupling since the matrix solutions are essentially 
'exact' (to within computer significance) in time. 

ANALYTIC SOLUTIONS 

The non-dispersive pure advection process described 
by the hyperbolic partial differential equation, 
equation (2), is frequently investigated on an infinite 
domain with constant advection velocity. The infinite 
domain can be simulated with periodic boundary 
conditions on a finite mesh [0, L] by 

q~(O, t) = 4~(L, t). (4) 

Comparisons for an arbitrary initial condition 

dp(x, O) = F(x) (5) 

will be made. Since the Fourier component exp [ - i ~  

( x - U t ) ] ,  i =  ~ / - - 1 ,  satisfies equation (2) for any 
wavenumber ~, application of the Fourier transform 
and the initial condition gives 

~b(x, t) = [1/(2n)] dx'F(x')  
ac  

which reduces to 

,~(x,t)=f~dx'F(x'),~(x'-(x-Ut)) (7) 
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o r  

gp(x, t) = F ( x -  Ut), (8) 

using the integral definition of the Dirac delta function 
6(x). This simple analytic pure advection solution, a 
translation of the initial condition along the lattice at 
speed U, is useful for numerical comparisons with a 
variety of initial conditions. 

The advection-diffusion solution of equation (1) with 
constant coefficients is conveniently expressed in 
terms of dimensionless groups. With the definitions 
2 =  UL/D,  r =  Dt /L  2, Q = SL2/D, q = XL2/O and 
x --, x /L ,  equation (1) takes the form 

a(o/O T+ 2 a¢/Ox -- ~2dp/~x2 + qc~ = Q. (9) 

Two solutions are considered. First, we construct the 
zero source (Q = 0) solution on the infinite domain, and 
then the finite-domain constant source solution with 
general boundary conditions. 

For a zero source the Fourier component  exp [ - i  
( x - h T ) - - ( ~ z + q ) ' r ]  satisfies equation (9) for any 
wavenumber ~. The analytic solution is formed from 

~(x, T) = (1/2rr)e ~ dx 'F(x ' )  

• d ~ e x p [ - i ~ ( x - x ' - 2 z ) - ~ 2 z ] .  (10) 

Completing the square on the exponential argument 
and evaluating the resulting error function yields 

q~(x, T) = [1/(2(rrz)l/2)] e "~ dx' 
oc 

• F(x ' )exp  [ - ( x - - x ' - - 2 z ) 2 / 4 z ] ,  (11) 

where the initial condition, F(x), must still be specified. 
For numerical comparisons we assume a Gaussian 
initial condition given by 

F(x) = 0¢/(271") 1/2 exp [ - ( x  - - X 0 ) 2 / 2 0 2 ] ,  (12) 

where c¢=2[ln(4)]  x/2 and a = f u l l  width at half 
maximum (FWHM)/~. Performing the integration 
with equation (12) gives 

(o(x, T) = (~/2)[ 2nz A( r) ] 1/2 exp [B2(x, r)/ 4 A( z) 

where 

and 

- C ( x , Q - q r ] ,  (13) 

A(z) = (2z + ¢rz)/(4w2), 

B(x, "c) = 212ZXo + o ' 2 ( x  - -  2"c)]/(4za 2) 

C(x, z) = [2zx g + a 2 ( x -  ~,T)2]/(43~O'2). (14) 

The analytic solution is not equivalent to the finite- 
domain problem with periodic boundary conditions 
because the mass diffusing beyond the subdomain 
boundaries [0, 1] is lost in the infinite case, but 
reappears at the other boundary in the periodic case. 
Thus, for numerical comparisons, this result is valid 
only at times before diffusion occurs to the mesh edges 
[0, 1]. 

The analytic solution of equation (9) for finite 
domain [0,1] with constant coefficients can be 
determined for the general boundary conditions 

a, qS(O, T) + a 2 ~?~)(0, T)/(3x = a 3 

and (15) 

bl~b(1, T )+b2  8~b(1, T)/Sx  = b 3, 

where the ai and bi, 1 ~< i ~< 3, are arbitrary constants. 
Considerable solution simplification results from 
assuming zero initial conditions. 

Performing the Laplace transformation of equations 
(9) and (15) for a constant source Qo and zero initial 
conditions results in 

?20/?x 2 - 2 ~O/~x - (tl + s)O = - Qo/s, 

a, 0(0, s) + a 2 00(0,  S ) / ~ x  = a3/s 

and (16) 

b I 0(1, s) + b 2 00( 1, sj/~x = b3/s, 

where O(x,s) = Y[4)(x,t)], the Laplace transform of 
q~(x, t). The solution is 

O(X, S) = {e-  2/2/[2S7(S)]1 

• { [b3 - Qo/(q + s)] (a 1 + a2r2) 

- [ a 3 -  Qo/(q + s)](bl + b2r2) exp (r2) } 

• exp (q x){ [a3 - Qo/(tl + s)](bl + b2r0 exp (rl) 

