INTRODUCTION TO TURBO FRMAC

Turbo FRMAC

Autumn Kalinowski, Brian Hunt

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

2024 Spring RAMP Users Group Meeting, Seoul, South

Sandia

OUTLINE

- Introductions
- Turbo FRMAC introduction
- Basics of Assessment Science
- Basics of Turbo FRMAC
- > Examples
- > Web-based training opportunities
- > If Time:
- *Administration of Potassium Iodide (KI)
- *Projected Public Dose

Brian Hunt, CHP, Assessment Scientist

Autumn Kalinowski, MS, Assessment Scientist

Contact Autumn with questions at: <u>aekalin@sandia.gov</u>

TURBO FRMAC

Turbo FRMAC, developed and maintained by Sandia National Laboratories is designed to help the decision maker in a radiological emergency understand the significance of the field sample results and modeling information, so that proper response actions can be implemented. It is intended to aid the leadership in identifying the proper action needed in order to appropriately protect the public.

QUESTION ANSWERED BY TURBO FRMAC

- Do radiation values exceed regulatory or guidance limits?
- Should crops be destroyed or can they be utilized?
- Should animal products be destroyed or can they be utilized?
- Do residents need to be evacuated, sheltered in place, or should another action be taken?
- How long can emergency workers work in a given area?

FIELD-OBSERVABLE VALUES

TF generates field-observable values specific to the radiological event that can be used to determine:

- How long an emergency worker can work in the contaminated area during a radiological emergency?
- The dose received from drinking contaminated water or milk.
- The dose from eating contaminated food.
- The dose expected up- or down-wind of a given field sample.
- Other similar radiological health values

INTRODUCTION

INTRODUCTION

Sandia National Laboratories (SNL), located in Albuquerque, New Mexico, USA

Government owned, contractor operated

Provide research and technical solutions, expert analysis, and highly trained emergency response professionals to support the U.S. government's response to a nuclear or radiological accident

DOE/NNSA CONSEQUENCE MANAGEMENT PROGRAM

Consequence Management Mission

The mission of the National Nuclear Security Administration's Consequence Management Program is to reduce casualties and protect lives, property, and the environment in response to a

nuclear or radiological incident.

MODEL | MEASURE | ASSESS | INTERPRET | ADVISE

COUNTERTERRORISM AND

TIMELY | ACTIONABLE | SCIENTIFICALLY DEFENSIBLE

NATIONAL NUCLEAR SECURITY ADMINISTRATION OFFICE OF COUNTERTERRORISM AND COUNTERPROLIFERATION

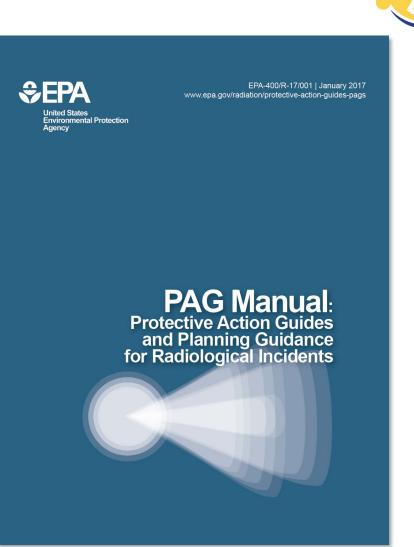
FEDERAL RADIOLOGICAL MONITORING AND ASSESSMENT CENTER (FRMAC)

Mission: Provide timely, high-quality predictions, measurements, analyses, and assessments to promote efficient and effective emergency response for the protection of the public from the consequences of nuclear or radiological incidents

FRMAC PARTICIPATION

- Department of Agriculture (USDA)
- Department of Defense (DoD)
- Department of Energy (DOE)/National Nuclear Security Administration (NNSA)
- Department of Health & Human Services (DHHS)/Food & Drug Administration (FDA) and Centers for Disease Control & Prevention (CDC)
- Department of Homeland Security (DHS)/Federal Emergency Management Agency (FEMA)
- Environmental Protection Agency (EPA)
- Nuclear Regulatory Commission (NRC)
- Law Enforcement (FBI)
- State/Local/Tribal/Territorial agencies

U.S. PROTECTIVE ACTION GUIDANCE


Environmental Protection Agency (EPA) Protective Action Guide (PAG) Manual

PAGs are based on 3 principles:

- 1. Prevent acute effects
- 2. Reduce risk of chronic effects
- 3. Balance protection with other factors and ensure that actions result in more benefit than harm

PAGs are predetermined for use in emergencies for a general population without regard to the magnitude or type of radiological release

Decision makers may implement protective actions at higher or lower levels than the recommended PAGs

PAG MANUAL GUIDANCE

• PAGs are not dose limits or strict numeric criteria

NOTE: Decision Makers may implement protective actions at <u>higher or lower</u> levels than the recommended PAGs

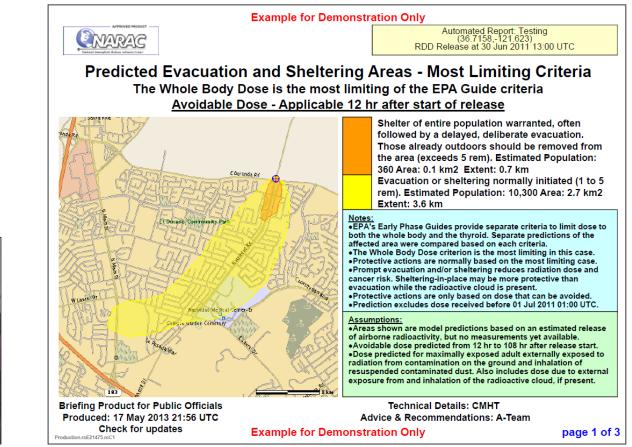
- PAGs do not:
 - Establish an acceptable level of risk for normal, nonemergency conditions
 - Represent the boundary between safe and unsafe conditions
 - Represent legally binding regulations or standards
 - Supersede environmental laws

INGESTION PAGS- WATER

- Drinking water PAG is for use during an emergency and is not a substitute for compliance with EPA's drinking water regulations under the Safe Drinking Water Act
- EPA expects actions will be taken to return drinking water system to compliance with the regulatory levels by the earliest feasible time
- FDA Food PAGs and EPA Water PAGs are considered separately
- EPA recommends the use of the Sum of Fraction rule if multiple radionuclides are present
- EPA allows a water system to blend uncontaminated water with contaminated water to minimize radiation doses

FDA Ingestion PAG Manual: ACCIDENTAL RADIOACTIVE CONTAMINATION OF HUMAN FOOD AND ANIMAL FEEDS: RECOMMENDATIONS FOR STATE AND LOCAL AGENCIES

- Sets limits on the radionuclide concentration(s) permitted in human food distributed in commerce
- Does not set limits on the radionuclide concentration(s) permitted in animal feeds
- PAGs are based on limiting the lifetime total cancer mortality in the general population
- PAGs assume a lifetime dose based the consumption of contaminated food for the 1st year following the accident
- PAGs are based on the entire diet and assume 30% of the total dietary intake is contaminated


ASSESSMENT CAPABILITY

Analyze models and data available to develop an understanding of the radiological environment

Provide decision makers with radiological information that can be used to issue protective actions

FRMAC ASSESSMENT MANUAL

- The technical consensus of multiple U.S. federal agencies with expertise in and authority over aspects of radiological emergency response
- Defines the standard dose assessment methods for responding to nuclear or radiological incidents
- Serves as the scientific basis for Turbo FRMAC
- SNL leads development of this manual

https://www.nnss.gov/pages/programs/FR MAC/FRMAC_DocumentsManuals.html

FEDERAL RADIOLOGICAL MONITORING AND ASSESSMENT CENTER FRMAC ASSESSMENT MANUAL **VOLUME 2 Overview And Methods** RESPONSE **TRIBAL** READINE STATE LOCAL FEDERAL COGICAL MONITORING AND AS **The Federal Manual for Assessing Environmental Data During a Radiological Emergency May 2023**

TURBO FRMAC

- Software performs complex calculations to quickly evaluate radiological hazards during an emergency response by assessing impacts to the public, workers, and the food supply
- Automates FRMAC Assessment Manual methods
- Eliminates <u>most</u> human errors
- Deployable software application developed by SNL
- Does not require internet connection
- Updated periodically to implement new and revised methods
- NOT a replacement for health physics knowledge and experience

TURBO FRMAC PURPOSE

Results are used to support protective action decisions, such as:

- Should a population be sheltered, evacuated, or relocated?
- When can a relocated population return home?
- What field measurements would indicate that a protective action is warranted?
- How long can a worker remain in a contaminated area?
- Might a food crop in an area need to be considered for removal from commerce?
- When can a crop be planted so as not to exceed food contamination guidelines?

Public Protection Evaluate the potential impacts to members of the public from exposure to radiological materials in the air and/or deposited on the ground.

Worker Protection Establish worker protection guidelines (e.g., stay-times, turn-back limits).

Ingestion Evaluate the potential impacts from radiologically contaminated food.

INITIAL ASSESSMENT PROCESS

Determine initial source term

Potential data sources include regulatory agencies, intel, models, and measurements

FRMAC 202

Sandia National Laboratories

Calculate DRL

Turbo FRMAC is used to calculate DRLs Run atmospheric dispersion models and contour DRL

Resulting map products are used by local officials to decide where to take protective actions

Collect field measurements and use to refine source term

DRLs can also be calculated for specific areas and compared to field measurements

MODEL LIMITATIONS

Turbo FRMAC is **<u>not</u>** an atmospheric dispersion model, so assumptions are used to estimate the relative radionuclide activities in the air and on the ground

FRMAC atmospheric dispersion modeling is handled by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory in Livermore, CA

However, monitoring and sampling, and atmospheric dispersion model data can be entered to improve the accuracy of dose projections and DRLs

Because Turbo FRMAC does not perform atmospheric dispersion, DRLs are calculated for a single radionuclide mixture that does not account for spatial variance

NARAC is a national support and resource center for emergency planning, real-time assessment, emergency response, and detailed studies of atmospheric releases of nuclear, radiological, chemical, biological, and hazardous natural materials. NARAC provides timely and accurate plume predictions to aid emergency preparedness and response efforts in protecting the public and the environment.

LAWRENCE LIVERMORE NATIONAL LABORATO

EXAMPLES OF TURBO FRMAC USE

Turbo FRMAC has proved to be a valuable tool to guide protective action decisions following real-world releases including the 2011 Fukushima Daiichi Nuclear Power Plant incident and other accidental releases.

Turbo FRMAC is also used during planning and preparedness activities at all levels of U.S. government.

BASICS OF ASSESSMENT SCIENCE

OVERVIEW

- FRMAC Assessment Concepts
 - Public Protection
 - Ingestion
- Calculation Examples in Turbo FRMAC

PUBLIC PROTECTION CALCULATION CONCEPTS

PUBLIC PROTECTION ASSESSMENT CONCEPTS

- Dose Pathways
- Mixture & Deposition Time
- Time Phases
- Evaluation Time
- Avoidable Dose
- Weathering
- Breathing Rate
- Lung Clearance Type
- Resuspension

- Integrated Air Activity
- Deposition Velocity
- Particle Size Distribution
- Radionuclides with Different
 Chemical/Physical Forms
- Decay Chain Truncation
- Equilibrium Rules
- Occupancy & Sheltering

Protective Action - An activity conducted in response to an incident or potential incident to avoid or reduce radiation dose to members of the public

Protective Action Guide (PAG) - A projected dose to an individual from released radioactive material at which a specific protective action to reduce or avoid that dose is recommended

Projected Dose - The prediction of the dose that a population or individual might receive

Derived Response Level (DRL) - A level of radioactivity in an environmental medium that would be expected to produce a dose equal to the corresponding PAG

FRMAC Assessment Manual defines the following:

- Release Time (t₀) The start time of the event/incident/release; Corresponds to the "Time of Deposition"
- Start Time (t₁) The start of the Time Phase (integration period) under consideration
- End Time (t₂) The end of the Time Phase (integration period) under consideration

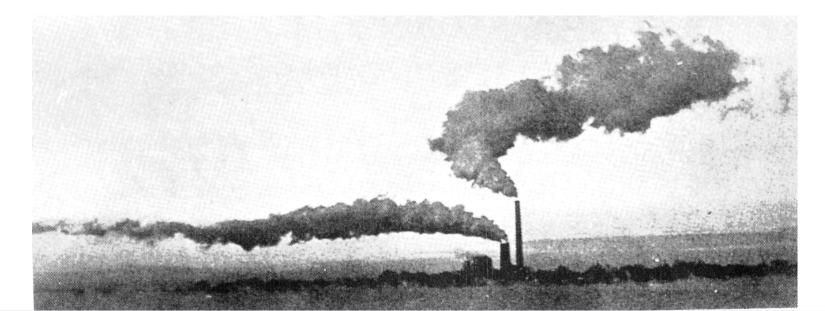
DEFAULT FRMAC TIME PHASES

*Outlined Time Phases correspond to EPA PAG Manual definitions.

