

Proudly Operated by Ballelle Since 1965

Fission Product Inventory Modeling

Fall 2020 RAMP USERS GROUP MEETING

October 30, 2020

Nicole LaHaye, Pavlo Ivanusa

Pacific Northwest National Laboratory

Introduce Advanced Reactors

Describe Reactors Under Design

Describe Fission Product Modeling Approach

Hierarchy of Advanced Reactors

What are the general characteristics of a Micro Reactor?

- Defined by a power range (1 MWe to 30 MWe) rather than specific technology
- Small footprint: fit on a flatbed truck, housed within 1000 ft²
- Potentially mobile/deployable
- Semi-autonomous operation
- Operate for several years without refueling

What are the general characteristics of an SMR?

- Again defined by power range (~30 MWe to 500 MWe)
- Smaller footprint than large light water designs
- Modular
- Safety by design

mudly Operated by Battelle Since 1965

US-Based Vendors and Designs

Vendor	Design	Vendor	Design		
Framatome	High Temperature Gas Reactor	Alpha Tech Research Group	Molten Salt Reactor		
General Atomics (EM2)	High Temperature Gas Reactor	Elysium Industries	Molten Salt Reactor		
HolosGen	High Temperature Gas Reactor	Flibe Energy (LFTR)	Molten Salt Reactor		
NuGen	High Temperature Gas Reactor	Kairos Power	Molten Salt Reactor		
Ultra Safe Nuclear Corporation	High Temperature Gas Reactor	Terrapower (MCFR)	Molten Salt Reactor		
X-Energy	Liquid Metal-cooled Fast Reactor	Terrestrial Energy USA (IMSR)	Molten Salt Reactor		
Advanced Reactor Concepts (ARC-100)	Liquid Metal-cooled Fast Reactor	ThorCon Power	Molten Salt Reactor		
Columbia Basin Consulting Group	Liquid Metal-cooled Fast Reactor	Atlas Energy Systems	Nuclear Battery		
General Electric-Hitachi (PRISM)	Liquid Metal-cooled Fast Reactor	CityLabs (NanoTritium)	Nuclear Battery		
Hydromine Nuclear Energy	Liquid Metal-cooled Fast Reactor	MicroNuclear	Nuclear Battery		
Niowave	Liquid Metal-cooled Fast Reactor	Global Energy Research Associates (GERA)	Small Modular Reactor		
Oklo*	Liquid Metal-cooled Fast Reactor	Holtec (SMR-160)	Small Modular Reactor		
Terrapower (TWR)	Liquid Metal-cooled Fast Reactor	Nuscale Power (NuScale)*	Small Modular Reactor		
Westinghouse	Liquid Metal-cooled Fast Reactor	Westinghouse (SMR)	Small Modular Reactor		
Westinghouse (eVinci)	Liquid Metal-cooled Fast Reactor				
General Atomics Mobile Micro-Reactor	Mobile Micro Reactor				
Westinghouse Mobile Micro-Reactor	Mobile Micro Reactor				
X-Energy Mobile Micro-Reactor	Mobile Micro Reactor				
BWX Technologies (BWXT) Mobile Micro-Reactor	Mobile Micro Reactor or Space Reactor				

More information on international vendors available in publication developed by Nuclear Power Technology Development Section of the IAEA

How did we approach modeling fission products?

Reactors of interest were categorized by general reactor type

- Helium-cooled prismatic reactor with TRISO fuel (based on High-Temperature Engineering Test Reactor [HTTR])
- Helium-cooled pebble-bed reactor with TRISO fuel (based on HTR 10)¹
- Lead-cooled fast reactor with UO₂ fuel (based on LeadCold Reactor)²
- Heat-pipe fast reactor with UO₂ fuel (based on Special Purpose Reactor)^{3, 4}
- Molten salt thermal reactor with liquid fuel (based on ThorCon Reactor)^{5, 6}
- Molten salt fast reactor with liquid fuel (simplified design)
- Sodium-cooled Fast Reactor (based on GE PRISM)

¹ IAEA 2004

² Wallenius et al. 2018

³ INL 2017

⁴ Hernandez et al. 2018

⁵ Fei et al. 2019

⁶ EPRI 2015

⁷ Triplett 2018

TRITON Models

What model runs were conducted?