- [b3 - Qo/(q + sj](al + a2q)} 

• exp (r2x) + Qo/[SO1 + s)], (17) 

where 

r its) := )./2 + #(st, 

re(s) = )./2-/4s),  

Ns) = [(2/2) 2 + q + s] 1/2, 

Y(s) = (K 1 - a2b2/~2) sinh (/0 - K2 cosh (/~), 

K1 = a lb l  +(2/2)(a2bl +alb2)+(2/2)2a2b2 

and 

K 2 = a2b , i -a lb2 .  (18) 

The inverse Laplace transform is obtained by the 
Cauchy residue theorem upon summing over the poles 
of O(x, s) in equation (17). The apparent singularity at 
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s + q = 0 gives zero residue contribution. Steady-state 
solutions result from s = 0 poles and the transient 
contribution arises from the infinite set of roots of the 
transcendental equation 7(s) = 0. The residue terms are 
evaluated by a (complex arithmetic) computer program 
to achieve convergence for specified accuracy of the real 
function 4,(x, t). These analytical evaluations were used 
in the comparisons described below. 

FD ADVECTION-DIFFUSION METHODS 

Numerous FD schemes have been developed for the 
pure advection problem (Roach, 1976). We briefly 
summarize the general first order Lax-Wendroff FD 
method for later comparisons. The forward time- 
centered scheme with constant advection velocity is 
given by (Nakamura, 1977) 

(4,n+ 1 4,n)/At n+l n+, = flU(4,,+, --4,,_, )/(2Ax) 

+(1-fl)U(4,7_ 1-4,7_,) / (2Ax) ,  (19) 

where 4,7 = 4, (iAx, nAt), 1 <~i<~ I, the number of 
spatial nodes. This expression can be derived from a 
Taylor series expansion of 4,~ + 1 and 4,i_ a by retaining 
only the first two terms. The parameter fl denotes the 
implicitness with the most widely used values being 0.0, 
0.5 and 1.0, corresponding to explicit, time averaged 
(centered) and fully implicit, respectively. 

A potential computational advantage exists if the 
spatial derivatives are discretized while the time 
variable is retained as continuous. With this 
assumption the Lax-Wendroff method applied to the 
pure advection problem on a periodic spatial finite 
mesh takes the form 

d4,/dt = ,~4,, (20) 

where 

4, = (4, , ,  4,2 . . . . .  4,,)T (21)  

and the matrix elements of 7 and A are given by 

T~,~ = 1.0, 1 ~< i ~< I, 

Ai,i = O.O, 1 <~ i <~ l, 

Ai.i+x = - U / 2 A ,  1 <~ i <~ l - 1 ,  

Ai.~-1 = U/2A, 2 <~ i <~ I, (22) 

A, . I  = U/2A 

and 

A m = - U/2A. 

The two off-tridiagonal terms A, .  t and At.1 result from 
the applied periodicity boundary conditions. If the 

matrix B = T 1A is constant in time, as assumed, the 
solution to equation (20) is 

q~(t) = exp (lBt)~b(0), (23) 

where ~b(0) is the initial condition vector. The 
exponential matrix is evaluated using the ASH 
program technique, as summarized in the Appendix. 
Although the solution method is essentially 'exact' in 
time, this spatial approximation is still too low an order 
and insufficiently coupled to obtain accurate late-time 
solutions. Mitigation of this difficulty is obtained by 
inclusion of higher-order spatial terms. One could 
derive a general Nth-order FD scheme based on the 
Taylor series approach, but the algebra tends to rapidly 
become intractable, and, besides, this direct approach 
does not necessarily yield an optimal coupling in space 
and time. An alternative approach is therefore 
followed, whereby the desired Nth-order accuracy is 
obtained for both the pure advection and the 
advection-diffusion problems. 

The advection-diffusion FD derivation is simplified 
to constant coefficients and equispaced nodes. Defining 
E as the wavenumber, the spatial mesh separation A = 
xi+ 1 - x i ,  0 = CA, the phase angle, 4,t") = On4,/Ox", and 
~b = (34,/~t, equations (2) and (9) may be written as 

+ U4,' = 0 (24) 

and 

f f -4 , "+24 , '+q4 ,  = 0, (25) 

respectively. Expanding 4,i+ l and 4,i- 1 about xi, the 
pure advection problem, equation (24), takes the form 

~+(U/2A)(4,~+ 1-4, ,_ 1)-S¢ = 0, (26) 

where 

S i = U ~. A2k4,!2k+l)/(2k+l)!. (27) 
k 1 

The approximation S~ = 0 in equation (26) corresponds 
to the first-order Lax-Wendroff scheme, and Si 
represents the higher-order terms usually neglected. 
For equation (25), if we approximate 4,' and ~b" with the 
Taylor series expansion, the advection-diffusion 
problem can be written as 

~k,--(4, i- , -  24,,+ 4,i 1)/ 

Az+(2/ZA)(4, ,+,-4, , - I )+q4, ,+S,  = 0, (28) 

where 

S i = 2 ~ A 2k 4,12k+ l)/(2k + 1)!-  2 
k = l  

• ~ A2k4,~Zk+2)/(2k+2)! (29) 
k = l  



Comparison of advection-diffusion problem solutions 633 

The first term in equation (29) corresponds to the 
advection contribution and the second term arises from 
the diffusion contribution. 