Time Phase	Time Phase Start	Time Phase End	Dose Pathways Included	Comments						
Early Phase (Total Dose)	0	0 96 hr Plume and Ground implemented before plume. 0 96 hr Ground Protective Actions		Protective Actions can be implemented before arrival of plume.						
Early Phase (Avoidable Dose)	12 hr			Protective Actions <u>CAN NOT</u> be implemented before arrival of plume.						
First Year	12 hr	8772 hr	Ground	Plume pathways not included						
Second Year	365 day	730 day	Ground	regardless of when Protective Actions can be implemented.						
Plume Pathways: Inhalation of plume-borne material and Submersion										

Plume Pathways: Inhalation of plume-borne material and Submersion Ground Pathways: Inhalation of resuspended material and Groundshine

TIME PHASES-EARLY PHASE


- Begins with the radiological release
- May last hours to days; Generally considered 4 days (~96 hours)
- Protective Actions: Evacuation and/or Shelter in Place

TIME PHASES- INTERMEDIATE PHASE

- Release under control or terminated
- May overlap the Early and Late phases and could last weeks to months
- Includes the 1st and subsequent years
- Protective Action: Relocation

INTERMEDIATE PHASE PAGS

Note: Relocation PAGs are treated separately from food and water ingestion.

- Projection of intermediate phase doses should not include these ingestion pathways.
- In some instances, however, where withdrawal of food and/or water from use would, in itself, create a health risk, relocation may be an appropriate alternative protective action.
- In this case, the ingestion dose should be considered along with the projected dose from deposited radionuclides via other pathways, for decisions on relocation.

TIME PHASES-LATE PHASE

- Begins after the Intermediate Phase and proceeds independently of Intermediate Phase Protective Actions
- May last months to years
- Transition from strategies driven by urgency, to strategies aimed at reducing longer-term exposures and improving living conditions
- PAGs will not be used to guide restoration and recovery
- Protective Action Relocation, potentially permanently. Decontamination and/or condemnation of structures

MIXTURE AND DEPOSITION TIME

Mixture is assumed to be deposited at t_o (release time)

- FRMAC Assessment Manual methods and Turbo FRMAC use mixture deposited at t₀
- A mixture at any other time must be back-decayed and back-weathered to t_0 to calculate appropriate dose for the specified time phase

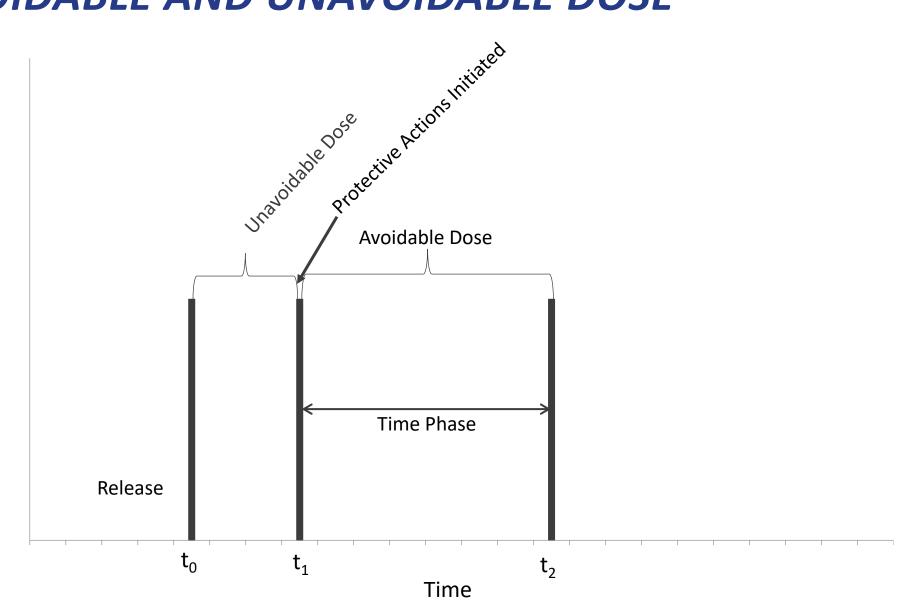
(^)	Radionuclide	Mixture							[Ĵ ŀ	Help
Name Do It Yourself Training Mix										×	I
Descri	iption:		RXXXXX							×	
Mix	ture and Measure	ment Type				What Value	es are Known for the Mix	:ture?			
Generic Generic Activity per Area Mass per Area				 Activity Integra Both 		Integrated Air Concentration values will be calculated using the Deposition Velocity.					
0 ×	Add Radionuclide Search	: × ,2	• • •	Import -	Export & Email	Manage Daught	ters 🔹 Scale ▼	 I ▼ View ▼ 			
	Form	Radionuclide	Activity per Area		Integrated Air (Concentration	Deposition Velocity	Particle Size Distribution			
	Ρ	🕂 🗶 241 _{Am}		1.00E-2		3.33	3.00E-3	Mono 100%			^
	Ρ	💷 🗶 137 _{Cs}		5.00E-2		16.7	3.00E-3	Mono 100%			
	Multiple	🚛 🗶 131 _I		7.50		1.15E3	6.50E-3	Mono 100%			¥
3 pare	nts, 3 daughters,	6 total radionuclides,	10 total forms $\mu Ci \sim / m^2$	~ (µCi v•s	\sim)/ m ³ \sim	m ~ / s ~	Trun	cation: ON Equilibr	rium:	ON
			[0.0, 1	.75E29]		[0.0, 1.75E29]	[0.0, 100]				

Daughters are assigned the Deposition Velocity of their parent.

EVALUATION TIME

- Evaluation Time (t_n) The point in time, relative to the start of the event, for which the calculation, measurement, or prediction is valid
 - Evaluation Time (t_n) is generally set to the start of the time phase $(t_n = t_1)$, but may be set to any time (before, during, or after the time phase).
- Atmospheric modeling software requires a set duration to model the transport and deposition of plume particulate. For dose assessment to remain consistent with initial atmospheric modeling assumptions, the default t_n is set to 12 hours.
 - For most incident types, 12 hours is sufficient for total plume content deposition
 - If the plume will not be completely deposited by 12 hours, work with atmospheric modelers to choose an appropriate t_n

AVOIDABLE DOSE



- The decision to implement protective actions should be based on the projected dose that <u>would be avoided</u> if the protective actions were implemented (EPA 2017). This is called the Avoidable Dose.
- Unavoidable dose incurred before the implementation of protective action <u>should</u> <u>be excluded</u> when evaluating the need for those protective actions, unless specifically requested by the decision maker.
- To exclude the <u>Unavoidable Dose</u> from a dose assessment, start the Time Phase(s) at some time <u>after</u> the start of the exposure period and ONLY include those dose pathways appropriate to the selected Time Phase(s)

Example: A release has occurred but Decision Makers know it will take 12 hours to initiate Protective Actions. The Unavoidable Dose will be excluded if the Assessment Scientist sets the Time Phase to begin at 12 hours after the release and does not include the Plume Pathways (unless the plume is ongoing).

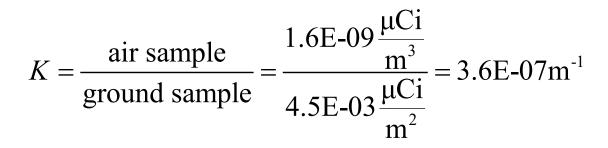
AVOIDABLE AND UNAVOIDABLE DOSE

WEATHERING AND RESUSPENSION

Weathering – The adjustment for the <u>decrease</u> that occurs over time as the deposited material migrates deeper into the soil column from deposition (t_0) to evaluation time (t_n)

Resuspension – The fraction of radioactive material transferred from the surface to the breathing zone at given time after initial deposition

RESUSPENSION OPTIONS


Resuspension (K) may be:

1. A time varying equation

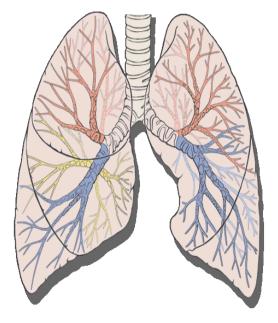
2. A constant value (e.g., 1.00E-06 m⁻¹), or

3. The ratio of air concentration to ground concentration (determined from samples)

For Example: Air sample = $1.6E-09 \ \mu Ci/m^3$ Ground sample = $4.5E-03 \ \mu Ci/m^2$

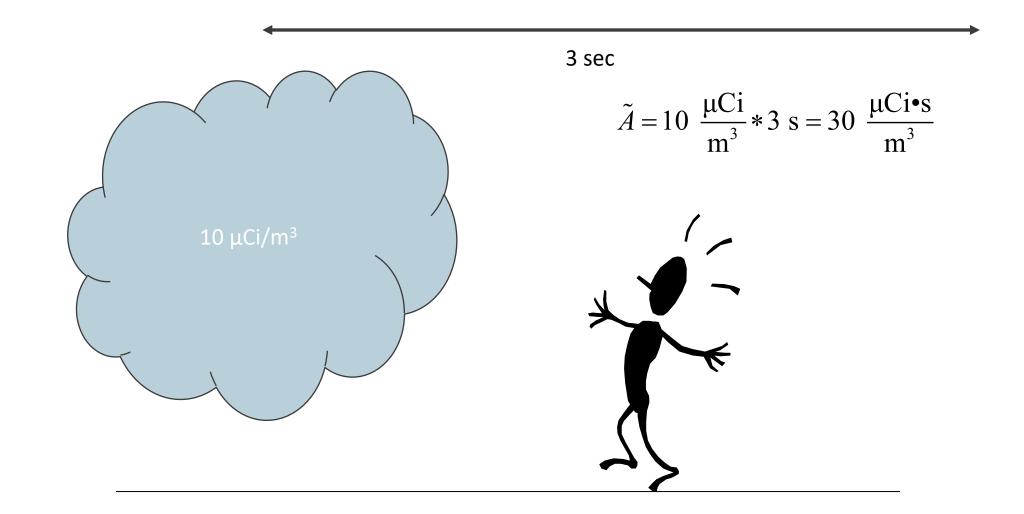
Calculated Resuspension valid only for a specific location and a specific time

	Activity					Total	Activity Avg.			
	Slee	Sleeping		ting	Light	Light Exercise		Heavy Exercise		Rate
Age Group	Rate m³/hr	Time hr/day	Rate m ³ /hr	Time hr/day	Rate m ³ /hr	Time hr/day	Rate m ³ /hr	Time hr/day	m³/day	m³/hr
Newborn (3 month)	0.09	17.0	NA	NA	0.19	7.0	NA	NA	2.86	0.12
Infant (1 year)	0.15	14.0	0.22	3.33	0.35	6.67	NA	NA	5.20	0.22
5 yr old	0.24	12.0	0.32	4.0	0.57	8.0	NA	NA	8.76	0.37
10 yr old	0.31	10.0	0.38	4.67	1.12	9.33	NA	NA	15.28	0.64
15 yr old (m)	0.42	10.0	0.48	5.5	1.38	7.5	2.92	1.0	20.10	0.84
15 yr old (f)	0.35	10.0	0.4	7.0	1.3	6.75	2.57	0.25	15.72	0.66
Adult (m) (Sedentary)	0.45	8.5	0.54	5.5	1.5	9.75	3.0	0.25	22.18	0.92
Adult (f) (Sedentary)	0.32	8.5	0.39	5.5	1.25	9.75	2.7	0.25	17.68	0.74

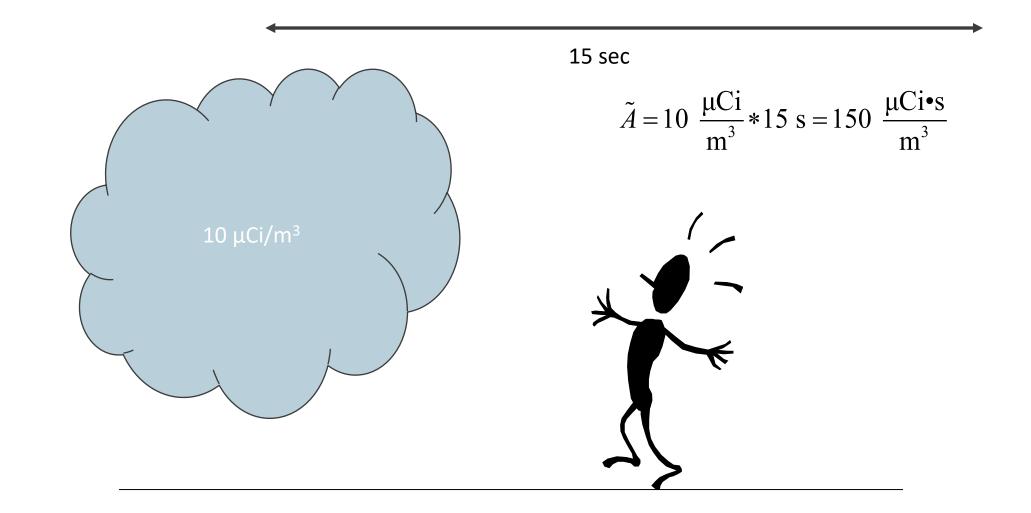

FRMAC default calculations use these two.