- Depletion models using TRITON (Transport Rigor Implemented with Time-dependent Operation for Neutronic depletion) in SCALE (Standardized Computer Analyses for Licensing Evaluation)
 - Create library files for later use
 - Run a defined number of depletion cases based on power level (MW/MTHM)
- Radionuclide inventories calculated from TRITON libraries using ORIGEN (Oak Ridge Isotope Generation Code)
- Decay-only calculations performed using ORIGEN
 - Up to 20 years

Comparing Inventories

- Summary data set includes reactor source term inventories by radionuclide
 - Time 1 day, Time 1 year
- Minimum, maximum, and average activity for each radionuclide deduced from comparison across reactor types
- Focused summary data limited to radionuclides with high mobility potential
- Molten salt reactors exhibited highest activities for most radionuclides and had highest total activities

Example Results

Summary files for reactor type and enrichment (excerpt)

240500000 240500000 240500000 240500000 240500000 240500000 240500000 240500000 240500000 240500000 240500000 240500000 240500000 240600000 240600000 240600000 272100000 np239 6.632E+17 0.2178 u239 6.649E+17 6.649E+17 6.646E+17 6.639E+17 6.616E+17 6.551E+17 6.455E+17 6.085E+17 5.096E+17 3.176E+17 1.129E+17 3.252E+15 7.78E+10 4.164E+16 4.164E+16 4.164E+16 4.164E+16 4.164E+16 4.164E+16 4.164E+16 4.164E+16 4.165E+16 4.165E+16 4.165E+16 4.165E+16 4.165E+16 4.164E+16 4.164E+16 4.164E+16 4.164E+16 4.165E+16 4.165E 4.502E+16 4.502E+16 4.502E+16 4.502E+16 4.502E+16 4.502E+16 4.502E+16 4.502E+16 4.502E+16 4.499E+16 4.491E+16 4.464E+16 4.305E+16 3.522E+16 1.597E+16 49120000 xe135 4.328E+16 4.328E+16 4.328E+16 4.328E+16 4.328E+16 4.328E+16 4.327E+16 4.327E+16 4.327E+16 4.324E+16 4.309E+16 4.255E+16 4.016E+16 3.297E+16 i133 2E+16 3.022E+12 3.992E+16 3.992E+16 3.992E+16 3.992E+16 3.992E+16 3.992E+16 3.992E+16 3.992E+16 3.991E+16 3.987E+16 3.976E+16 3.952E+16 3.869E+16 3.633E+16 3.103E+16 1.938E+15 3.714E+16 3.712E+16 3.703E+16 3.703E+ la140 nb95 3.598E+16 3.598E 3.599E+16 3.595E+16 3.595E 3.676E+16 3.676E+16 3.676E+16 3.676E+16 3.676E+16 3.676E+16 3.676E+16 3.676E+16 3.675E+16 3.675E+16 3.678E+16 3.668E+16 3.652E+16 3.602E+16 3.698E+16 3.698E 89060000 4.816E+16 4.816E+16 4.816E+16 4.815E+16 4.815E+16 4.812E+16 4.808E+16 4.787E+16 4.698E+16 4.358E+16 3.443E+16 1.086E+16 1.398E+14 1094000000 ce141 3.506E+16 3.506E+16

Focused reactor summary at 1 year (excerpt)