In order to approximate Si uniformly, we assume a 
finite expansion form in terms of~b and ~b = ?dp/(?t given 
by 

M 

k 1 

M 

+Ao~i+  ~ Ak(dPi+k+dpi k), (30) 
k 1 

where M ~< (1 - 1)/2. Substituting the discrete Fourier 
component in the assumed form for S~ and equation 
(28), using the MacLaurin series expansion for the sine 
and cosine of the phase angle, 0, and equating real and 
imaginary parts (after algebraic manipulation), we 
obtain the spectral expressions 

M 

Co+2 Y' CkCOS(kO)= 1-(1/0)sin(0) 
k 1 

and 

M 

Ao+2 ~ A k cos(k0) =2~2{ - 1/2+[1-cos(0)] /02} 
k = l  

+(~2+t/)[1-(1/0)sin(0)] .  (31) 

The coefficients C~ arise from advection and the Ak are 
due to diffusion. In order to determine these coefficients, 
we select M <~ ( I -1 ) / 2  phase angles 0 which best 
approximate the spectral expressions. Given a function 
f(O) defined on [0, hi, the approximation 

N 1 

J(O) = B o + 2 ~ B k cos (kO) (32) 
k = l  

has minimal error with the coefficients 

N 

B k = ( 1 / N ) ~ f ( O i ) c o s ( k O i ) ,  0 ~ k ~ N - - 1 ,  (33) 
i = 1  

for the phase angle choice 

01 = cos [ ( 2 i -  1)n/2N], 1 ~< i ~< N, (34) 

by the Chebyshev summation coefficient theorem 
(Dodes, 1978). Thus, the coefficients C k and A k in 
equation (31) can be evaluated explicitly and optimally. 

Writing the resultant matrix approximation in the 
form of equation (20), we identify the interior elements 

of ql- and A as 

and 

T~.~ = 1 - Co, 

7~.i+k = Ti.i-k = - -Ok,  

Ai. i = A o - n - 2 / A  2, 

Ai , i+ 1 = A 1  + 1/A2-2/2A, 

Ai , i  1 = A1+I /A2+) ' / 2A  (35) 

Ai , i+  k = A i , i _ k  = A k  , 

Periodic boundary conditions are readily implemented 
by imposing a periodicity mapping of these matrix 
elements. 

Equations (20), (22a,b) and (35) constitute the basis 
of the SPECTRUM method upon which comparisons 
are reported below. Several features of this advection- 
diffusion approximation are noteworthy. The pure 
advection case is obtained if the equations are written in 
dimensional form and the diffusion coefficient D, and 
removal cross section, Z, are set to zero. Secondly, the 
centered first-order Lax-Wendroff spatial FD method 
is recovered with the coefficients A k and Ck set to zero. 
An ASH FD method produces results for advection 
diffusion similar to the pure advection problem 
discussed previously. Finally, since the matrix 
coefficients of ~ and ~ were derived for periodic 
boundary condition problems, direct extension to 
finite-medium problems would result in a significant 
loss of nodal coupling near the boundaries. Such 
extensions require separate considerations. 

C O N S E R V A T I O N A L  V A R I A T I O N A L  M E T H O D  

Although the SPECTRUM method developed 
above results in significantly improved solutions for a 
limited class of infinite-domain problems, as simulated 
by periodic boundary conditions, it is not particularly 
well-suited for finite-domain problems. This is partially 
due to the implementation of the infinite-medium 
Fourier component in the matrix coefficient derivation 
and partially because a significant reduction in nodal 
coupling would occur near the finite-domain boun- 
daries without additional assumptions. The method 
seems to be reasonably difficult to extend with high- 
order accuracy to non-constant coefficient problems or 
mixed boundary conditions. 

Instead of directly implementing standard FEM 
methods (Chung, 1978) with upwind differencing, we 
considered the problem from the basic viewpoint of 
variational calculus and the Euler-Lagrange formu- 
lation. The conservational variational principle (CVP) 
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method results. A functional 

G(~9,(*) = j o  .Io dx  L(O,~9*,~' ,O'*,VO, VO* ) 

(36) 

in terms of the function of ~9, its adjoint ~*, time 
derivatives ~/,' and ~'*, and spatial gradients V~ and V~, 
is s tat ionary provided the Euler-Lagrange equations 
(Morse and Feshbach, 1953 ; Lanczos, 1949) 

a/ax [aL/a(v~k*)] + O/at [aL/80 '*]  - aL/a~* = 0 

and (37) 

a/ax [aL/8(V~k)] + O/& [aL/8~k] - aL/8~, = 0 

are satisfied, and reproduce the equations to be solved, 
equation (1). The choice 