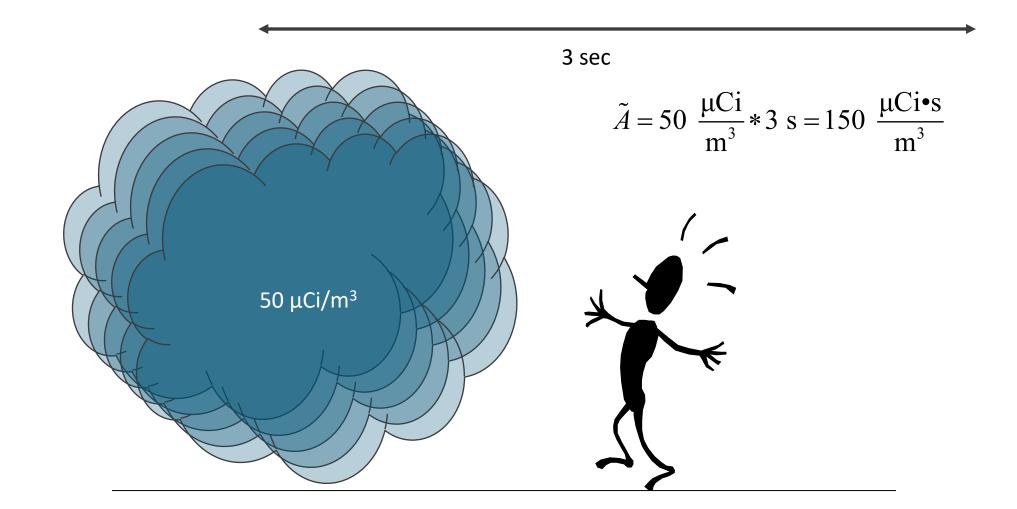
LUNG CLEARANCE TYPE

- FRMAC's default Lung Clearance Type (LCT) is ICRP Recommended
- Certain radionuclides have specific LCTs that should be used instead of the default when more appropriate information is available


Radiological assessments that include the dose from plume passage require Integrated Air Activity (µCi·s/m³)

- Integrated Air Activity is the concentration of a radionuclide in air integrated over the plume passage time
- Integrated Air Activity results are obtained from Environmental Continuous Air Monitors (ECAMs)





DEPOSITION VELOCITY

- Deposition velocity (V_d, units of $m \cdot s^{-1}$) is defined as the ratio of the dry deposition flux (g $\cdot s^{-1} \cdot m^{-2}$) to the air concentration (g $\cdot m^{-3}$) of particulate matter or gases.
- Deposition Velocity (V_d) is used to convert between Integrated Air Activity (\tilde{A}_i) and Areal Activity (Deposition, Dp_i) when only one type of data is available
- Complex process and depends upon many variables including meteorological conditions (e.g., wind speed, washout) and physical properties (e.g., particle size, gas, vapor, and aerosol)
- FRMAC default deposition velocities are based on dry deposition conditions

$$Dp_i = \tilde{A}_i * V_d$$

 $\frac{\mu Ci}{m^2} = \frac{\mu Ci \cdot s}{m^3} \cdot \frac{m}{s}$

DEPOSITION VELOCITY

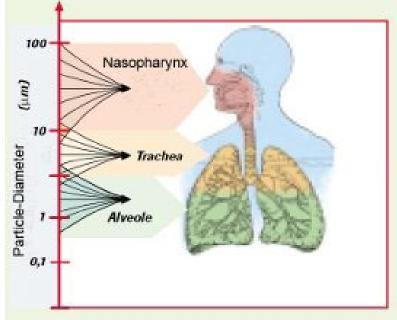
- Wet deposition (washout) is not considered by FRMAC because:
 - washout is likely to affect only part of the area impacted by the incident (i.e., only where it rains or snows during plume passage)
 - washout effects are highly dependent on variables for which FRMAC is unlikely to have data (e.g., raindrop size)

• However, if data is available to determine specific wet deposition, the Assessment Scientist can modify the default deposition velocity to include wet deposition in assessment calculations

DEPOSITION VELOCITY

FRMAC's default Deposition Velocities (V_d)

Chemical/Physical Form	V _d (m/s)
Particulates	3.0E-03
Iodine Particulates	6.5E-03
Reactive lodine Gas (I ₂)	6.4E-03
Non-Reactive Iodine Gas (CH ₃ I)	0.0
Noble Gases	0.0


FRMAC's default Deposition Velocities (V_d) are "Effective" values that are in good agreement with NARAC and NRC (RASCAL) models

PARTICLE SIZE DISTRIBUTION

- FRMAC's default approach considers all radionuclides to be in the "particulate" chemical/physical form
- FRMAC's default Particle Size is 1 micron Activity Median Aerodynamic Diameter (AMAD)

Note: Separate particle size distributions can be entered for plume particles and resuspension particles.

RADIONUCLIDES WITH DIFFERENT CHEMICAL/PHYSICAL FORMS

 In addition to particulate form, certain radionuclides may exist in gas or vapor form

 These radionuclides can be partitioned into their multiple forms when this information is known

Carbon	Carbon Monoxide (CO) Carbone Dioxide (CO ₂)
Hydrogen	Tritiated Water Vapor (HTO) Elemental Tritium (HT) Organically Bound Tritium
Iodine	Iodine Vapor Methyl Iodide (CH ₃ I)
Mercury	Mercury Vapor
Nickel	Nickel Vapor
Ruthenium	Ruthenium Vapor
Sulfur	Sulfur Dioxide (SO ₂)
Sullui	Carbon Disulfide (CS ₂)
Tellurium	Tellurium Vapor

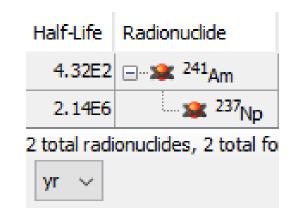
RADIONUCLIDES WITH DIFFERENT CHEMICAL/PHYSICAL FORMS

Iodine released from a nuclear power plant (NPP) under accident conditions is partitioned as follows in order to be consistent with NRC calculations

Particulate	25%
۱ ₂	30%
CH ₃ I	45%

DECAY CHAIN TRUNCATION

To increase calculation speed, we have established a set of rules for truncating daughters when the daughters' contribution to dose will be negligible.


- The first daughter is always included in calculations.
- Truncation is enabled by default in Turbo FRMAC calculations

DECAY CHAIN TRUNCATION

Example of Decay Chain Truncation

Decay Chain Truncation Enabled

Decay	/ Chain Truncation Disabled
Half-Life	Radionuclide
4.32E2	⊡ 2 ⁴¹ Am
2.14E6	
7.39E-2	≵ ²³³ Pa
1.58E5	🚊 🗶 233 _U
7.34E3	[⊥]
4.05E-2	🚊 🗶 225 _{Ra}
2.74E-2	
9.13E-6	
1.02E-9	
8.68E-5	🚊 🗶 213 _{Bi}
1.33E-13	
3.71E-4	
4.18E-6	⊡ ३ 209 ₁₁
3.71E-4	

s, 14 total radionuclides, 14 total forms

yr 🗸

EQUILIBRIUM RULES

The following Equilibrium Rules apply to the Mixture:

Daughter radionuclides are considered to be in equilibrium (secular, or transient when the branching ratio \neq 1) with the Parent at deposition (t = 0) if;

- Daughter's half-life is less than the half-life of the ultimate parent (i.e., first parent in decay series), and
- Daughter's half-life is less than 1.5 years

Daughter radionuclides meeting the above rules are assigned the Parent's half-life and decay constants for calculations

Equilibrium Rules are applied after Truncation

Equilibrium Rules are enabled by default in Turbo FRMAC, unless importing a mixture from the RASCAL software

Example of Equilibrium Rule

Half-Life	Radionuclide	Activity per Area			
1.60E3		2.00E2			
1.05E-2		2.00E2			
5.80E-6		2.00E2			
6.34E-8		4.00E-2			
3.78E-5	≋ 214 _{Bi}	4.00E-2			
5.21E-12	⊡ 🕿 ²¹⁴ Po	4.00E-2			
22.3	⊑ ≵ ²¹⁰ Pb	0.0			
1.37E-2		0.0			
0.379		0.0			
5.10E-5		2.00E2			
3.78E-5	:≫ 214 _{Bi}	2.00E2			
5.21E-12	🚊 🕿 ²¹⁴ Po	2.00E2			
22.3	≆ ²¹⁰ Pb	0.0			
1.37E-2		0.0			
0.379	x 210 _{Po}	0.0			

 $\mu Ci \sim / m^2$

 \sim

Equilibrium Rules Enabled

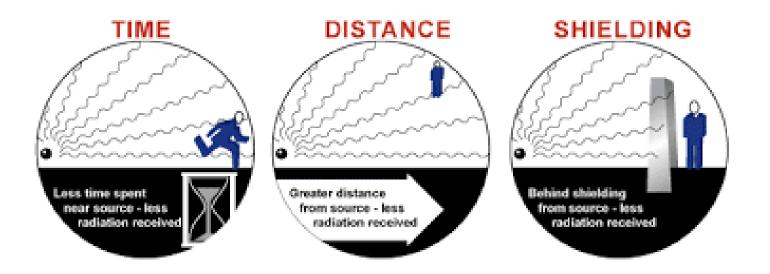
s, 15 total radionuclides, 15 total forms

yr

 \sim

Equilibrium Rules Disabled

Radionuclide	Activity per Area
⊡ ≋ ²²⁶ Ra	2.00E2
≟ ☆ 222 _{Rn}	0.0
≩ 218 _{Po}	0.0
🚍 🛥 218 _{At}	0.0
⊡ 2 14 _{Bi}	0.0
	0.0
⊡ ≋ ²¹⁰ Pb	0.0
⊡ 2 10 _{Bi}	0.0
x 210 _{Po}	0.0
⊡ 🐲 ²¹⁴ Pb	0.0
	0.0
	0.0
≐ ≋ ²¹⁰ Pb	0.0
	0.0
x 210 _{Po}	0.0


 $\mu Ci ~~ \vee ~/~m^2$

15 total radionuclides, 15 total forms

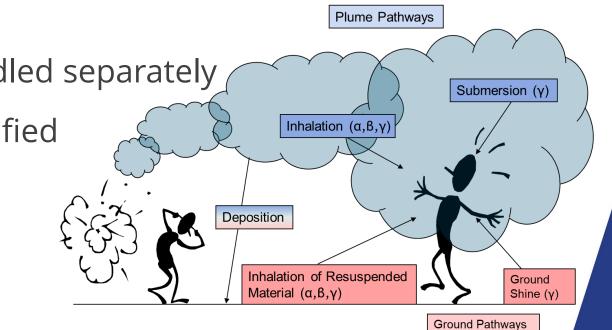
OCCUPANCY AND SHELTERING

FRMAC's default approach assumes that the receptor is outside in the contaminated area continuously during the time phase without any protective measures

OCCUPANCY AND SHELTERING

- Occupancy Factors account for the fact that receptors may be:
 - Unsheltered in the contaminated area for a portion of the Time Phase
 - Sheltered inside a structure in the contaminated area for a portion of the Time Phase
 - Absent from the contaminated area for a portion of the Time Phase
- Building Protection Factors account for the fact that being sheltered inside a structure reduces the dose to an individual in an area of contamination

HOW ARE PUBLIC PROTECTION DOSES CALCULATED IN TURBO FRMAC?



Public protection calculations include four exposure pathways:

- Plume Inhalation
- Plume Submersion
- Resuspension Inhalation
- Groundshine

Ingestion exposure pathway is handled separately

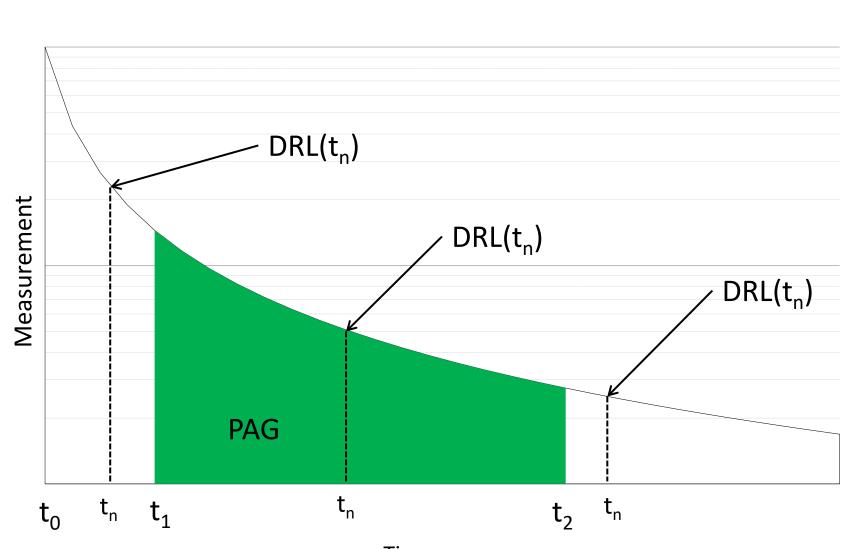
Dose is integrated over a user-specified time period

TYPES OF PUBLIC PROTECTION CALCULATIONS

- Derived Response Level (DRL)
- Administration of Potassium Iodide (KI)
- Projected Public Dose (PPD)
- Dose Parameters

TYPES OF DERIVED RESPONSE LEVELS (DRL)

DRLs can be both calculated and measurable quantities that are used to generate contours on dispersion models to project areas where Protective Actions should be considered


Integrated Air DRLs - The integrated air activity of a radionuclide at which the total dose from all radionuclides in a release would equal the PAG over the time phase under consideration

Deposition DRLs - The areal activity at a specific evaluation time of a radionuclide at which the total dose from all radionuclides in a release would equal the PAG over the time phase under consideration

Dose Rate/Exposure Rate DRLs - The external dose or exposure rate from all radionuclides in a release that would produce a dose equal to the PAG over the time phase under consideration

Which flavor of DRL to use depends on the question being asked

DRLS AND EVALUATION TIME

FRMAC DEFAULT ASSUMPTIONS

- Adult receptor, Whole Body (Effective) dose
- The receptor is outside and unprotected
- The plume is in contact with the ground
- Airborne noble gases are not deposited
- Deposition is immediate

Turbo FRMAC settings can be adjusted to use different models or event-specific data

- Deposition is assumed to be dry particulates with a default particle size of 1-micron Activity Median Aerodynamic Diameter (AMAD)
- ICRP Recommended Lung Clearance Type
- ICRP 60 based dose coefficients and breathing rates
- Maxwell and Anspaugh (2011) resuspension model¹
- Anspaugh (2002) weathering model²

¹ Maxwell, R. and Anspaugh, L., "An Improved Model for Prediction of Resuspension" in *Health Physics*, Vol. 101, pp. 722-730, December 2011 ² Anspaugh, L., et al., "Movement of Radionuclides in Terrestrial Ecosystems by Physical Processes" in *Health Physics*, Vol. 82, pp. 670-679, April 2002

PUBLIC PROTECTION CALCULATION EXAMPLE

WALK THROUGH EXAMPLES

Please get out your laptops and open up your install of Turbo FRMAC to follow along. We will walk through this example together.