		lead_e1000	lead_e1500	lead_e1995	spr_e1000	spr_e1500	spr_e1995	msr_fast_Th_e2000	msr_fast_e1500	msr_thermal_Th_e1000	msr_thermal_e1000	httr_e100	httr_e1500	httr_e1995	pbr_e1000	pbr_e1500	pbr_e1995	Min	Max	Average	% Difference (Min/Max)	Max Design	
Г	kr81	1.60E+04	9.18E+03	5.70E+03	7.18E+02	3.78E+02	2.40E+02	2.30E+06	1.49E+05	2.28E+06	4.73E+05	6.63E+03	4.57E+03	3.53E+03	4.02E+03	2.61E+03	1.99E+03	2.40E+02	2.30E+06	3.28E+0	5 200.0	msr_fast_Th_e2000	1
Ш	kr83m	4.14E+06	2.53E+06	1.58E+06	1.19E+06	6.25E+05	3.87E+05	9.02E+06	9.84E+06	9.32E+06	1.08E+07	3.20E+06	2.21E+06	1.68E+06	2.39E+06	1.55E+06	1.17E+06	3.87E+05	1.08E+07	3.85E+0	5 186.1	msr_thermal_e1000	
	kr85	5.44E+14	5.95E+14	6.24E+14	1.83E+14	1.91E+14	1.96E+14	2.21E+15	1.16E+15	2.05E+15	9.39E+14	5.40E+14	5.63E+14	5.75E+14	5.65E+14	5.81E+14	5.88E+14	1.83E+14	2.21E+15	7.57E+1	1 169.5	msr_fast_Th_e2000	
	rn217							4.26E+05		1.43E+05								1.43E+05	4.26E+05	2.85E+0	99.3	msr_fast_Th_e2000	
S)	rn218	2.25E+00	2.85E+00	3.31E+00	5.68E-01	7.08E-01	8.22E-01	4.56E+03		5.00E+03		1.81E-01	2.36E-01	2.87E-01	4.02E-02	5.51E-02	6.95E-02	4.02E-02	5.00E+03	6.84E+0	2 200.0	msr_thermal_Th_e1000	
Gas	rn219	2.15E+05	3.08E+05	3.95E+05	2.27E+04	3.38E+04	4.48E+04	3.34E+09	7.16E+04	7.00E+08		2.94E+05	4.58E+05	6.13E+05	1.92E+05	3.12E+05	4.28E+05	2.27E+04	3.34E+09	2.69E+0	3 200.0	msr_fast_Th_e2000	
loble	rn220	1.17E+09	8.52E+08	6.53E+08	2.21E+07	1.58E+07	1.25E+07	7.66E+12	7.67E+08	1.24E+13	1.46E+08	2.66E+08	3.14E+08	3.53E+08	1.18E+08	1.34E+08	1.52E+08	1.25E+07	1.24E+13	1.25E+1	2 200.0	msr_thermal_Th_e1000	
	rn222	2.27E+04	3.51E+04	4.76E+04	2.86E+03	4.34E+03	5.80E+03	4.63E+06		2.99E+06	_	1.51E+04	2.36E+04	3.22E+04	1.70E+04	2.62E+04	3.53E+04	2.86E+03	4.63E+06	5.63E+0	199.8	msr_fast_Th_e2000	1
	xe127	3.56E+06	2.01E+06	1.27E+06	1.63E+05	8.63E+04	5.53E+04	1.54E+07	5.75E+05	2.47E+07	2.06E+06	3.95E+04	2.79E+04	2.28E+04	5.13E+03	3.60E+03	2.98E+03	2.98E+03	2.47E+07	3.12E+0	200.0	msr_thermal_Th_e1000	
	xe129m	2.06E-01	1.08E-01	6.13E-02	1.08E-02	4.95E-03	2.73E-03	7.45E+00	7.49E-01	9.92E+00	4.36E+00	2.20E-02	1.30E-02	9.59E-03	8.28E-03	3.99E-03	2.68E-03	2.68E-03	9.92E+00	1.43E+0	199.9	msr_thermal_Th_e1000	
	xe131m	3.89E+05	3.75E+05	3.67E+05	3.60E+05	3.56E+05	3.56E+05	5.80E+05	5.50E+05	6.02E+05	5.76E+05	3.67E+05	3.60E+05	3.56E+05	3.62E+05	3.56E+05	3.53E+05	3.53E+05	6.02E+05	4.16E+0	5 52.2	msr_thermal_Th_e1000	
L	xe133	5.69E-05	5.70E-05	5.72E-05	5.88E-05	5.92E-05	5.95E-05	7.98E-05	8.06E-05	7.91E-05	7.85E-05	5.65E-05	5.68E-05	5.69E-05	5.69E-05	5.71E-05	5.72E-05	5.65E-05	8.06E-05	6.30E-0	35.1	msr_fast_e1500	I

Questions?