L(O, 0", 0', 0'*, VO, V~,*) = 0~*'+ V(~)OVq,* 

- D(x)VO • V0* - Z(x)O~0* + S(x)~b* + S*(x)O (38) 

yields 

K O = ~ b ' + V ' ( U O ) - V ' ( D V ~ ) + Z q J - S = O  (39) 

and 

K*~9* = -- ~* ' - -  UVO* -- V" (OVa*) + Y'O* -- S* = O. 
(40) 

Dividing the spatial range into 1 cells of size Ax~ = 
x i+~-x~ ,  the functions are approximated within 
each spatial cell. For  diffusion solutions the contin- 
uity of flux (~,) and current (J) at interior material  
interfaces should be satisfied, namely, we impose the 
solution constraints that 

and 

where 

~ i-  a(xi- ,  t) = ~ i(xi +, t) (41) 

J i -  l(xi - ,  t) = Ji(xi+, t), (42) 

J ,(x, t) = - D , (x )V~(x ,  t). (43) 

The subscript on ~p and J is a cell index and the subscript 
on x is a cell boundary index with the +_ appendage 
indicating evaluation from the right (+ )  or left ( - )  of 
the interior boundary.  Since there are four continuity 
conditions on flux and current satisfied in each cell, a 
unique determination of the four coefficients of a cubic 
spatial trial function can be made. If the spatial cubic 
trial function in the ith cell is ~b~(x, t), application of the 
continuity conditions yields 

~bi(p, t) = O,(t)s,(p) + Oi + ,(t)s2(P) 

~I(t) - - ( A i / D i + ) J i ( t ) s 3 ( p ) - ( A i / D i +  1 - , ,~i+ Is4(P), (44) 

where 

p = ( x - x i ) / A i ,  O~<p~< 1, (45) 

A i = x i + t - x i ,  1 <~i<~l,  (46) 

and the shape function polynomials Sk(p), 1 <~ k <~ 4, 
are determined as 

sa(p) = (1 + 2p)(1 _p)2,  

s2(p) = (3 -- 2p)p 2, 

s3(p) = p(1--p)2, 

and 

s4(p) = p 2 ( l - p )  (47) 

from the continuity conditions (Hennart,  1973). The 
adjoint, ~*(x,t), expressions are obtained similarly, 
involving the adjoint nodal  values, 0*(0, 0*+ l(t), J.*,(t) 
and J*+ 1(0, respectively, and the same shape functions, 
equation (47). 

The functional is part i t ioned into I cellwise 
components  in terms of the t ime-dependent nodal  
functions 0i, 0", Ji and J*, 1 ~<i~< I + 1 .  We have 
assumed a spatial trial function form which imposes 
and satisfies the continuity conditions, equations (41) 
and (42). In order to guarantee particle and adjoint  
conservation for each spatial cell, we must add a 
Lagrangian conservation constraint to the functional 
involving the spatial integrals of equations (39) and (40), 
as shown previously for steady-state (Lee et al., 1984) 
and t ime-dependent (Lee and Wilson, 1984) diffusion 
solutions. Thus, we consider the spatially discretized 
functional 

G(~b, ~b*) = G(O, 0", J, J*, E, E*) 

= f/ dt ~_~[A, f/ Li(O,,O*,Ji, J*)dp 

fo + E ' A ,  KO,(p, t) dp 

+ E,A, f; (48) 

where 

L i = ~9~ a~*/at  + [Ui(p)/Ai]~i ollt~/a p 

- [Di(p)lA 2] 8~ jOp  &,b*/Sp 

-- Zi(p)~b,~* + Si(p)~9* + S*(p)~9i (49) 

and the operators K and K* are defined by equations 
(39) and (40). 

Substituting the explicit forms for Oi(P, t) and Oi(P, t) 
in terms of0j(t), O*(t), Ji(t) and J*(t) into equation (49) for 
L i and applying Gauss '  divergence theorem to V "(Uqt) 
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and V'(DVCJ in the conservation constraint terms of 
equation (48), we obtain the functional G(O, 0", J, J*, E, 
E*) which is extremal for the Euler Lagrange 
equations. The 'equations of motion' are the time- 
dependent equations for the nodal flux (0), current (J) 
and Lagrange multiplier (E) and adjoints (0", J* and 
E*). The boundary conditions are imposed by using the 
time derivati ve of equation (15) evaluated with the trial 
function nodal values, namely 

~!/~3t[alOl(t)-(a2/O l)J t(t) ] = 0 

and (50) 

~}/Ot[b2Oi(t ) -  (b2/Dt)d t(t)] = O, 

where the initial condition vector for 0 is set to a3 and 
b3, respectively. We find the nodal matrix equations 

TdX/dt = ~AX+Q, (51) 

which are equivalent to equation (3) with the 
transformation A = 7 -  J ~ and S = T 1Q, where 1- is 
a non-singular symmetric block tridiagonal matrix and 
the inverse is evaluated numerically (Hornbeck, 1975). 
We have ordered the elements of X as Xi  = [~i, Ji, EJ  r. 
As the advection velocity, U, approaches zero, the 
matrix ~ limits to the form derived previously for pure 
diffusion. The accuracy of the continuous spatial 
resolution depends upon the number and placement of 
nodal points. 