SETTING THE STAGE

We have a request:

The local decision maker wants to know if they should order a Relocation for their downwind population

You must calculate the 1st Year DRL values.

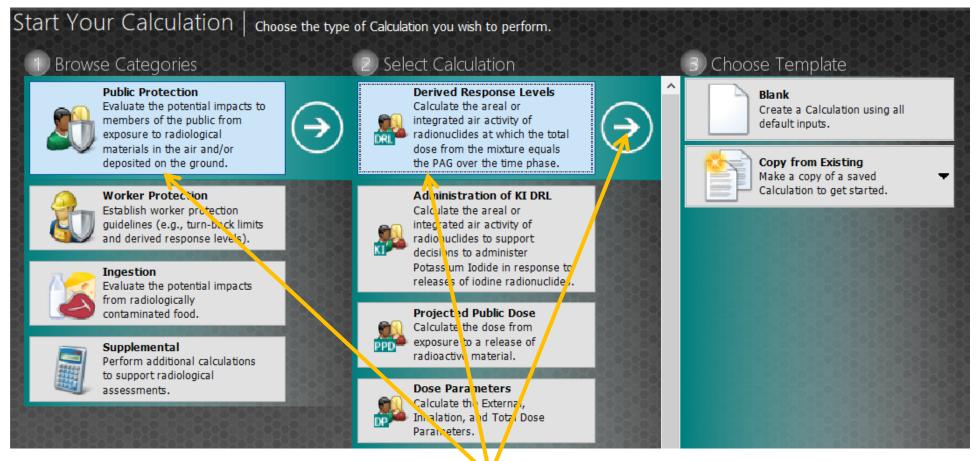
- Are the 1st year DRLs exceeded?
- What is the 1st Year PAG?
- Which Pathways should we use?

Radionuclide	Activity per Area (μCi/m²)
⁶⁰ Co	2
¹⁴⁸ Gd	1
⁹⁰ Sr	3
90 y a	3
^{a 90} Y included as a daughter	in equilibrium

Assume the following Mixture

5/1/2024

OPEN TURBO FRMAC


Select New Calculation

SELECT NEW CALCULATION

Select Public Protection, then Derived Response Level, then Blank

NAME AND DESCRIBE CALCULATION

Click on Name and Description Button Type in a Name and Description for the calculation

Derived Response Levels	Review and edit the r	most commonly used inputs for the calculations.	
	Nan	ne and Description	🚺 Help
Paguirad Inpute	Name:	Public Protection	×
Required Inputs		17 characters entered	
Name and Description	Description:	1st Year DRL Calculation	<u> </u>
Time Settings			
			▼.
Padiopuclido Mixturo		24 characters entered	

VERIFY TIME PHASES AND EVALUATION TIME

Click on Time Settings Button Verify Time Phases, Evaluation Time and Pathways are correct

5/1/202

What pathways are chosen for the 1st year?

Derived Response Levels Review and edit the most commonly used inputs for the calculations.									
	Time Set	Time Settings					📮 Help		
Required Inputs	Release Date & Tir	Release Date & Time: 04/29/2019 8:48 CCT/MDT (UTC-06:00) V							
Name and Description	Date/Time Mode:	O Date & Tim	e 💿 Time After F	Release					
	Add 👻 🗙	Delete 👔	Reset	2					
Time Settings	Time Phase	Start Time	Duration	End Time	Evaluation Time	Plume Inhalation	Plume Submersion	Resuspension Inhalation	Groundshine
Radionuclide Mixture	Early Phase (TD)	0.0	96.0	96.0	12.0				
	Early Phase (AD)	12.0	96.0	1.08E2	12.0				
ICRP Guidance	First Year	12.0	8.76E3	8.77E3	12.0				
Destative Artist Cuides (DACs)	Second Year	8.76E3	8.76E3	1.75E4	12.0				
Protective Action Guides (PAGs)	Fifty Year	12.0	4.38E5	4.38E5	12.0				
		hr \sim	hr v	hr v	hr v	69362	893838		38236238
		[0.0, 8.77E5]	[1.67E-2, 8.77E5]	[0.0, 8.77E5]		3.8.8			

BUILD RADIONUCLIDE MIXTURE

Click on Radionuclide Mixture Button

Type in a Name and Description for the Radionuclide Mixture

Derived Response Levels	Review and edit the most commonly used inputs for the calculations.	38888
	Radionuclide Mixture	🗘 Help
Required Inputs	Name: Public Protection	× 🕰
Name and Description	Description: Vist Year DRLs] ×
Time Settings	Type, f Measurement Known Mixture Values O Activity per Area What values do you know for the Mixture? O Activity per Area Activity per Area	
Radionuclide Mixture	Generic Mass per Area Mass per Area Mass per Area	
ICRP Settings	The Mixture's Physical Form partitioning and Deposition Velocities will be adjusted for the selected Mixture Type.	using
Protective Action Guides (PAGs)	Add Radionuclide: Import Import <t< th=""><th>Options 🔻</th></t<>	Options 🔻
	Physical Form Radionuclide Activity per Area Integrated Air Concentration Deposition Velocity Particle Size Distribution	

BUILD RADIONUCLIDE MIXTURE

Click on Search and begin to populate Radionuclides

5/1/202

Derived Response Levels Review ar	d edit the most commonly used inputs for the cal	culations.	
	Radionuclide Mixture		🔇 💽 Help
Required Inputs	Name: Public Protection		× 🗣
Name and Description	Description: 1st Year DRLs		×
	Mixture and Measurement Type	Known Mixtu	
Time Settings	Activity per Area	What values do	o you know for the Mixture? Area
Radionuclide Mixture	Generic O Mass per Area		Air Concentration
ICRP Guidance		Both 'Integrated Air 'Deposition Ve	Concentration' values will be calculated using the locity'.
Protective Action Guides (PAGs)	Add Radionuclide: X Col X Searching Search All Radionuclides	· 🗸 🖌 🖌 🛄 🔺 🛄	Age 🚺 🕄 ▼ Scale マ 🗄 View マ
	Fo Co-55 ea Co-56 Co-57 Co-58 Co-58m Co-60 Co-60 Co-60m	Integrated Air Concentration Deposition Velocity	Particle Size Distribution
	0 parent Co-61 form Co-62m]∕[s ▼] [-∞,∞]
	Daughters are assigned the Deposition Velocity of the	an the second second second	
	The Mixture must contain 1 or more Radionuclides. A	dd Radionuclides or Import a Mixture.	

BUILD RADIONUCLIDE MIXTURE

Enter each Radionuclide in the mix and enter the Activity Concentration

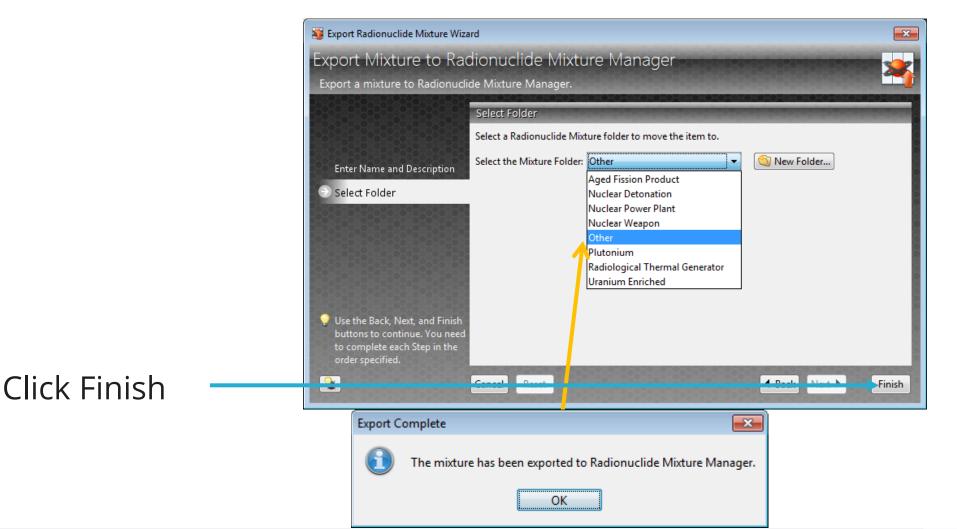
EXPORT AND SAVE RADIONUCLIDE MIXTURE

Select Export & Email then select To Mixture Manager

Radionuclide Mixture	Help
Name: Co-60	X 🗔
Description:	×
Mixture and Measurement Type What Values are Known for the Mixture?	
	d Air Concentration values will be d using the Deposition Velocity.
Add Radionuclide: Import Im	60
Form Radionuclide Activity per Area Integ Email Mixture. Email Mixture. ti.	Mono 100%
Image: Instant sector of the sector of th	Mono 100% Mono 100%
3 parents, 1 daughter, 4 total radionuclides, 4 total forms RMIX File Export the Radionuclide Mixture to a file.	Truncation: ON Equilibrium: ON
μCi / m ² (μCi [0.0, 1.75E29] [[Decay Curve Export the Decay Curve to a File.	

5/1/202

EXPORT AND SAVE RADIONUCLIDE MIXTURE


Verify Name and Description are correct

	Export Radionuclide Mixture Wiza	rd		×
	Export Mixture to Rac	lionuclic	de Mixture Manager	
	Export a mixture to Radionuclio	le Mixture N	Manager.	
		Enter Name	and Description	STATISTICS.
		Modify the n	name and description for the exported mixture.	
	Enter Name and Description	Name:	Public Protection 17 characters entered	×
	Select Folder	Description:	1st Year DRLs	× ×
	Use the Back, Next, and Finish buttons to continue. You need			-
Click Next	to complete each Step in the order specified.		13 characters entered	
		Cancel R	eset Arrow Back Next >	Finish

EXPORT AND SAVE RADIONUCLIDE MIXTURE

Select the Mixture Folder "Other"

WHAT IS THE PAG FOR THIS CALCULATION?

Select Protective Action Guides to see what the default PAGs are for this calculation. The user may alter the PAGs here, if need be.

lame and Description	Protective Add	tion Guides (PAGs)				
	Evacuation/Shelter/R	elocation					
ime Settings		Early Phase (TD)	Early Phase (AD)	First Year	Second Year	Fifty Year	
	Total Effective Dose (T						
adionuclide Mixture	Thyroid	5.0					
	Skin	50.0	50.0	100.0	25.0	2.50E2	
CRP Guidance		U	nits: rem 🗸 (0.0, 1.00E3]			

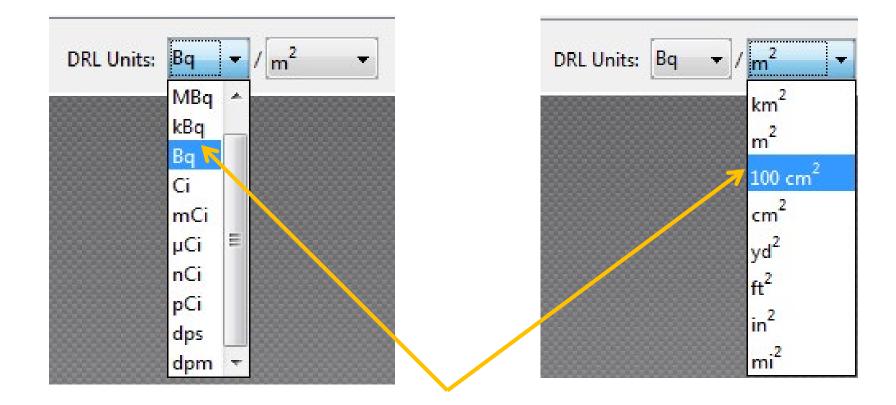
RUN CALCULATION

Click the Deposition button

🚺 *New Dei	rived Resp	ponse Lev	els Calculation	- Turbo FF	RMAC											
\bigcirc	i 🗐	۵)														
— но	OME	SHARE	TOOLS	HELP												
Required		Show All	· · · · · ·	lode	Reset nputs ~	Dose and Exposure	DRL Leposition	DRL Integrated Air	Dose Parameters More Mixture Properties	Age Group: [Organ: [Adult - Whole Body -	Dose Rollup Tool	🔎 Search	Details	Switch Calculations ~	B
		I	nputs						Results			Tools	View		Window	
					Pi	rogress all			94%							
					Curr	ent										
						Radionu	clide Mixt	ure								
									100%							
						Complete										
					10	Derived	Response	e Levels								
									100%							
						Calculating	g Gross Alp	ha/Beta D	erived Response Levels							
						Decay &	Ingrowth	i Denomi	inator Terms							
									100%							
						Complete										
					Elaps	sed Time:					- 📶 C	ancel				

NEW DEPOSITION DRL CREATED

Final Results displayed


*New Derived Response Levels Calculation - Turbo FRMAC						7770
HOME SHARE TOOLS HELP						
HOME SHARE TOOLS HELP HOME SHARE TOOLS HELP 1992 EPA PAG Manual Emulation Mode OFF III @ Inputs		Parameters Mixture Properties Organ: Whole Body ~	Dose Rollup	Input Briefing Report Products ~	Collapse All Expand All Search View	Switch Calculations ~ Window
Derived Response Levels view the calculati	Alpha DRLs	îc Deposition DRLs.				
Deposition Results Alpha DRLs	Beta DRLs Radionuclide-Specific DRLs Whole Body values are displayed for Adult for a Chronic	: Commitment Period.+		First Year		
Beta DRLs	Radionuclide Form	Early Phase (TD) Early Phase (AD) First Yea			7.39	
Radionuclide-Specific DRLs	₩ ⁶⁰ Co	0.33 53.5 . 0.17 26.7	7.39 3.69		3.69	^
	90Sr ₽ 	0.5 80.	11.08	;	11.08	
					11.09	
			L			
		1				
				0.000000000000		~
		DRL Units: μ Ci \checkmark / m ²	2 🗸			100 A 100 A 100 A

80

NEW DEPOSITION DRL CREATED

Change Units

NEW DEPOSITION DRL CREATED

Final Results displayed

	Alpha DRLs	Statistics in the second second				-		
position Results	Beta DRLs					- 26		
pha DRLs	Radionuclide-S	Specific DRLs						
	Whole Body values are o	displayed for <mark>Adult</mark> for a	Chronic Communent F	Period.		Ē		
eta DRLs	Radionuclide	Form	Early Phase (TD)	Early Phase (AD)	First Year	Seco	First Year	
	* ⁶⁰ Co	P	1.23E2	1.98E	2.73E3	Ĩ		2 72
adionuclide-Specific DRLs	※ ¹⁴⁸ Gd	P	61.4	9.90E	1.37E3			2.73
	🐲 90 _{Sr}	Р	1.84E2	2.97E	4.10E3			1.376
	<u>\$</u> 90γ	P	1.84E2	2.97E	4.10E3			1.271
								4.10
								4.10

Find the Dose Parameter Rollup Tool button at the top right of the ribbon

Click the Dose Parameter Rollup Tool button

DOSE PARAMETERS

Interactive Dose Rollup Tool

View radionuclide dose parameters ranked by their contribution to total dose by dose pathway or mixture total dose.

Select an Age Gro	up, Organ, and Time Phase, and then choose the Sort	order.	The interactive window allows the user to select age group,
Age Group:	Adult	S rt by: Total Dose 🔹	organ, and time phase of
Organ:	Whole Body 👻	Commitment Period: Chronic	interest
Time Phase:	Early Phase (TD)		
		Rolled-up Dose Parameters (summed over decay chain)	
		A Radionuclide node that is collapsed displays the sum of the doses daughters in the decay chain.	s from the radionuclide and the

Expand All

Collapse All

1 Cumulative % values include the entire decay chain contribution.

Radionuclide	Rank	Form	Plume Inhalation	Plume Submersion	Resuspension Inhalation	Groundshine	Total Dose	% of Mixture Total	Cumulative % of Mixture Total
Gd-148	1	P	5.91E3	0.0	32.96	0.0	5.95E3	98.78	98.78
▶ Sr-90	2	P	57.07	3.29E-3	0.32	0.35	57.74	0.96	99.74
Co-60	3	P	10.49	0.29	5.84E-2	4.81	15.66	0.26	100.0
3 radionuclides									
Mixture Total Dose: Percent Contribution:			5.98E3 99.36%		33.33 0.55%				

Units: mrem

Select the First Year Time Phase from the drop down.

Select an Age Group, Organ, and Time Phase, and then choose the Sort order.

Raufonucliue	Rank Inhalation Subme	rs
Radionuclide	Fifty Year	
Expand All	Second Year	
	First Year	
	Early Phase (AD)	
	Early Phase (TD)	
Time Phase:	Early Phase (TD) 🔹	
Organ:	Whole Body 🔹	
Age Group:	Adult	

1ST YEAR DOSE PARAMETERS

The 1st Year Dose Parameters are listed by order of percent contribution to the total dose.

Radionuclide	Rank	Form	Plume Inhalation	Plume Submersion	Resuspension Inhalation	Groundshine	Total Dose	% of Mixture Total	Cumulative % of Mixture Total
Co-60	1	Ρ	0.0	0.0	0.23	3.79E2	3.79E2	69.98	69.98
Gd-148	2	Ρ	0.0	0.0	1.32E2	0.0	1.32E2	24.42	94.4
► Sr-90	3	Ρ	0.0	0.0	1.27	29.03	30.3	5.6	100.0

Yellow highlighted rows indicate the dose is "rolled up" (combined) with the dose from the daughters.

This can be expanded out to show individual contributions from each daughter.

F	adionuclide	Rank	Form	Plume Inhalation	Plume Submersion	Resuspension Inhalation	Groundshine	Total Dose	% of Mixture Total	Cumulative % of Mixture Total
(Co-60	1	P	0.0	0.0	0.23	3.79E2	3.79E2	69.98	69.98
(6d-148	2	P	0.0	0.0	1.32E2	0.0	1.32E2	24.42	94.4
▼ <u>9</u>	r-90	3	P	0.0	0.0	1.23	0.43	1.65	0.31	100.0
	Y-90		P	0.0	0.0	4.79E-2	28.6	28.65	5.29	

DOSE PARAMETERS

Select First Year Dose Parameter button Dose Parameter panel comes into view

Derived Response Levels view the cal	culated results for th	ne Dose Parameters.						
Dose Parameters Results			Dose P	arameter Units: mr	em 🗸			
Early Phase (TD) Dose Parameters	First Year [Dose Parameters						-
Early Phase (AD) Dose Parameters	Whole Body value	s are displayed for Adult	: for a <mark>Chronic</mark> Con	nmitment Period.				
	Radionuclide	Form	Plume Inhalation	Plume Submersion	Re. spension Inhalation	Groundshine	Total	
First Year Dose Parameters	≈ ⁶⁰ Co	P	0.0	0.0	0.233	3.79E2	3.79E2	^
	🗶 ¹⁴⁸ Gd	P	0.0				1.32E2	
Second Year Dose Parameters	🕂 🕊 90 _{Sr}	P	0.0	0.0	1.23	0.426	1.65	~
			Dose P	arameter Units: mr	em 🗸			
Dose Parameters indic	ate	Radionuclide		Resuspensio	on Inhalation Gro	oundshine	Total	
		г ⁶⁰ Со			0.233	3.79E2	2) 3.	.79E2
dose contribution fror	n each	x ¹⁴⁸ Go	ł		1.32E2	0.0	0 1	.32E2
radionuclide		⊕ ≵ ⁹⁰ Sr			1.23	0.426	5	1.65

DOSE RATE/EXPOSURE RATERL

Select Dose and Exposure - Final Results Displayed

*New Derived Response Levels Calculation - Turbo FRMAC	\wedge
HOME SHARE TOOLS HELP	
Required Other Show All OFF III & Inputs	Image: Construction of the properties of the properti
Derived Response Levels view the calculat	₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽
	Dose Rate
Dose and Exposure Rate Results	Whole Body values are displayed for Adult for Chronic Commitment Period.
Dose Rate DRLs	Early Phase (TD)Early Phase (AD)First YearSecond YearFifty Year8.95E-31.440.28.64E-29.91E-2
Exposure Rate DRLs	Dose Rate DRL Units: mrem \sim / hr \sim
First Year	A Exposure Rate
0.2	Whole Body values are displayed for Adult for a Chronic Commitment Period.
	Early Phase (TD) Early Phase (AD) First Year Second Year Fifty Year
	8.95E-3 1.44 0.2 8.64E-2 9.91E-2
	Exposure Rate DRL Units: mR v / hr v

1ST YEAR INTEGRATED AIR CONCENTRATION DRL CREATED

Select Integrated Air - Final Results Displayed

New Derived Response Levels Calculation - Turbo FRMAC W	h						
	5						
HOME SHARE TOOLS HELP							
Required Other Show All OFF III (2) CFF II	Dose and Dep Exposure		Dose Parameters More Mixture Properties	Age Group: Adult Organ: Whole		Dose Rollup Tool	 Collapse All Expand All Search
Inputs			Results			Tools	View
Derived Response Levels View the cald	ulated results for th	e Alpha, Beta, and Radi	ionuclide-specific Integ	grated Air DRLs.			2012-222-2012
	Alpha DRLs						
Integrated Air Results	Beta DRLs					0.0.0.0.0.0	
	Radionuclide-S	specific DRL		REPORTORIO		First Year	÷
Alpha DRLs	hole Body values are o	lisplayed for Adult for a Ch	Ironic Commitment Perio	od.		T list Teal	
Rota DPLs	dionuclide	Form		ly Phase (AD) First	Year Se		2.46E3
	. 🗯 ⁶⁰ Co	P	1.11E2	1.78E4	2.46E3		A
Radionuclide-Specific DRLs	× ¹⁴⁸ Gd	P	55.3	8.92E3	1.23E3		1.23E3
	. 🞾 ⁹⁰ Sr	Р	1.66E2	2.68E4	3.70E3		
	γ ^{0e} 📽	P	1.66E2	2.68E4	3.70E3		3.70E3
				<u> </u>			2 7052
							3.70E3
					-		
							-
			DRL Units: (µCi 👻	• s •)/ m ³ •	•]		

SUMMARY OF RESULTS- DEPOSITION DRLS

None of the activities per area exceed the calculated DRLs. Therefore, Protective Actions in the 1st year may not be necessary

Radionuclide	Activity per Area (μCi/m²)	Deposition DRL (μCi/m²)
⁶⁰ Co	2	7.36
¹⁴⁸ Gd	1	3.69
⁹⁰ Sr	3	11.08
90 y a	3	11.09
^{a 90} Y included as a daug		

SUMMARY OF RESULTS-INTEGRATED AIR ACTIVITY DRLS

None of the integrated air activities exceed the calculated DRLs. Therefore, Protective Actions in the 1st year may not be necessary

Radionuclide	Integrated Air Activity (μCi·s/m ³)	Integrated Air DRL (µCi∙s/m³)
⁶⁰ Co	6.67E2	2.46E3
¹⁴⁸ Gd	3.33E2	1.23E3
⁹⁰ Sr	1.00E3	3.70E3
90 y a	1.00E3	3.70E3
^{a 90} Y included as a daug		

INGESTION CALCULATION CONCEPTS

INGESTION ASSESSMENT CONCEPTS

- Parent/Daughter Dose
 - All radionuclides present at consumption are treated as parents for ingestion calculations
 - Ingestion Dose Coefficients account for daughter ingrowth that occurs after consumption

- Average Annual Intake
 - Ingestion calculations are based on the average annual intake of <u>all dietary</u> <u>components</u> (including tap water used for drinking)
 - Calculations DO NOT apply to determining restrictions on Drinking Water EPA has separate Drinking Water restrictions.

INGESTION ASSESSMENT CONCEPTS

- Age Groups
 - Annual intake varies by Age Group
 - ICRP provides Ingestion Dose Coefficients based on the following Age Groups: 3 months, 1 year, 5 years, 10 years, 15 years, Adult
- Fraction of Diet Contaminated
 - Assumed to be 0.3
 - Exceptions: ¹³²Te, ¹³¹I, ¹³³I and ²³⁹Np in the <u>Infant</u> (3-month and 1 year old) diet where it is assumed to be 1.0

INGESTION INTERVENTION LEVEL

An Ingestion Intervention Level is a radionuclide concentration in food that, when consumed, could result in an individual receiving an Ingestion Dose (to the most sensitive age group/organ) equal an FDA Ingestion PAG

Derived Intervention Levels (DILs) were recommended by the FDA in 1998 as the radionuclide activity concentration in food at which point protective actions should be considered. The FDA established DILs for a list

FDA DILS

Principle Radionuclide/Group	FDA DIL (µCi/kg _{wet})		
⁹⁰ Sr	4.3E-03		
131	4.6E-03		
¹³⁴ Cs + ¹³⁷ Cs	3.2E-02		
¹³⁴ Cs	2.5E-02		
¹³⁷ Cs	3.7E-02		
²³⁸ Pu + ²³⁹ Pu + ²⁴¹ Am	5.4E-05		
²³⁸ Pu	6.8E-05		
²³⁹ Pu	6.0E-05		
²⁴¹ Am	5.4E-05		
¹⁰³ Ru + ¹⁰⁶ Ru	(¹⁰³ Ru/0.18) + (¹⁰⁶ Ru/0.012) < 1		
¹⁰³ Ru	1.8E-01		
¹⁰⁶ Ru	1.2E-02		

Secondary Radionuclides	FDA DIL (µCi/kg _{wet})
⁸⁹ Sr	3.8E-02
91 Y	3.2E-02
⁹⁵ Zr	0.11
⁹⁵ Nb	0.32
¹³² Te	0.12
129	1.5E-03
133	0.19
¹⁴⁰ Ba	0.19
¹⁴¹ Ce	0.19
¹⁴⁴ Ce	1.4E-02
²³⁷ Np	1.1E-04
²³⁹ Np	0.76
²⁴¹ Pu	3.2E-03
²⁴² Cm	5.1E-04
²⁴⁴ Cm	5.4E-05

HOW IS A INGESTION INTERVENTION LEVEL USED?