RESULTS AND COMPARISONS 

A number of solutions have been compared 
analytically and numerically for pure advection and 

advection-diffusion problems on infinite and finite 
domains. The infinite-domain problems reported here 
all had a Gaussian initial condition, ~b(x, 0 )=  F(x), 
equation (12), with a 0.1 pulse width, shown in Fig. 1. 
This initial condition eliminates the Gibb's phenomena 
standardly encountered from step function initial 
conditions in numerical and analytical (finite term) 
solutions. Periodic boundary conditions were imposed 
on all infinite-medium problems. 

The pure advection problem, equation (24), was 
solved on the subdomain [-0, 1]. The ASH FD, BETA 
and SPECTRUM methods for 31 and 101 nodes are 
compared with the analytical solutions in Figs 2-7. The 
solid lines represent the numerical solution, and the 
dashed lines (if visible) indicate the analytical solution, 
equation (8). The absolute value of the difference 
between the numerical and analytical solutions is 
shown beneath each solution graph. For infinite- 
medium problems the cycle variable indicates the 
number of times that the pulse passed through the 
subdomain [0, 1]. 

The SPECTRUM method is more accurate than 
either the ASH FD or BETA methods. This significant 
improvement is both interesting and important since 
the BETA method has been reported by Chan (1978) 
to be better than most other FD methods for model- 
ing advection equations. As the number of nodes 
is increased from 31 to 101,  each method 
exhibits considerable improvement. However, the 
SPECTRUM method still has the smallest errors, as is 
particularly evident at later times (> 64 cycles) when 
most FD methods have failed severely. At 1024 cycles, 
the SPECTRUM method is still reasonably accurate, 
as shown in Fig. 7. Since the BETA method was 
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Fig. 1. Gaussian normal distribution initial condition. 



636 C . E .  L~E and K. E. WASHINGTON 

n- 
O 
r',- 

Ld 

Ld 

3 
o 

Q3 
<[ 

t 1 0  

0 8 6  

0 6 2  

0 3 8  

0 1 4  

- 0 1 0  

(a) 

1 0 0  

1 0  -1 

102  -- 

'10 -5 - 

1 (3 - 4  
O 0  

-(b) 

F / 

J 

/ 
I It 

_ _  . - ' \ ,  , 

/ 

I 1 

s 1 

t 

, / ' \  /.~" 
i ""," \.97 

I I I I I I I I I I 
0 2  0 4  0 6  0 8  4 0  O0 0 2  0 4  0 6  0 8  t 0  

P O S I T I O N  

Fig. 2. U ppe r  curves : analytic (---) and numerical comparison ( O - - O )  of the ASH FD method vs position for 
31 nodes at (a) cycle 32 and (b) cycle 512. Lower  curves:  absolute errors vs position. 

i I ~I 

t . . . . .  -~_"-" 

/1_ if" __ 

o~o I (0) 0 86  

0 62 

-e-- 

0 38 

- 0 1 0  

(b) 

"A 
l i t ¶  

. " / ' , t  

: : l  2 ,'I ,--- 

O:: 
o 

r'r" 
h i  

Ld 

o 

Q3 
<:I 

0 
I 0  

10 -1 

10 -2  

t 0  -3 

10 -4  
O 0  

l I I L l ~ I I I I 
0 2  0 4  0 6  0 8  1 0  O 0  0 2  0 4  0 6  0 8  10 

P O S I T I O N  

Fig. 3. Upper  curves : analytic (---) and numerical comparison ( O - - O )  of the BETA FD method vs position for 
31 nodes at (a) cycle 32 and (b) cycle 512. Lower  curves:  absolute errors vs position. 



Comparison of advection~liffusion problem solutions 637 

rr 
0 rr 

© 

110 

O84 

0 5 8  

0 3 2  

0 0 6  

- 0 2 0  

-e- 

( a )  ( b )  

o 

s ~ 

7 . . . . .  : . . . . . .  I _ _ _  I I ~ I I 

e 

. f  o ~ , -~6  / - 

1 0  -1 

lO -2 

1 o - 3  

lO -4 

0 

J I l I I I I l 1 
0 2  04  06 0 8  10 O0 02  04 0 6  0 8  10 

POSITION 

Fig. 4. U p p e r  c u r v e s  : analytic (- --) and numerical comparison ( O - - O )  of the S P E C T R U M  method vs position 
for 31 nodes at (a) cycle 32 and (b) cycle 512. L o w e r  c u r v e s :  absolute errors vs position. 

11o ~ - ( a )  

i 

0 8 6  ~- 

o-i 
t 

b 

L 

I 

- ( b )  

/ 

/ //\ 
0 t 4  

- 0  10 

o 

o 
U3 10-3 

1 0  4 i I I i I 

o o  0 2  0 4  0 6  0 8  1 0 0 0  0 2  0.4 0 6  0 8  4 0  

P O S I T I O N  

Fig. 5. U p p e r  c u r v e s  : analytic (---) and numerical comparison ( O - - O )  of the ASH FD method vs position for 
101 nodes at (a) cycle 32 and (b) cycle 512. L o w e r  c u r v e s :  absolute errors vs position. 



110 

0 8 4  

0 5 8  

"0- 

0 3 2  

0 0 6  

- 0  20 

10 -3 

1°-4 

10 -5 

lo -6  

10-7 I 
O0 0.2 

(a) 

• • • • • o ~  • • • • • o o  

i I I I I 

( b )  

I I I i I 

04  06  

I I 
0 8  10 O0 0 2  

POSITION 

638 C.E.  LEE and K. E. WASHINGTON 

? 
0 4  0 6  0 8 I 0 

Fig. 6. Upper  curves  : analytic (---) and numerical comparison (O- -O)  of the SPECTRUM method vs position 
for 101 nodes at (a) cycle 32 and (b) cycle 512. L o w e r  curves:  absolute errors vs position. 

110  

0 8 4  

0 58 

"~" 0 32 

0 0 6  

- 0 0 2  

10 -1 

10 .3 

I 0  -4 

10  -5  ] 
O0 0 2  

o ~ -  o ~  • - -  • - - o  - -  • • 

L I 

m 

0 4  0 6  

• • • • go  

I I 

P O S I T I O N  

I I 
0 8  'I 0 

Fig. 7. Upper  curves  : analytic (---) and numerical comparison 
(O- -O)  of the SPECTRUM method vs position for 101 nodes 

at cycle 1024. L o w e r  curves:  absolute errors vs position. 

significantly slower in execution, it was not  run to 1024 
cycles. The S P E C T R U M  method accuracy results 
from the retention of the higher-order terms in the 
Taylor series expansion and the optimal Chebyshev 
approximation to the corresponding wavenumber 
spectrum. As the number of nodes increases, more 
terms are retained automatically in the ~ matrix with 
the S P E C T R U M  method, which is probably always 
more accurate than other F D  methods for this problem. 
The ASH F D  and S P E C T R U M  methods have a 
distinct advantage over standard discretized F D  
methods in that late-time solutions are computation- 
ally less costly to obtain. This results directly from the 
ASH time-solution technique, outlined in the 
Appendix. Obtaining the solution at double the final 
time requires only an additional matrix multiplication 
by ASH, but twice the computational  effort with 
standard F D  methods to find the solution to double the 
final time. 

The ASH FD, S P E C T R U M  and CVP methods were 
compared for the advection-diffusion on the infinite 
domain, 

c3dp/c~t + )~ c3dp/c~x - c~2dp/c3x z = O, 

with a Gaussian initial condition and periodic 
boundary conditions. Numerical  solutions can only be 
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compared with the infinite-medium analytic solution, 
discussed previously, if the initial pulse has not diffused 
to the boundaries. For this problem, the comparison is 
valid until approximately cycle 64. The solutions are 
compared to the analytic solutions at cycles 16 and 64 in 
Figs 8-10. The FD solution, even when evaluated using 
ASH, exhibits reasonably large absolute errors, of the 
order of 0.1, as shown in Fig. 8. However, this solution is 
still an improvement over the usual time-discretized 
schemes since the spatial equations are solved exactly in 
time by ASH. The CVP method solves three times as 
many equations as the FD methods. Consequently 
significantly longer running times and greater array 
storage are expected for the same number of nodes. In 
order to reduce the CPU requirements of the CVP 
method and adjust its computational times more 
closely to those of the FD methods, the number of nodes 
was reduced to 61. Although this might appear to be a 
significant disadvantage for the CVP method, in fact, 
the method gives quite reasonable absolute errors, 
10- 3, at early times, and, 10 4, at late problem times for 
a comparable CPU investment as shown in Fig. 10. This 
relative success of the CVP method is a direct result of 
the piecewise continuous solution and, in particular, 
the constraint of particle conservation in each 

computational cell, since both methods used ASH for 
the time solution. The SPECTRUM method produces 
an accurate solution with absolute error typically less 
than about 10 -4 . This is not particularly surprising 
since the method is quite high order with 101 nodes and 
was specifically designed to solve this periodic 
boundary condition problem. The small absolute 
errors obtained with the SPECTRUM method on this 
diffusion problem are also even less than the errors 
produced in solving the corresponding pure advection 
problem. This is partially due to the natural error 
damping introduced by diffusion. Finally, it is noted 
that there is an increased error near the boundary at 
cycle 64 which is due to the previously discussed 
breakdown of the approximate infinite-medium 
analytic solution. 