- A food must first be sampled and analyzed
- Radionuclide concentration in food is compared to an Ingestion Intervention Level (DIL or FIL)
- If the sample exceeds the Ingestion Intervention Level then consumption of the food <u>may</u> result in an Ingestion Dose greater than the FDA PAG

FRMAC INTERVENTION LEVELS

FRMAC has developed the FRMAC Intervention Level (FIL) to calculate values analogous to the FDA DILs for radionuclides not listed by the FDA

- FDA has directed FRMAC to use the DIL and applicable age group/organ for all FDA Radionuclides as listed in the FDA PAG Manual
- FRMAC will calculate FILs for all radionuclides <u>not</u> listed by the FDA

APPLYING INTERVENTION LEVELS

- Intervention Levels are applicable to foods as prepared for consumption or (generally) "wet"
- FDA allows FRMAC to exclude the <u>3-month old age group</u> for Non-FDA Radionuclides because calculation assumptions are questionable for that age group
 - When the 3-month old is the limiting age group, discuss with the FDA representative on the A-Team
 - Determine the next most limiting age group and exclude the 3-month old

INGESTION INTERVENTION LEVEL ASSUMPTIONS

- FDA DILs apply to <u>individual radionuclides</u> or FDA-specified groups
- FRMAC FILs apply only to individual radionuclides
- Both DILs and FILs apply only during the first year after an incident
- Both are based on the most sensitive age group/organ determined from Dose Coefficients and Ingestion Rates
- DILs for FDA radionuclides use ICRP 56 and the National Radiological Protection Board (NRPB) GS7 publication
- FILs for non FDA-listed radionuclides use the ICRP 60+ dosimetry model
- Annual intake is adjusted to account for radioactive decay
 - DIL: Effective Days of Intake (EDI)
 - FIL: Integrated Decay

- The Dose from consumption of contaminated food based on measured radionuclide concentration
- Compared to the FDA PAGs to determine whether protective actions are warranted

INGESTION DOSE ASSUMPTIONS

Calculations take in to account:

- Radioactive decay
- Fraction of diet contaminated
- Daily food intake rate
- Consumption period (usually one year)

FDA has established Food PAGs, but does not provide method(s) for calculating Ingestion Dose

There is no specific guidance on the time period to use for calculating the Ingestion Dose, use one year as default

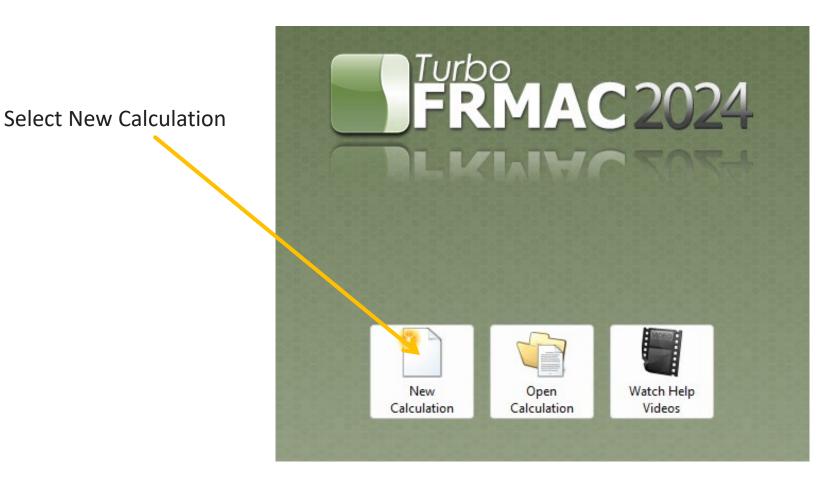
INGESTION DOSE FOOD GROUPS

Food Types fall into 4 groups (shown with subgroups)

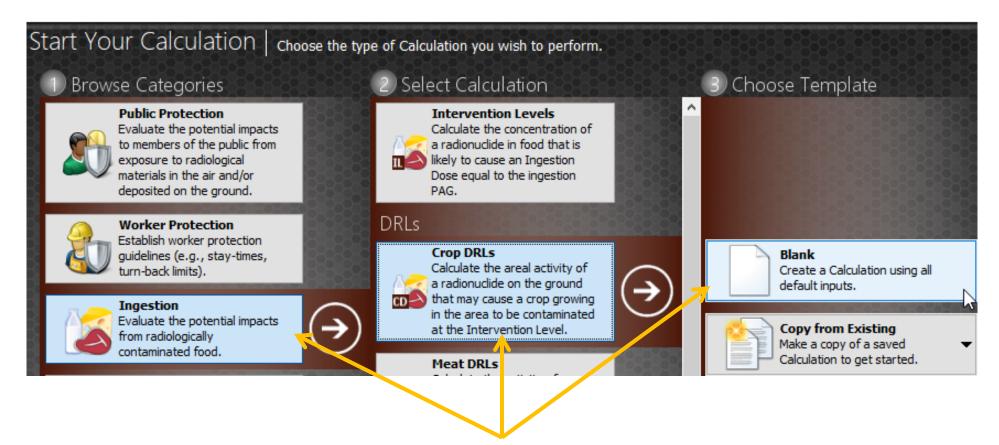
- 1. Meat/Fish Beef, Pork, Poultry, Fin Fish, Shell Fish, Other Meat
- 2. Crop/Produce Leafy, Other Produce, Breads, Cereals, Other Grains, Exposed, Protected
- 3. Milk Fresh Cow's Milk, Other Dairy, Eggs
- 4. Beverages Tap Water, Water-Based Drinks, Soups, Other Beverages

INGESTION DOSE EXAMPLE

SETTING THE STAGE



Calculate the Crop Ingestion DRL for ⁶⁰Co in lettuce for an evaluation time of 7 days after deposition and a 90 day time to harvest



OPEN TURBO FRMAC

SELECT NEW CALCULATION

Select Ingestion, then Crop DRLs, then Blank

NAME AND DESCRIBE CALCULATION

Click on Name and Description Button Type in a Name and Description for the calculation

Crop Derived Response Levels	v and edit the v	nost commonly used inputs for the calculations.	
	A Nam	e and Description	🕄 Help
Dequired Inputs	Name:	New Crop DRLs Calculation	×
Required Inputs	13	25 characters entered	
Name and Description	Description:		××
∂ Human Intake Rates		0 characters entered	~

HUMAN INTAKE RATE

Click on Human Intake Rates Button Default FDA Ingestion Rates are listed

> Crop Derived Response Levels | Review and edic the most commonly used inputs for the calculations. Human Intake Rates Human Intake Type: Crop/Produce **Required Inputs** Crop/Produce Category: Total Daily Intake 🗸 Reset... Name and Description All rates are editable for every category. Age Group Ingestion Rate Adult 2.59 Human Intake Rates Fifteen Year Old 2.38 2.14 Ten Year Old Radionuclide Mixture Five Year Old 1.81 One Year Old 1.38 Crop Pathway Settings 1.14 Three Month Old ~ / d \sim kq [1.00E-10, 10.0] DD 0 FDA C

Click on the Radionuclide Mixture Button

Click the Search box

Type in Co and select Co-60

Padionucl <mark>y l</mark> e Mixture	🙆 了 Help
me: Unin bwn scription:	
Mixture and M asurement Type	
Ad Rad onuclide:	Age
Co-55 Co-56	Julie Scale
Co-57 Co-58 Co-58m Co-60 Co-60m Co-61	
s	scription: Iixture and M asurement Type Generic Ad Rad onuclide: CO X P C M Sea ching Search All Radionuclides Co-54m Co-55 Co-56 Co-57 Co-58 Co-58 Co-58m Co-60 Co-60m

CROP PATHWAY SETTINGS

Click on the Crop Pathway Settings Button

Set Evaluation Time to 7 Days

Set Time to Harvest to 90 Days

	🔺 🖍 Zrop Pathway Settings			Hel
	Erver the time settings for this Carcul	a. n.		
equired Inputs	Evaluation Time:	7.00	d ~	
Name and Description		[0.0, 1.83E4]		
	Time to Harvest:	90.0	d ~	
		[0.0, 1.83E4]		
Human Intake Rates	Time to Market (after Harvest):	1.0	d ~	
		[0.0, 1.83E4]		
Radionuclide Mixture				
Crop Pathway Settings S ICRP & FDA Settings	Verify the default values are appropri	Total and the second se	2 00	
ICRP & FDA Settings	Verify the default values are appropri Crop Yield:		 2.00 [0.0, 1.00E4] 	k <u>ç</u> ∨ / m ² ~ ∨
ICRP & FDA Settings		Total and the second se	<pre> 2.00 [0.0, 1.00E4] </pre>	
ICRP & FDA Settings	Crop Yield:	Produce	[0.0, 1.00E4]	
ICRP & FDA Settings	Crop Type:	Produce Leafy Vegetables	[0.0, 1.00E4]	$ $ kg _d \sim / kg _w \sim
ICRP & FDA Settings	Crop Type:	Produce Leafy Vegetables	[0.0, 1.00E4] e 0.200 [0.0, 1.00]	$ $ kg _d \sim / kg _w \sim
CRP & FDA Settings	Crop Yield: Crop Type: Mass Conversion Factor:	Produce Leafy Vegetables Sync with Crop Typ	[0.0, 1.00E4] e 0.200 [0.0, 1.00]	$\frac{kg_{d} \vee}{m} \sim \frac{kg_{w} \vee}{m}$
ICRP & FDA Settings	Crop Yield: Crop Type: Mass Conversion Factor:	Produce Leafy Vegetables Sync with Crop Typ	[0.0, 1.00E4] e ~ 0.200 [0.0, 1.00] e ~ 0.300	$\frac{kg_{d} \vee}{m} \sim \frac{kg_{w} \vee}{m}$
ICRP & FDA Settings	Crop Yield: Crop Type: Mass Conversion Factor: Mature Root Depth:	Produce Leafy Vegetables Sync with Crop Type Sync with Crop Type	[0.0, 1.00E4]	$\frac{kg_{d} \vee}{m} \sim \frac{kg_{w} \vee}{m}$
}	Crop Yield: Crop Type: Mass Conversion Factor: Mature Root Depth:	Produce Leafy Vegetables Sync with Crop Typ Sync with Crop Typ 1.00E-3	[0.0, 1.00E4]	$\frac{kg_{d} \vee}{m} \sim \frac{kg_{w} \vee}{m}$

ICRP AND FDA SETTINGS

Click on the ICRP and FDA Settings Button Notice the FDA Options box is checked

Crop Derived Response Levels Re	eview and edit the post commonly used inputs for the calcu	ulations.	
	▲ ICEF & FDA Settings		Help
Required Inputs	ICRP Guidance: ICRP 60 V		
Name and Description	FD Options Use FDA Ingestion Guidance for FDA Radionuclides		
Human Intake Rates	FDA Groups to Include		
	Cesium Group (Cs-134, Cs-137)		
De discussible Minhum	✓ Plutonium Group (Pu-238, Pu-239, Am-241)		
Radionuclide Mixture	Ruthenium Group (Ru-103, Ru-106)		
Crop Pathway Settings	Commitment Period: Chronic V		
ICRP & FDA Settings			
Protective Action Guides (PAGs)	Protective Action Guides (PAGs)		Help
Totective Action Guides (FAGs)	Ingestion		
	PAG	Value	
	Committed Effective Dose	0.5	
	Committed Equivalent Dose	5.0	

NEW CROP DRL CREATED

Final Results displayed

Crop Derived Response Levels		sults for Crop De on Derived Res	rived Response Lovels.		÷
Crop DRL Results	Most Conserv	/ative Organ value	801 - 92 Det Solere	rvative Age Group (excludes Thro	
Ingestion Derived Response Levels	Radionuclide	Age Group One Year Old	Organ Whole Body	Crop Type Leafy Vegetables	DRL Value 22.32
	_				
DRL Value					
22.3	2				
$\mu Ci \sim / m^2 \sim$	-				$\mu Ci \sim /m^2 \sim$

WEB-BASED TRAINING OPPORTUNITIES

Nuclear Incident Response Self-Paced Learning Opportunities

AS-100: Introduction to Assessment Science 24 ABHP CECs

 22 module course covering FRMAC Assessment methods for public protection, worker protection, and ingestion pathway *PNNS-KDXC*

Turbo FRMAC Advanced Methods

- 1 ABHP CEC each
- Administration of Potassium Iodide
 Derived Response Level Calculation OMXL-NMBV
- Analytical Action Level Calculation HZAK-EWAX

LA-050: Support Laboratory Briefing CMOT-EKHS

• What labs should expect when called to help FRMAC

Gamma Spectroscopy ERXF-ZREQ

- Detector Calibration Methods
- Sample Analysis
- Software Functions
- Mathematical Instrument Calibration
- True Coincidence Summing Corrections
- In-Situ Gamma Spectrometry

LA-075: Laboratory Data Reporting (2024)

 Detailed walkdown of data reporting in CBRNResponder

Sandia and partners have developed *free, online* training! Learn more: <u>https://snl.matrixlms.com/</u>

Thank you!

Questions?

SUPPLEMENTAL SLIDES

ADMIN OF KI

The EPA has provided an Early Phase PAG for the issuance of KI

This method was developed to calculate Integrated Air, Deposition, Dose Rate and Exposure Rate DRLs to support decisions to administer KI in response to releases of iodine radionuclides DRLs are calculated as shown in Equations 1.1-1 and 1.1-2 from Method 1.1 and Equation 1.2-1 from Method 1.2 and will not be covered here This method differs from the standard DRL calculations in that only the dose to the thyroid from

iodine radionuclides is included

Protective Action Recommendation	PAG (Projected Dose)	Comments
Sheltering-in-place or Evacuation of the public ^a	1-5 rem over 4 days ^b	Evacuation (or, for some situations, sheltering-in-place) should be initiated when projected dose is 1 rem
Supplementary administration of prophylactic drugs – KI ^c	5 rem to child (1 Year Old) thyroid from iodine exposure ^d	KI is most effective if taken prior to exposure. May require approval of state medical officials (or in accordance with established emergency plans). FDA recommends that KI be administered to both children and adults at the lowest intervention threshold

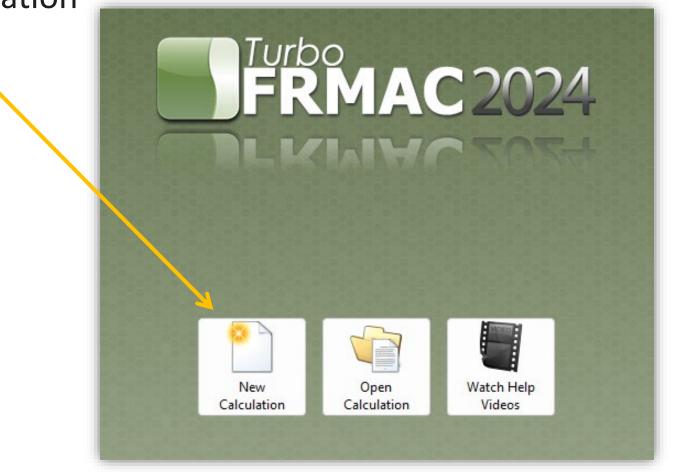
^a Should begin at 1 rem except when practical or safety considerations warrant using 5 rem; take whichever action (or combination of actions) that results in the lowest exposure for the majority of the population. Sheltering may begin at lower levels if advantageous.

^b Calculated dose is the projected sum of the effective dose from external radiation exposure (i.e., groundshine) and the committed effective dose from inhaled radioactive material.

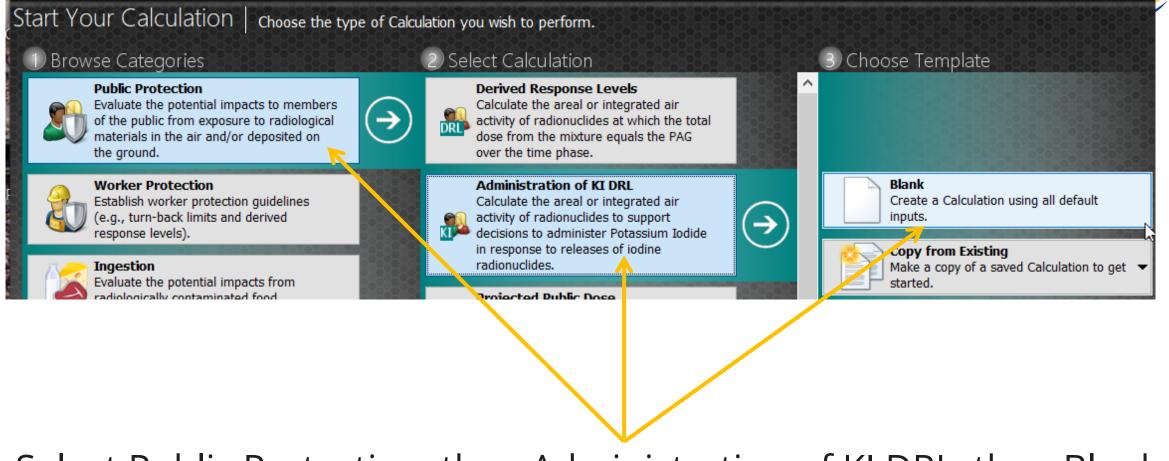
^c Provides thyroid protection from radioactive iodines only.

^d Thyroid equivalent dose

ASSUMPTIONS


- Receptor of interest is the 1 yr old child
- Organ of interest is the Thyroid
- Time Phase of interest is Early Phase Total Dose (TD) (0 96 hrs)
- Only considers the two inhalation pathways (Plume & Resuspension)
- Only considers the dose to the receptor's thyroid from iodine radionuclides
- Most likely release of iodines is from a Nuclear Power Plant (NPP)
- Accidental release of airborne iodine from a NPP is typically partitioned as follows in order to be consistent with NRC calculations
- **NOTE**: DRLs may be calculated for <u>any</u> radionuclide present in the release, <u>including non-iodine radionuclides</u>. This can be useful when other radionuclides may be easier to detect than iodine radionuclides (e.g., Cs-137) and can be used as a "marker" to indicate how much iodine is

present.



Select New Calculation

SELECT A NEW CALCULATION

Select Public Protection, then Administration of KI DRL, then Blank

NAME AND DESCRIBE CALCULATION

Click on Name and Description Button Type in a Name and Description for the calculation

Administration of KI DRL Review and en	dit the most cor	mmunity used inputs for the calculations.	
	🔥 Nan	ne and Description	📮 Help
Required Inputs	Name:	DHS Trng Admin of KI DRL 24 characters entered	×
Name and Description	Description:	Example problem for the DHS Trng presentation for Admin of KI DRL calculation	^×
Time Settings		77 characters entered	~

VERIFY TIME PHASES AND EVALUATION TIME

Click on Time Settings Button

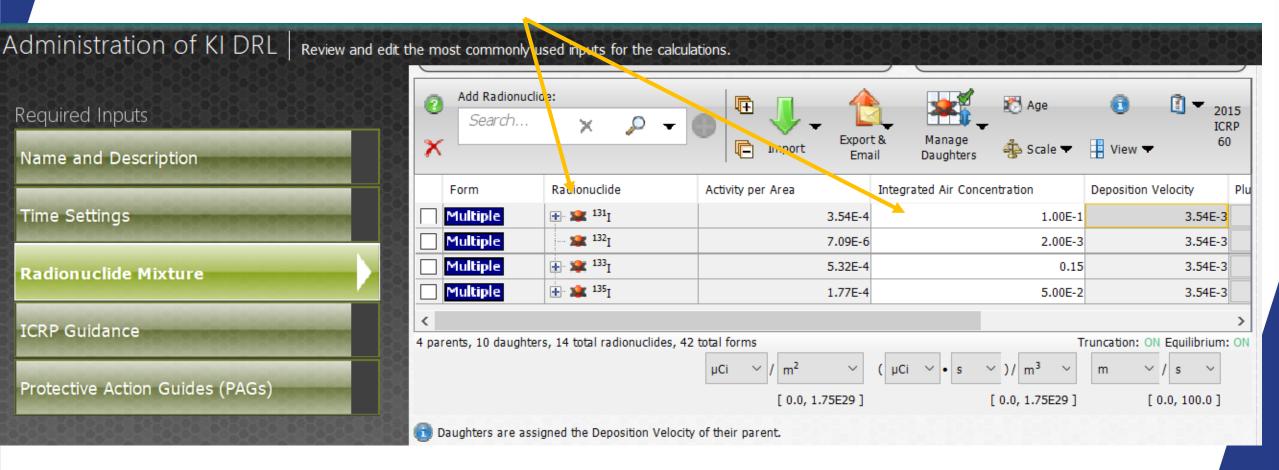
Notice only one Time Phase is available

Verify Time Phases, Evaluation Time and Pathways are correct

Administration of KI DRL	Review and edit the	e most commonly	used inputs f	or the calculations							
Required Inputs		Time Set									🚦 Help
Name and Description		Release Date & Ti Date/Time Mode:		021 🖲 10:31 ne 💿 Time After I		UTC-06:00) 🗸					
Time Settings		🕂 Add 🔫 🗡 D	elete 🛞 R	eset							
2		Time Phase	Start Time	Duration	End Time	Evaluation Time		Plume Inhalation	Plume Submersion	Resuspension Inhalation	Groundshine
Radionuclide Mixture	*	Early Phase (TD)	0.0	96.0	96.0)	12.0				
	8			157	1	hr	~				
ICRP Guidance			[0.0, 8.77E5]	[1.67E-2, 8.77E5]	[0.0, 8.77E5]						

Click on Radionuclide Mixture Button

Click the Integrated Air Concentration button


Administration of KI DRL \mid _{Rev}	view and edit the most commonly used inputs for the calculations.	
	Radionuclide Mixture	😮 💽 Help
Required Inputs	Name: I-131	X 🖵
Name and Description	Description:	×
Time Settings	Nuclear O Activity per Area O Mass per Area	t Values are Known for the Mixture? Activity per Area Activity per Area values will be calculated using the Deposition Velocity.
Radionuclide Mixture		oth

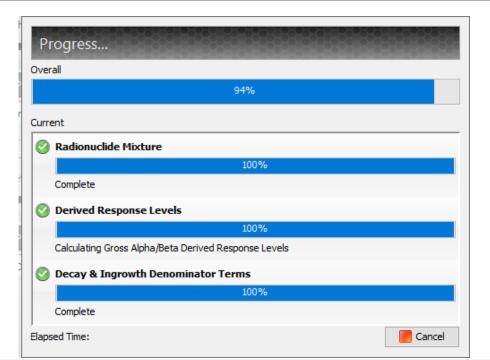
Click on Search and begin to populate Radionuclides

Administration of KI DRL Review and e	dit the most commonly used inputs for the calculations.
	Radionuclide Mixture
Required Inputs	Name: I-131
Name and Description	Description:
	Mixture and Measurement Type
Time Settings	Nuclear O Activity per Area O Mass per Area
Radionuclide Mixture	Power Plant
ICRP Guidance	Ald Radionuclide:
Protective Action Guides (PAGs)	Searching All Radionuclides
Trotective Action Guides (TAGS)	Fo I-130m
	I-131 I-132
	I-132m
	I-133
	I-134
	I-134m
	I-135

Enter each Radionuclide in the mix and enter the Integrated Air Concentration

KI PROTECTION FACTORS

This calculation allows the user to add a protection factor for administration of KI


Administration of KI DRL show all ing	outs (both Required and Other)	that can impa	ct the calculat	ations.
	Override the Lung Clearance Type rather than using the Master Lung			Reset to Master Lung Clearance Type
Show All Inputs	Radionuclide	Form	Lung Clearan	nce
Name and Description				
Time Settings	0 parents, 0 daughters, 0 total			
Radionuclide Mixture		pe for the radionu	clide supercedes	es the Master Lung Clearance Type.
ICRP Guidance	Instrument Threshold			
	Define the minimum threshold valu			
Protective Action Guides (PAGs)	Instrument Beta Energy Threshold:	: 70.0 [0.0, 5.12E2]	keV ∨	
Relative Biological Effectiveness				
Breathing Rates	KI Protection Factors			
Building Protection Factors	Configure Potassium Iodide (Ki for Each Time Phase	I) Administered S	ettings	All Time Phases
				10.0
Exposure to Dose Factors				[1.0, 1.00E5]
ICRP and Lung Clearance				Administered Potassium Iodide (KI) for Resuspension Inhalation
Instrument Thresholds				[1.0, 1.00E5]
KI Protection Factors				
Occupancy Factors				

RUN CALCULATION

Click the Integrated Air button

	🗋 🔌 [•							
File	номе	SHARE	TOOLS	HELP					
Require	d Other	Show All	Reset Inputs 🗸	Dose and Exposure Rate	Deposition	Integrated Air	Dose Parameters	One Year Old Thyroid	<
	I	nputs					Results		

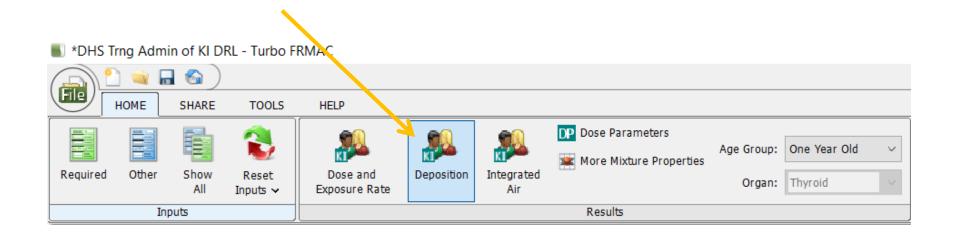
NEW INTEGRATED AIR DRL CREATED

Final Results displayed

tegrated Air Results	Thyroid values	are displayed f	or One Year Old for a Chronic Commit	ment I
lpha DRLs	Radionuclide	Form	Early Phase (TD)	
	🛨 🛣 💷 🗄	Р	1.01E3	
eta DRLs	🕀 🎎 131 _I	12	1.21E3	
	🛨 🏩 💷 🗄	CH3I	1.81E3	
adianualida Creatifia DRI a	- 🎎 ¹³² I	Р	20.11	
adionuclide-Specific DRLs	- 🕱 ¹³² I	12	24.13	
	📽 ¹³² I	CH3I	36.2	
	🕀 🏶 ¹³³ I	P	1.51E3	
	🕀 🌲 133 _I	12	1.81E3	
	🛨 🛣 ¹³³ I	CH3I	2.72E3	
	🖶 🕿 ¹³⁵ I	Р	5.03E2	
	🕀 🐲 ¹³⁵ I	12	6.03E2	
	🗄 🛣 🗚	CH3I	9.05E2	

NEW INTEGRATED AIR DRL CREATED

Radionuclide	Form	Early Phase (TD)
🖭 🐲 131	Р	1.01E3
🚛 🗶 131	12	1.21E3
🚹 🐲 131 _I	CH3I	1.81E3
🎎 ¹³² I	Р	20.11
🔉 132 _I	12	24.13
🗶 ¹³² I	CH3I	36.2
🚹 🗱 133 _I	Ρ	1.51E3
🚹 🎎 133 _I	12	1.81E3
🚹 🗶 133	CH3I	2.72E3
🚛. 🗶 ¹³⁵ I	Р	5.03E2
🛨 🐲 135 _I	12	6.03E2
і́н. 🤹 135	CH3I	9.05E2