Even though the SPECTRUM method gives a good 
solution of the periodic boundary condition problem 
for a Gaussian initial condition, the CVP method also 
yields acceptable results, and offers considerable 
versatility in solving other problems. Application of the 
SPECTRUM method seems somewhat more difficult 
for finite-domain problems with non-constant coef- 
ficients. However, such problems are readily treated 
with CVP, where quite acceptable errors are obtained. 
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Table 1. Finite domain advection~liffusion problems 

641 

No. of Left Right Fig. 
Case nodes 2 q Q T boundary boundary no. 

I 6 0.0 4.0 4.0 1.0 4)' - 0 . 0  4) = 0 . 0  11 
II 6 0.1, 1.0 4.0 4.0 1.0 4)' = 0.0 4) = 0.0 12 

11 1.0,10.0 4.0 4.0 0.5 4)' = 0.0 4~ = 0.0 13 
Ill 11 1.0, 10.0 0.0 0.0 1.0,0.5 4) - 0.0 4~ = 1.0 14 

31 10.0, 40.0 0.0 0.0 0.125 4) - 0.0 4) - !.0 15 
IV 31 1.0 4.0 4.0 1.5625E 2 4) - 1.0 4) - 0.0 16 

0.5 
V 31 10.0 0.0 0.0 3.125E 2 4) = 1.0 4)' = 0.0 17 

6.25E-2 

Several  f in i t e -medium p r o b l e m s  were solved and  
c o m p a r e d  wi th  analy t ic  so lu t ions  for a range  of  
p a r a m e t e r s  a n d  for a var ie ty  of  b o u n d a r y  condi t ions ,  as 
s u m m a r i z e d  in Table  1. The  C V P  results  are  c o m p a r e d  
to the  analy t ic  so lu t ion  in Figs 11-17. 

Case  I involves  pu re  diffusion in a finite symmet r i c  
s lab wi th  zero  ou ts ide  b o u n d a r y  condi t ion•  The  

i m p o r t a n c e  of  re ta in ing  par t ic le  conse rva t i on  in the  
solution method xs emphasized in the comparison 
exhib i ted  in Fig. 11, whe re  a p p r o x i m a t e l y  one  o rde r  of  

m a g n i t u d e  in accuracy  has  been  lost  because  so lu t ion  
c o n s e r v a t i o n  was no t  enforced.  Inc reased  C P U  t ime is 

requi red  in o rde r  to ob ta in  par t ic le  conse rva t i on  
so lu t ions  using a Lag rang i an  const ra in t •  However ,  the  

requi red  C P U  t ime is still less wi th  the  conse rva t ion  

cons t r a in t  than  requi red  with the non -conse rv i ng  
so lu t ion  in ob ta in ing  equiva len t  accuracy  by r u n n i n g  

m o r e  nodes .  This  result  is in ag reemen t  wi th  prev ious  
s teady-s ta te  and  t i m e - d e p e n d e n t  results  (Lee e t  al., 

1984; Lee and  Wilson ,  1981, 1984). S t a n d a r d  Ga le rk in  
m e t h o d s  wi thou t  specific bui l t - in (Lagrangian)  con-  
serva t ion  cons t r a in t s  will no t  necessar i ly  conserve  and  

thereby  require  cons ide rab ly  increased  n u m b e r s  of  
nodes  for c o m p a r a b l e  accuracy.  

Case  II is s imilar  to Case  I wi th  the  add i t i on  of  the  
non -ze ro  advec t ion  term. F o r  a fixed n u m b e r  of  nodes ,  

the  C V P  numer ica l  accuracy  c o m p a r e d  to the 
analyt ical  so lu t ion  is c lear ly r educed  as the  advec t ion  
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velocity is increased, as illustrated in Fig. 12 with 6 
nodes and Fig. 13 with 11 nodes at early and late times. 
However, for a fixed value of 2, the desired numerical 
accuracy is readily obtained by increasing the number 
of nodes. This is demonstrated for 2 = 1.0 in Fig. 12b 
and Fig. 13a. 

When the boundary conditions are changed to those 
of Case III, the same general behavior pattern is 
exhibited in Fig. 14 for 11 nodes and Fig. 15 for 31 
nodes. The errors increase with increasing advection 
for a fixed number of nodes, but increasing the number 
of nodes for a fixed advection value decreases the error. 
Additionally, it should be noted in Fig. 15 that 
increased spatial resolution is required in order to 
resolve sharp fronts. This feature is also evident in the 
solutions of Cases IV and V below. 

Numerical solutions to Case IV are shown in Fig. 16 
at two different times illustrating the facility of the CVP 
method to accurately track transient motion. The 
second time frame is essentially at steady state where 
the accuracy has actually improved over early times. 
This error reduction at late times is characteristic of the 
CVP method when steady-state solutions are 
approached. It is due to two basic features incorporated 
in the method : cubic trial functions and conservation. 
As steady state is approached c~(p/~t approaches zero as 
it must physically. When the conservation constraint 
condition is removed, ~c~/Ot does not approach zero 
and large numerical errors result in disagreement with 
the analytical solution. 