Click the Deposition button

NEW DEPOSITION DRL CREATED

Final Results displayed

eposition Results	Thyroid values	are displayed f	or One Year Old for a Chronic Co
lpha DRLs	Radionuclide	Form	Early Phase (TD)
	🛨 😰 🖬 😰 👬	Ρ	13.65
Seta DRLs	🕀 🕱 ¹³¹ I	12	N/A
	🕀 🌋 131 _I	CH3I	N/A
	🕱 132 _I	Р	7.60E-3
adionuclide-Specific DRLs	- 🕱 ¹³² I	12	N/A
5 5 8 5 5 5 8 5 5 5 8 5 5 5 5 5 5	🕱 ¹³² I	CH3I	N/A
	🕕 🌋 133 _I	P	14.33
	🛨 🛣 133 _I	12	N/A
	🕒 🗶 133 _I	CH3I	N/A
	🕀 🕱 135 I	P	2.01
	🚹 🌋 135 _I	12	N/A
	🛨 🧟 🕺 🗄	CH3I	N/A

NEW DEPOSITION DRL CREATED

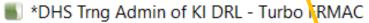
Final Results display DRLs but because the calculation is for Deposition, only the particulate form results are appropriate

Radionuclide-Specific DRLs

Thyroid values are displayed for One Year Old for a Chr

Radionuclide	Form	Early Phase (TD)
🖶 🕱 🎥 🔢	P	13.65
🛨 🕱 ¹³¹ I	12	N/A
🛨 🎎 131 _I	CH3I	N/A
🗶 ¹³² I	P	7.60E-3
🎥 ¹³² I	12	N/A
🕱 ¹³² I	CH3I	N/A
🗄 🎎 133 _I	P	14.33
🛨 📽 133	12	N/A
🗄 🗶 133	CH3I	N/A
🕂 🕱 ¹³⁵ I	P	2.01
🛨 🎎 135 _I	12	N/A
÷ 📽 135I	СНЗІ	N/A

DRL Units: µCi


✓ / m²

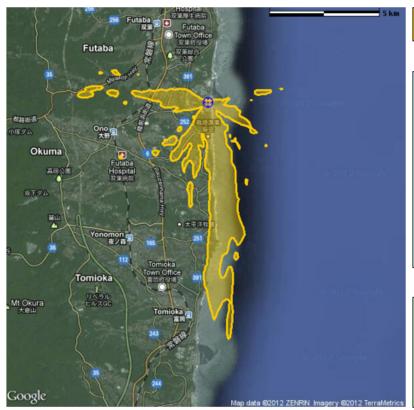
5/1/202

Click the Dose and Exposure Rate button

) 🔌 🛛	•							
	номе	SHARE	TOOLS	HELP					
Required	Other	Show All	Reset Inputs V	Dose and Exposure Rate	Deposition	Integrated Air	Dose Parameters More Mixture Properties	One Year Old Thyroid	< <
	In	puts					Results		

NEW DOSE AND EX	POSURE RATE DRL CREATED
Final Results displayed.	
Administration of KI DRL view the calculat Dose and Exposure Rate Results Dose Rate DRLs	ted results for the Dose Rate and Exposure Rate DRLs. Dose Rate Thyroid values are displayed for One Year Old for a Chronic Commitment Period.
Exposure Rate DRLs	Early Phase (TD) 0.19 Dose Rate DRL Units: mrem ~ / hr ~

USING ADMINISTRATION OF KI DRLS


FOR DEMONSTRATION ONLY - NOT AN APPROVED NARAC PRODUCT

Automated Report: Testing (37.4214,141.032) NPP Release at 14 Mar 2011 06:00 UTC

Predicted Areas Warranting Administration of Potassium Iodide (KI) Based on Current EPA Guidance (1992).

Applicable only if radioactive cloud is present or imminent

KI administration warranted to protect the adult thyroid. Exceeds 25 rem.

Notes:

•Prompt administration of KI is warranted for those located in the area indicated.

•The protective value of KI administration is time sensitive. If at all possible, administer KI before exposure to the radioactive cloud. Benefit diminishes rapidly after exposure to the cloud's radioiodine. •Potassium lodide only protects the thyroid from radioiodine. It has no protective value for other radionuclides or for any other organ. •There are two different sources of guidance for the administration of KI in a radiation emergency: 1) the older EPA Protective Action Guide (PAG) Manual and 2) the newer FDA KI Guidance. •This product employs the older guidance from the EPA Manual.

Assumptions:

•Areas shown are model predictions based on an estimated release of airborne radioactivity but not measurements.

•Plume Phase - Radioactive cloud may still be present or imminent. •Dose predicted for maximally exposed adult. Includes dose from inhalation of contamination in the radioactive cloud and dose from inhalation of resuspended contaminated dust over first four days.

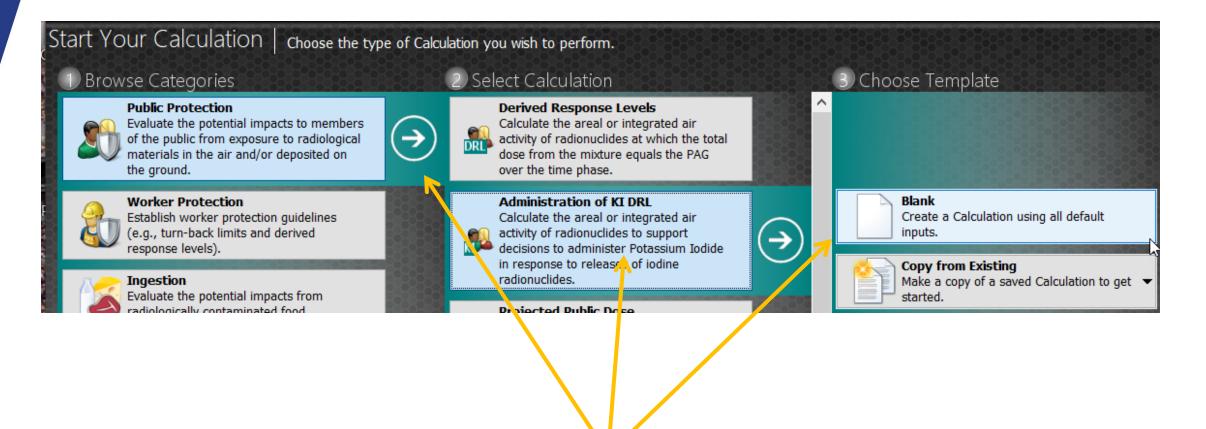
Briefing Product for Public Officials Current: 18 Oct 2012 15:59 UTC Check for updates

5/1/202

Technical Details: CMHT 702-794-1665 Advice & Recommendations: A-Team 770-488-7100

Not for Public Dissemination

page 1 of 3


Calculate the KI Administration Deposition DRLs for the Early Phase (TD) Time Phase for the Mixture below with an Evaluation Time (t_n) of 72 hours and Airborne Partition as indicated

Radionuclide	Integrated Air Activity (µCi•s/m ³)
I-131	1.0E-01

Chemical/Physical Form	Airborne Partition
Particulate	0.75
I ₂	0.20
CH ₃ I	0.05

SELECT NEW CALCULATION

Select Public Protection, then Administration of KI DRL, then Blank

NAME AND DESCRIBE CALCULATION

Click on Name and Description Button Type in a Name and Description for the calculation

Administration of KI DRL Review and e	dit the most co	mmonly used inputs for the calculations.	
	\land Nar	ne and Description	📮 Help
Required Inputs	Name:	DHS Trng Admin of KI DRL	×
Name and Description	Description:	24 characters entered Example problem for the DHS Trng presentation for Admin of KI DRL calculation	^×
Time Settings		77 characters entered	~

VERIFY TIME PHASES AND EVALUATION TIME

Click on Time Settings Button Change Evaluation Time to 72 hr

Administration of KI DRL	Review and edit the most commo	nly used input	ts for the calculat	ons.					
	Time se	ettings							📮 Help
Required Inputs	Release Pate & Ti	me: 09/20/2	021 📵 11:02	CST/MD	T (UTC-06:00) 🗸				
Name and Description		-	me 🔘 Time Afte	r Release					
		CDelete 9	😺 Reset						
Time Settings	Time Phase	Start Time	Duration	End Time	Evaluation Time	Plume Inhalation	Plume Submersion	Resuspension Inhalation	Groundshine
Radionuclide Mixture	Early Phase (TD)	0.0	96.0	96.0	72.0				
		hr v	hr v	hr v	hr v				
ICRP Guidance		[0.0, 8.77E5]	[1.67E-2, 8.77E5]	[0.0, 8.77E5]					

Click on Radionuclide Mixture Button Click the Integrated Air Concentration button

Administration of KI DRL Review and	edit the most commonly used inputs for the calculations.	
1999-1999-1999-1999-1999-1999-1999-199	Radionuclide Mixture	🛞 💽 He
Required Inputs	Name: I-131	
Name and Description	Description:	×
Time Settings	Mixture and Mersurement Type Nuclear • Activity per Area • Mass per Area Power Plant	What Values are Known for the Mixture? Activity per Area Actity per Area Actity per Area
Radionuclide Mixture		O Both

Click on Search and begin to populate Radionuclides

Administration of KI DRL Review	v and edit the most commonly used inputs for the calculations.
	Radionuclide Mixture
Required Inputs	Name: I-131
Name and Description	Description:
	M sture and Measurement Type
Time Settings	Nuclear O Activity per Area O Mass per Area
Radionuclide Mixture	Power Plant
ICRP Guidance	dd Radionuclide:
	X i X P V I Import
Protective Action Guides (PAGs)	Fo I-130m
	I-131
	I-132
	I-132m
	I-133
	I-134
	I-134m I-135
	1-133

Enter the Radionuclide and the Integrated Air Concentration Notice the "Multiple" button under the Form column is highlighted – Double Click that button

Administration of KI DRL Review and	l edit the most commonly	used inputs for the	culculations.				
Required Inputs Name and Description	Name: I-131 Description:	e Mixture					Help X
Time Settings	Mixture and Measu	rement Type			ues are Known for th	e Mixture? Activity per Are	
Radionuclide Mixture	Nuclear Power Plant	Activity per	Area 🔵 Mass per Area		y per Area ated Air Concentratio	values will be	ng
ICRP Guidance	Add Rad onucl				🔭 Age	 Image: The second second	2015
Protective Action Guides (PAGs)	Search	× P	▪ ● V ▼ Import	Export & Manage Email Daughters	🔹 Scale 👻 📘	View 🔻	ICRP 60
	Form	Radionuclide	Activity per Area	Integrated A: Concentra	ition Depos	sition Velocity	Plume
	Multiple	🛨 🐲 🔢 I	3.54E-	4	1.00E-1	3.54E-3	M
	<	1					>
	1 parent, 1 daughter,	2 total radionuclides,	6 total forms $\mu Ci \checkmark / m^2 \checkmark$	(µCi ~ • s ~)	/ m ³ ~ m	cation: ON Equilibri	um: ON
	Daughters are ass	igned the Deposition '	Velocity of their parent.				

A supplement box opens providing the user with the editable values for Airborne Partition Change these as specified Click Save with done

Multiple Forms					×
I–131 Set the Multiple Form	s for I-131.				2
Form	Radionuclide	Airborne Partition	Activity per Area	Integrated Air Concentration	Deposition Velocity
I2 CH3I P	Sum 🎥 Sum	-	6.15E-4	1.00E-1	6.16E-
Particulate	🗶 ¹³¹ I	0.75	6.15E-4	7.50E-2	6.50E-
Iodine Vapor	🏩 ¹³¹ I	0.2	N/A	2.00E-2	6.40E-
Methyl Iodide	131 _I	5.00E-2	0.0	5.00E-3	0.
٢					>
I-131 may exist in 3 form	15.	Fraction 🗸	μCi \sim / m^2 \sim	(μ Ci \sim • s \sim)/ m ³ \sim	mcation: Equilibrium: -
		[0.0, 1.0]	[0.0, 1.75E29]	[0.0, 1.75E29]	[0.0, 100.0]
🚺 All material is assum	ed to be Particulate once d	eposited.			_
					Save Cancel

RUN CALCU	ILATIO						
Click the Deposition bu	itton						
*DHS Trng Admin of KI DRL - Turbo F	RMAC						
HOME SHARE TOOLS	HELP						
	8			Dose Parameters	Age Group:	One Year Old	~
Required Other Show Reset All Inputs 🗸	Dose and Exposure Rate	Deposition	Integrated Air		Organ:	Thyroid	\sim
Inputs				Results			

NEW DEPOSITION DRL CREATED

Final Results displayed

		Radionucide-Spec	tific DRLs		E
Deposition Results		Thyroid values are displayed	for One Year Old for a Ch	ronic Commitment Period.	
Alpha DRLs	aniserie alignments	Radionuclide	Form	Early Phase (TD)	
	ananco canan co canan	🕱 ¹³¹ I	Multiple	35.43	
Beta DRLs	and a second	131mXe	G	7.63E-2	
		Constitute DDL a			
n na shuku na shuku na shuka n	🗖 (\land) Radionuclid	e-Specific DRLS			
		displayed for One Year Old fo	or a Chronic Commitn	nent Period.	
			or a Chronic Commitm Early Phas		
	Thyroid values are d	displayed for One Year Old fo	Early Phas		

INTERPRETING THE RESULTS

A Deposition DRL of 35.43 μ Ci/m² measured at 72 hrs after the release indicates that the Protective Action Guide (PAG) of 5 rem to the 1 yr old thyroid for the Early Phase (TD) time phase is met or exceeded

This data would provide the Decision Makers the information needed to take some protective action such as issuance of KI and advise as to administration

Also this data is provided to NARAC for plotting on a map to determine the potential impacted area that protective actions should be implemented