Finally, the solution to Case V, a problem previously 
addressed by Price et al. (1968) and Guymon (1970) is 
shown in Fig. 17 for 31 nodes. The agreement with the 
analytical solution is of particular interest here since 
both the boundary conditions are exactly satisfied by 
CVP. This is in contrast to approximate analytical 
solutions often quoted in the literature which fail for 
moderate h values near the right-hand boundary. 

In summary, the five finite-domain test cases 
discussed above indicate that the CVP method 
generally has solutions with errors bounded by about 
10 - 3  for a moderate number of nodes on the domain 
[0,1]. The numerical errors of the method in 
comparison with analytical solutions can be further 
reduced by increasing the number of nodes. Increasing 
the number of nodes will, of course, increase the 
computational investment. For these problems quite 
acceptable accuracy is obtained by the CVP method 
using only 31 nodes. 

CONCLUSIONS 

Low-order FD methods are generally inadequate for 
modeling late-time advection processes. Even using the 

ASH technique to solve the spatial Lax Wendroff FD 
equations exactly in time, the method is inadequate for 
obtaining late-time solutions. The necessary space- 
time coupling and high-order accuracy imposed by the 
SPECTRUM method results in accurate solutions, 
even at late times, for both the pure advection and 
advection-diffusion problems with periodic boundary 
conditions. Comparisons with the BETA FD method 
show that the SPECTRUM method yields con- 
siderably smaller numerical errors for a fraction of the 
CPU investment. Late-time solutions were less costly 
computationally to obtain than standard discretized 
solutions as a result of the ASH time-solution 
technique. However, the SPECTRUM method seems 
limited to solving constant coefficient problems with 
periodic or homogeneous Dirchlet boundary con- 
ditions. This limitation, unless removed, excludes 
consideration of many physical problems which are 
often of primary interest. 

The CVP method was demonstrated to be applicable 
to a wide range of physical problems on the finite 
domain [0. l]. This includes implementation of a 
general mixed boundary condition into numerical 
method the matrix representation. Accurate numerical 
solutions, compared to exact analytical solutions, were 
obtained for representative problems. The importance 
of obtaining particle conservation within each 
numerical cell and in the overall system was illustrated. 
When particle conservation was turned off for any 
solution, generally one order of magnitude in accuracy 
was lost. 

The CVP solution method applied to infinite- 
medium problems, modeled by periodic boundary 
conditions, yielded excellent agreement with analytical 
solutions. However, the SPECTRUM method gave 
better results for the same infinite-domain problem 
with a Gaussian initial condition. The SPECTRUM 
method is therefore preferred for solving that particular 
problem, assuming that the model equation can satisfy 
the limitations of constant coefficients. The CVP 
method, on the other hand, is not limited by the 
restriction of constant model coefficients. The CVP 
method represents an accurate viable solution 
technique lbr a rather wide range of I-D time- 
dependent advection-diffusion problems. Extensions 
appear possible to areas involving alternate geometries, 
multicomponents and non-linearities. 
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A P P E N D I X  

The matrix equation, equation (3), can be solved by an 
exponential matrix method. Assuming that A is constant over 
the time interval of interest, [0, t], the Volterra method of the 
multiplicative integral gives the solution as (Lee, 1980; 
Gantmacher, 1960) 

X(t) = cA 'X(0) + A - ~ (e A, _ l)S0, 

where the source S O is assumed constant, and X(0) is the initial 
condition vector. Defining the matrix C = At and the matrix 
operator D(C) by 

D(C) = C -  1 (e c _ I), 

the solution can be written in the form 

X(t) = [ I -  CD(C)]X(0) + tO(C)So. 

The matrix operators e c and D(C) have the series 
representations 

e c = ~ C"/n! = I + C  C"/(n+l)! 
n = O  n = O  

and 
c~ 

D(C)=C '(e c - l ) =  ~ C"/(n+l)!. 
, -o 

The operator D(C) exists even if the matrix C is singular. 
Evaluation of the series representations of both e c and D(C) is 
difficult if the eigenvalues of C exceed unity. A scaled matrix, 
H = 2 -p C, with norm less than 0.5, evaluates in the series 
expressions without difficulty. The appropriate value of p is 
determined from 

p = 1 + [In (t) + (I/2) In (ZiF~)]/In 2. 

Evaluation ofe c and D(H) is performed with a finite number, 
M, of series terms until 

IN IM+~/(M+2)! = 1/[2M+l(M+2)!] < e, 

for some small prescribed value e. The evaluation of D(C) is 
obtained from the recursion relationship 

D(2"R) = D(2"- i R) [ I  - (1/2) (2"-I H)D(2"- t H)], 

for 0 ~ n ~< p, which can be proved by induction (Lee, 1980). 


